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ABSTRACT
The power grid is one of humanity’s most significant engineer-
ing undertakings and it is essential in developed and developing
nations alike. Currently, transparency into the power grid relies
on utility companies and more fine-grained insight is provided by
costly smart meter deployments. We claim that greater visibility
into power grid conditions can be provided in an inexpensive and
crowd-sourced manner independent of utility companies by lever-
aging existing smartphones. Our key insight is that an unmodified
smartphone can detect power outages by monitoring changes to its
own power state, locally verifying these outages using a variety of
sensors that reduce the likelihood of false power outage reports,
and corroborating actual reports with other phones through data
aggregation in the cloud. The proposed approach enables a decen-
tralized system that can scale, potentially providing researchers and
concerned citizens with a powerful new tool to analyze the power
grid and hold utility companies accountable for poor power qual-
ity. This paper demonstrates the viability of the basic idea, iden-
tifies a number of challenges that are specific to this application
as well as ones that are common to many crowd-sourced applica-
tions, and highlights some improvements to smartphone operating
systems that could better support such applications in the future.
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1. INTRODUCTION
The power grid is of enormous importance to global welfare, and

it stands to reason that information regarding its stability would be
of interest to researchers, regulators, and ratepayers. The current
paradigm for increasing visibility into the power grid is via a cen-
tralized network of utility owned, deployed, and controlled smart
meters. While this approach can offer a detailed view into power
grid conditions, the approach also has its drawbacks. As smart me-
ters are under the aegis of utility companies, they do not necessar-
ily yield greater transparency and visibility to researchers and the
public at large, limiting their usefulness in helping third parties au-
dit power grids. This is especially problematic in countries where
corruption may play a role in controlling the external perception
and reporting of power grid quality. Furthermore, smart grids are
costly, and thus hard to scale in developing nations, which con-
versely is where power grids are least stable and where increased
visibility may be the most useful.

We propose Grid Watch, a new bottom up, automated, and crowd-
sourced method of characterizing power grid conditions. The key
insight underlying Grid Watch is that smartphones can easily detect
power outages by monitoring changes in their charge state when
plugged into the wall. Furthermore, smartphones have various sen-
sors which allow them to locally verify that a change in power state
while charging is a likely power outage rather than a manual dis-
connection from the charger. For example, a microphone can detect
the presence or absence of an ambient 50 or 60 Hz “hum,” or its har-
monics, which provides some evidence of the presence or absence
of AC electric fields emanating from nearby power lines.

Grid Watch provides greater transparency as compared to smart
meters by collecting data in a decentralized, grassroots manner,
making it potentially more useful for monitoring, vetting, and au-
diting utilities. Furthermore, Grid Watch leverages the potent and
still blossoming global smartphone community to cheaply scale, al-
lowing it to occupy a niche in developing countries that may not be
able to afford large smart meter deployments or to fill the void in
countries such as the United States where the deployment of smart
meters has been slow. Finally, Grid Watch can augment utilities’
existing monitoring systems, potentially providing visibility into
locations that the utilities are unable to monitor easily, helping them
isolate and correct problems in their own networks.

To the best of our knowledge, there is no publicly available repos-
itory of power outage data, much less one that is automatically up-
dated independently of utility-generated reports. We believe Grid
Watch could play an integral role in the creation of such a data set,
enabling third parties – ratepayers, researchers, and regulators – to
analyze power grids and hold utilities accountable.

http://dx.doi.org/10.1145/2565585.2565607


Figure 1: Grid Watch operation diagram. A plugged-in phone
changes from a powered state to an unpowered state with grid fail-
ure. Grid Watch registers this event, verifies that it is not a likely
false positive, and reports the event to the cloud for analysis, export
and visualization.

2. GRID WATCH SYSTEM
Grid Watch is a crowd-sourced, automated, mobile sensing ap-

plication. Grid Watch senses a power outage by taking advantage
of two observations: 1) a phone is rarely unplugged without being
picked up and moved soon after, and 2) the “hum” of AC mains
power can be detected using the microphone present on the phone.
When Grid Watch detects that a phone has stopped charging, it
samples from the accelerometer and microphone. If analysis of
these samples show that an outage did occur, Grid Watch uploads
the GPS location, system time, and phone unique ID to a central
service. This data is prepared for export and visualization and is
used as input data into grid behavior modeling algorithms. An
overview of the system is shown in Figure 1. We implement Grid
Watch as a smartphone app for both Android and iOS.

2.1 Smartphone Power Outage Detection
Both Android and iOS expose charge state events which wake up

the Grid Watch app from the background. When an OS event regis-
ters that a phone has stopped charging, Grid Watch briefly samples
the accelerometer and microphone (currently 5 seconds). The ac-
celerometer detects if the phone is being moved (unplugged), and
an FFT on the audio samples detects the AC mains hum. In addi-
tion, Android’s API exposes the classification of charger type, al-
lowing Grid Watch to filter out charge state events that occur when
the phone is charging in the car or over USB. Grid Watch reports
the results of these tests to its central service. The app additionally
allows users to manually report outages that are not automatically
detected by Grid Watch (e.g. an outage that occurs when the user’s
phone is not plugged in) and reclassify falsely reported outages.

2.2 The Data
The current Grid Watch implementation collects the following

data, which we consider to be the minimum needed for Grid Watch
to be effective:

GPS Location. To ascertain outage area, the location of outage
events must be recorded. In deference to user privacy concerns,
however, the GPS granularity is user controllable (e.g. truncated at
the house, block, neighborhood, or city granularity). While precise
GPS data allows for high precision of outage reports, we hypothe-
size that a high density of low precision locations could also pro-
vide sufficiently accurate outage maps and preserve user privacy.

Classifier Results. Both of our local outage filters are threshold-
based: 1) Did the accelerometer move “too much”? 2) Is the mag-
nitude of the 120 Hz peak “high enough” above the baseline? We
collect this baseline data to refine our classifiers and validate our
thresholds.

System Time. When a potential outage event is detected, Grid
Watch timestamps the power loss before taking any other action.
This local timestamp is used as ground truth of when an outage
is observed. In addition, the Grid Watch service records a times-
tamp when the event is actually received. A high delta between this
timestamp and the timestamp from the central service when the
event is received could suggest the loss of independently powered
cellular infrastructure.

User Data. Additional information from the user is gathered
optionally by Grid Watch independent of an outage event. This
information includes the name and contact information for the util-
ity company that provides power for the user, an estimation of the
frequency of power outages that the user experiences, and basic
information about the user’s phone charging habits.

Unique ID. An ID is not strictly necessary for the operation of a
Grid Watch. We collect it, however, for the purpose of estimating
the Grid Watch user base and density in a given area. In addition,
we believe users may have an interest in tracking their own outages.
This belief is based on the prevalence of power outage maps avail-
able on utility websites in the United States. Lastly, this enables us
to delete all of the events reported by a user if so requested.

2.3 The Central Service
Currently, the Grid Watch central service is responsible for archiv-

ing the reported outage data, providing basic access controls to the
data, and providing users with feedback regarding a current power
outage and their power outage history. All Grid Watch data is also
archived for longitudinal analysis.

3. EVALUATION
Although we have not yet deployed Grid Watch, we perform a

series of experiments to validate several key hypotheses. We use
Grid Watch to detect a power outage in a house. In addition, we
evaluate the Grid Watch false positive filters and measure the time
synchronization between smartphones.

3.1 False Positive Detection
We perform two experiments to validate our methods of false

positive detection. First, we run an instance of Grid Watch using
only the accelerometer to filter false positives on both an iPhone 5
for two weeks and a Galaxy Nexus smartphone for three days. Dur-
ing this time, the phones are used routinely. The central service did
not receive any false positives during this experiment.

Additionally, we test the ability of phones to detect the hum from
AC mains. We record a five second audio sample at a 44.1 Ksps
sample rate from four different phones inside a house and turn
off the master circuit breaker to simulate a power outage. These
recordings contain minimal background noise. We perform an FFT
on these recordings to search for the AC mains frequency. The re-
sults of this survey are shown in Figure 2. We observe the 60 Hz
(U.S. AC mains) frequency clearly from audio recorded on the
phones running Android when the power in the house is on. Within
the audio recorded on the iPhones, we observe no 60 Hz peak, sug-
gesting that a notch filter is present in their audio frontend, pre-
sumably because 60 Hz interference is undesirable for normal use
of the microphone. Fortunately this filter does not extend to the
second harmonic of the AC mains signal at 120 Hz. The 120 Hz
harmonic is also highly detectable in the audio recorded on the
Android phones. We build our AC mains classifier to detect the
presence of a 120 Hz peak. To ensure accurate detection in other
countries, our classifier can be set to report the presence of mains
power if a 100 Hz peak, the second harmonic of a 50 Hz mains, is
detected.
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(a) iPhone 3G Power On
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(b) iPhone 3G Power Off
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(c) iPhone 5 Power On
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(d) iPhone 5 Power Off
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(e) Note Power On
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(f) Note Power Off
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(g) Nexus Power On
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(h) Nexus Power Off

Mode Device Apt Home Lab Office

P
O
W
E
R

O
N

Quiet
Galaxy Nexus TP TP TP TP

Nexus 7 TP TP TP TP
iPhone 5 TP TP TP TP

Talking
Galaxy Nexus TP TP TP TP

Nexus 7 TP TP TP FN
iPhone 5 TP TP TP TP

TV
Galaxy Nexus TP TP TP TP

Nexus 7 TP FN TP TP
iPhone 5 TP TP TP TP

Music
Galaxy Nexus FN TP TP TP

Nexus 7 FN TP TP TP
iPhone 5 TP FN TP TP

P
O
W
E
R

O
F
F

Quiet
Galaxy Nexus TN TN

Nexus 7 TN TN
iPhone 5 TN TN

Talking
Galaxy Nexus TN FP

Nexus 7 FP TN
iPhone 5 FP TN

(i) Results of our AC mains peak detection classifier on a variety of phones
in a variety of environments. Power off in the Apt environment cut power in
the apartment, but not the rest of the building. We are unable to cut power
to the lab or office. Our AC mains classifier shows 87% accuracy in our
limited sample, which is encouraging but clearly indicates that smartphone-
based detection alone is not sufficient for low error rates. True positive (TP)
and true negative (TN) indicate either the detection or lack of detection of
AC mains when expected. Conversely, false positive (FP) and false negative
(FN) indicate either the detection or lack of detection of AC mains when not
expected.

Figure 2: FFT of audio samples captured on four different phones illustrating the absence and presence, respectively, of 60 Hz and its
harmonics from ambient electrical fields. The graphs on the left capture the home environment during normal power a power outage for four
different phones. On all models, a 120 Hz peak (2nd harmonic of the 60 Hz mains) is visible when the power is on but disappears in the
event of a power outage. The iPhones appear to have a 60 Hz notch filter in their audio frontends to presumably mitigate noise from the
environment, but none of the harmonics are filtered, allowing our microphone-based detection to remain effective.

We test the ability of a Galaxy Nexus, Nexus 7, and iPhone 5
to detect 60 Hz or its harmonics in different scenarios. We use
four different physical environments: 1) A laboratory with a higher
than normal concentration of electronic equipment at the Univer-
sity of Michigan, 2) A one bedroom apartment, 3) A house, and 4)
An office with a normal concentration of electric equipment at the
University of Michigan. In each environment, we test four differ-
ent types of background noise: 1) No noise, 2) Regular talking, 3)
TV on at regular volume, and 4) Music playing at normal volume.
Recordings are taken from the phones and AC mains presence is
determined visually by inspecting the FFT. The results of these ex-
periments are shown in Figure 2(i).

We find that AC mains is detectable across many environments
and background noises. We notice at times both the Nexus 7 and
iPhone 5 do not detect any harmonic of AC mains when power is
present. Both phones record audio at a significantly higher gain
than the Galaxy Nexus suggesting that they might be employing
automatic gain control that could be masking the AC mains signal.

Cascading outages spread within minutes [19], setting an upper
delay bound for Grid Watch reports to be useful in tracking the
spatial and temporal spread of certain outages. To test the tempo-
ral clustering of observations of the same power outage event, we
connect ten smartphones of six different models to a single power
strip. We turn off the power switch, and examine the timestamps
each phone generates upon detecting the power outage. We repeat
this process 20 times, and display the results in Figure 3.

We find that the average standard deviation between reported
times for an identical power outage was 0.76 s, with the maxi-
mum standard deviation being 2.145 s. For 19 out of 20 trials, the
standard deviation between reported times is less than 0.8 s. The
maximum time difference between timestamps for a single event is
6.21 s. The maximum time difference is less than 2.2 s.

Based on this data, we conclude that the time synchronization
between smartphones could be sufficient to help characterize power
outage spreads. Our general knowledge of the dependence of GSM
and GPS on accurate timing also supports the idea that the time
synchronization of smartphones should be relatively high. Finally,
for WiFi connected smartphones, we may be able to employ NTP.

4. RESEARCH QUESTIONS
Our initial work in developing Grid Watch raises a number of

research questions both for crowd-sourced sensing systems at large
and for our particular application of grid monitoring. In this sec-
tion we enumerate what we see as the greatest challenges moving
forward with Grid Watch and similar community sensing efforts.

4.1 Grid Modeling
Power companies in developed countries use a combination of

automated and manual techniques to identify and localize power
outages. Battery-backed smart meters report outages, but their pen-
etration is limited even in developed countries [17, 28]. As a re-
sult, customer provided reports supply the most actionable data but
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(a) Ten phones detecting the same twenty simulated power outages

Figure 3: Exploring how tightly-coupled timing event detections
are between a variety of phones. For each trial, phones are con-
nected to the same power strip, which we switch off to simulate
a power outage. The phones time-stamp the event detection, and
we characterize the standard deviation in reported times for each
trial. Only the charging state classifier is active during these exper-
iments. We find that across a diverse array of phones and chargers,
the reported event time is within one second in 19 of 20 trials.

are neither automatic nor quick. We hypothesize that Grid Watch
may be able to provide utility companies with information of high
enough fidelity to support their efforts in performing demand re-
sponse, energy consumption scheduling, and recovery from mas-
sive power outages [19, 20]. We are uncertain, however, what pen-
etration is necessary to provide results of sufficient quality to be
actionable.

It would be desirable to be able to track the spread of an outage
using Grid Watch data. Clustering appears to be a natural choice
for this problem because the data are inherently clustered by geo-
graphic location and temporal position, as well as by the topology
of the power grid [23]. Additionally, past work has shown cascad-
ing power failures follow spatial and temporal patterns [29]. Pattern
recognition classifiers might allow for cascading power outages to
be recognized from Grid Watch data.

4.2 Coverage
We recognize that the efficacy of Grid Watch depends on moti-

vating the public to install and run our system. We are optimistic
that we would achieve some level of penetration given the high par-
ticipation rate in several non-monetarily incentivized community-
sensing projects, which we discuss in Section 5. In addition to
the simple penetration provided by Good Samaritan participants,
we aim to add features such as outage statistics, estimated time to
power return, and utility comparison that provide sufficient value-
add to motivate additional users to join the Grid Watch platform.
Several of these such features are provided by existing utility com-
pany apps, which have several thousand installed users [6], and
further support our claim that the potential installed user-base for
Grid Watch is large enough to be effective.

Coverage also refers to Grid Watch’s use case coverage. While
a majority of smartphones are plugged in at night while people
are sleeping, the limited set of people who work nights, work at
home, or otherwise may leave their phone charging during the day
presents an intriguing challenge for Grid Watch. However, the
growing sector of ultrabooks and convertible tablets that contain
accelerometers present another opportunity to expand Grid Watch
coverage. Microphones are common across all mobile devices, and
regular tablets already contain many of the same sensors that smart-
phones contain. Even if Grid Watch can only perform widespread

characterization of the power grid while people are sleeping at night,
we would consider it a success. However, the smaller population
segments and other information vectors discussed present an inter-
esting research direction to push the coverage limits of a crowd-
sourced and automated power outage sensing system.

Additionally, we envision older phones that are no longer in use
being repurposed as stationary Grid Watch instances. Assuming
these phones can still access the cellular infrastructure, they would
be free from many of the constraints in coverage that arise with an
everyday-use phone.

4.3 Platform Challenges
Once the initial hurdle of encouraging people to participate in

Grid Watch has been surpassed, there are further challenges that
come with growing Grid Watch to global scale.

The Android ecosystem largely accommodates Grid Watch, pro-
viding us with an easy to access marketplace and a strong API
which allows us to differentiate charging sources on Android phones.
However, the iOS ecosystem presents us with a few problems. In
iOS 6.0, only six types of applications are allowed to run as long-
term background programs, none of which describe the Grid Watch
app. This means that getting the Grid Watch app approved by Apple
for deployment would require either a very flexible reading of the
background application requirements, or for Apple to revise their
policy regarding background applications. This is a challenge fac-
ing many would-be community sensing applications, such as earth-
quake monitoring or nuclear detectors that are now emerging. We
are hopeful, however, given Apple’s new M7 chip and the focus on
long-term background data collection using only in-phone sensors,
that a new class of Apple-sanctioned applications will emerge.

In addition to software challenges, hardware diversity plagues
all application developers. While our limited survey from Figure 2
shows that the 120 Hz peak can be extracted from audio recorded
on a subset of phones, we recognize the probability that a greater
array of microphones would increase the challenge of ensuring that
our AC mains presence classifier remains effective.

4.4 Data Integrity
As Grid Watch begins to accumulate data, it will become impor-

tant to develop metrics to establish the quality of the Grid Watch
data. In areas where power companies are well-instrumented and
share data, this provides an excellent check. For regions where Grid
Watch seeks to supplant utility data, other means of validation are
necessary and must be devised.

In practice, there are often many other events that can be corre-
lated to a power outage. In Kenya, for example, many customers
publicly tweet outage reports to the national utility. Other possible
avenues include weather reports or newly emerging global Internet
health surveys—a geographically clustered area of server outages
likely indicates a physical failure of some kind.

Focusing internally, there are other methods of analysis that can
be performed on the Grid Watch data itself to further check in-
tegrity. Existing load forecasting systems use a diverse array of
techniques such as time-series predictors, neural networks, nearest-
neighbor approaches, and QP [19] to model the grid. Running
these models on our Grid Watch data may provide insight on how
well Grid Watch models the grid, how well the models adhere to
recorded data, or both.

Finally, we recognize that the Grid Watch system remains vul-
nerable to “bad actors” who “bear false witness”. It remains an
open question as to whether it is necessary to protect Grid Watch
from intentional manipulation and if so what the correct mecha-
nisms for this protection may be.



4.5 Recovery Rate
The current Grid Watch application is focused on detecting and

characterizing power outages. Unfortunately, this misses the per-
haps equally interesting characterization of the rate of power outage
recovery. A key component of measuring grid health is to evaluate
not only how often the grid fails but how quickly and effectively it
is repaired.

One way to do this would be to allow a central service to query
sensors on the phone, which combined with context detection and
GPS, may allow phones to guess if they should be able to detect
AC mains, and then see if the phones can actually detect it. Fur-
thermore, the ability to perform this type of query would allow for
on-demand increases in data resolution by using the event detection
of one phone to wake up other Grid Watch clients. This mechanism
could also help corroborate true witnesses.

4.6 Data Resolution and User Privacy
There is possibly some concern to user privacy when Grid Watch

reports the location of an outage. Publicly available Grid Watch
data could betray homes that have lost power and in turn their bur-
glary detection systems. High-fidelity data could potentially reveal
individual Grid Watch users.

Currently, our Grid Watch implementation records both a high-
precision GPS location and a “low-precision” network-based loca-
tion (e.g. cell tower or nearest WiFi AP, depending on platform
APIs). Once we have collected enough Grid Watch data, we intend
to explore the required fidelity for Grid Watch to be effective such
that we minimize the invasiveness of Grid Watch on user privacy.
In the meantime, the Grid Watch application provides a mechanism
for users to limit the fidelity of the reported location data by trun-
cating GPS coordinates, effectively limiting its precision.

4.7 Increased Sensor Utilization
The variety of sensors in smartphones raises the possibility of

developing new and novel classifiers for detecting outages more re-
liably. Furthermore, heuristics such as the presence of WiFi signals
or classification of captured sound (e.g. is there music playing?)
around the phone are two examples of additional techniques that
might decrease false positive reporting.

In addition, these sensors could be tasked to monitor the health
(e.g. phase) of an active power grid. Currently, power companies
use phasor measurement units, or PMUs, to characterize grid phase
and frequency in the wide area network [12]. The magnetometers
and/or microphones on smartphones may allow Grid Watch to act
as a low resolution PMU, allowing us to generate frequency dif-
ferential maps or detect sudden phase changes to further increase
visibility into the power grid.

An additional measure of grid stability is the frequency devia-
tion from AC mains at different locations. It has been shown that
a 50 Hz1 fundamental AC frequency can be extracted from digi-
tal audio recordings with a high degree of accuracy [22]. While
that work was sufficient for post-hoc fingerprinting, it remains to
be seen whether the audio channel can provide real-time monitor-
ing. Because of the trade-off between temporal and frequency res-
olution inherent to an FFT2, it is unclear if we can achieve a high
enough resolution frequency measurement from the phone to be
useful, limited both by the data rate available from the audio fron-
tend and the energy cost of performing high-resolution FFTs.

1This research was conducted in Poland.
2 For example, when sampling at 44.1 kHz for 5 seconds we gather
220,500 samples giving us 220,500

2
= 110, 250 bins. Our bin reso-

lution is then limited to 44.1 kHz
110250

= 0.4 Hz
bin .

5. RELATED WORK
Grid Health. Access to the real-time power grid status is criti-

cal to its stability. Grid modeling and response is well-studied, but
these models require dedicated instruments to gather accurate real-
time data of the power state. [14, 16, 23]. Grid Watch aims to pro-
vide data to support this analysis with commodity mobile phones.

Grid Data. Out of seven United States power companies sur-
veyed3 none provide long term historic outage data. These com-
panies do display real-time high resolution outage information on
their websites, although this data is not made available in an easily
exportable format. The Department of Energy requires utility com-
panies to report outages that affect over 50, 000 customers for more
than an hour and compiles this data into public annual reports [3].

The World Bank tracks the number of power outages that firms
experience in a typical month in countries around the world and
makes this data accessible [30]. This information relies on surveys
and only reports company level outages. To the best of our knowl-
edge, there exists no automatically updated individual level outage
data repository.

Community Sensing. Previously deployed community sensing
projects have attracted high amounts of participation. As of July
2013, the Zooniverse community sensing platform contained over
800, 000 participants across 12 different projects [15]. Other com-
munity projects such as Folding@Home [4], GitHub and Govern-
ment [5], and SETI@Home [8] have also enjoyed great success de-
spite the lack of monetary incentives. One community smartphone
project that has enjoyed immense success is Waze, a crowdsourced
car navigation program with a community of around 50 million
users [10].

Outage Detection. A survey of the same utility companies shows
that companies now leverage automated telephone services, online
“outage tools,” smartphone applications, and social media sources
as means to report outages. However, these methods still rely on
customers to report the outage in a timely manner.

Utility companies have the ability to perform measurements over
large-scale systems using supervisory control and data acquisition
systems and phasor measurement units [2, 7]. In monitoring in-
dividual homes, companies still rely in part on traditional meters
which require manual recording by employees in the field. In de-
veloped countries, an advanced metering infrastructure (AMI) is
being deployed [1] that automates power measurements through the
use of “Smart Meters.” However, due to cost and privacy concerns,
AMI adoption varies between countries [13, 21]. In the United
States, overall adoption has reached less than 30% with substantial
government support as of mid 2012 [9]. Grid Watch seeks to fill
this gap by providing opt-in, automated, fine-grained power infor-
mation with minimal infrastructure and deployment cost.

Many smart meters use communication back-ends that rely on
the power grid [18, 24, 27], making their utility susceptible to grid
failures. In contrast to smart meters, Grid Watch is resistant to
power grid failures. In the case of a power loss, Grid Watch end-
points have batteries and mobile networks typically have backup
power supplies like battery banks and generators. [11, 25, 26].

6. CONCLUSION
We propose Grid Watch, a global, crowd-sourced grid moni-

toring platform that leverages a simple side-channel available to
smartphones—the charger status—coupled with the reliable and in-
dependently powered cellular network to provide a simple, free,
and easily deployable grid monitoring solution. Our preliminary

3 DTE Energy, ComEd, PG&E, National Power, Duke Energy, and
XCEL.



results show the viability of collecting tightly time-synchronized
power state events from heterogeneous phones and operating sys-
tems, demonstrating the viability of our key idea. Much remains to
be explored, including the challenges of scaling the system, min-
imizing false positives and ensuring individual privacy and safety
while maintaining the authenticity and integrity of the distributed
reports. If deployed at scale, Grid Watch could provide unprece-
dented public data about the global power grid, to the benefit of
researchers, ratepayers, and regulators.
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