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Abstract
We describe the design, deployment, and experience with

a wireless sensor network for high-fidelity monitoring of
electrical usage in buildings. A network of 38 mote-class
AC meters, 6 light sensors, and 1 vibration sensor is used to
determine and audit the energy envelope of an active labo-
ratory. Classic WSN issues of coverage, aggregation, sam-
pling, and inference are shown to appear in a novel form in
this context. The fundamental structuring principle is the un-
derlying load tree, and a variety of techniques are described
to disambiguate loads within this structure. Utilizing con-
textual metadata, this information is recomposed in terms of
its spatial, functional, and individual projections. This sug-
gests a path to broad use of WSN technology in energy and
environmental domains.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: General; B.4

[Input/Output and Data Communications]: General

General Terms
Design, Experimentation, Measurement, Performance,

Human Factors

Keywords
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1 Introduction
Annual U.S. electricity consumption has tripled in the

past two decades and recent reports estimate that 72% of the
total U.S. electricity consumption occurs in residential and
commercial buildings [28] and that 30% of energy consumed
in buildings is wasted [29]. To reduce this waste, building
occupants and facilities managers need to better understand
how buildings use energy, broken down over space and time,
by function, and per-individual.
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Today, however, energy usage statistics are usually avail-
able only in the aggregate: typically monthly but sometimes
in 15 minute intervals and usually at the level of a building
but occasionally at the level of a circuit. Although building-
and circuit-level meters can provide full coverage of electri-
cal power usage, in that all loads are accounted for, they do
not provide detailed coverage, in that visibility into the con-
sumption of individual loads is rarely available. Significant
and sustainable reductions in energy usage will require more
detailed visibility into consumption than is available today.

Electricity, unlike many other phenomena observed using
sensornets, flows along a tree-shaped distribution network or
load tree. In an ideal world, we would have full and de-
tailed coverage of the load tree. Not only would we have
fine-grained access to total electricity usage – instrumenta-
tion at the root of the tree – but we would also have access
to the usage of every load – instrumentation at every leaf in
the load tree – including every laptop, light bulb, refrigera-
tor, microwave, compressor, server, printer, and fax machine.
Unfortunately, it is implausible to meter every leaf in prac-
tice. In this paper, we explore several practical techniques for
approximately disaggregating the load tree using a relatively
sparse set of carefully-placed sensors.

While disaggregating the load tree provides unprece-
dented insight into fine-grained electricity usage, under-
standing how, where, and for whom loads use electricity
requires exploring several additional questions. Answering
how electricity is used – for example by lighting, heating,
computing, or cooling – requires classifying loads by their
function or type, either manually or automatically. Answer-
ing where electrical power is used requires projecting mea-
surements taken on the load tree onto physical space. Finally,
answering the question for whom the lights flicker requires
tracking people, their occupancy in space, and their interac-
tions with things.

In this paper, we analyze an accessible portion of a typ-
ical computer science department as a case study in energy
monitoring. Our study focuses on a laboratory that occu-
pies one-third of a floor and explores several techniques for
approximating the ideal load tree for maximum coverage at
minimum cost. We begin by analyzing the structure of the
load tree and by building a comprehensive inventory of appli-
ances and loads at the various levels of the tree. We then de-
ploy a relatively sparse network of heterogeneous plug-load
meters and light sensors at carefully chosen sampling points,



and collect data continuously over several months. The data
are collected at a rate of one sample per minute per sensor
over a multihop wireless network. Using this unprecedented
data set, we explore several techniques for modeling, esti-
mating, and disaggregating energy usage across functional,
spatial, user, and signal domains.

2 Related Work
Research has shown that visibility into the energy con-

sumption of homes and offices can result in 5-20% reduc-
tions in electricity usage [11, 10]. However, the current level
of visibility in buildings is insufficient – energy consumption
data are often delayed, difficult to access, and aggregated.
Stern has shown that real-time, per-appliance visibility pro-
vides substantially greater utility and more actionable infor-
mation [27]. Unfortunately, this level of sensing coverage
historically has been difficult to achieve.

There has been a tremendous amount of research and in-
dustrial effort in recent years that has made significant strides
toward providing greater visibility. The MIT Plug [22]
power meter platform provides high-fidelity apparent power
measurements, which is useful for profiling a load over short
and long time scales. Multi-modal sensing has also been ex-
plored in the literature [9]. A significant amount of work
has also been shown recently in industry towards improving
building energy monitoring. Several startups, such as Ten-
dril [7], Greenbox [3], and EnergyHub [4], have introduced
ZigBee Home Profile-based wireless energy monitoring so-
lutions. These products take a bottom-up approach by pro-
viding detailed power measurements of selected individual
loads. While this approach is useful in observing a few loads
at high fidelity, it is neither practical nor cost-effective when
full coverage of tens or hundreds of appliances is desired.
The area of wireless sensor networks has also made signifi-
cation progress in this application space. For example, Sen-
tilla [6] offers a data center energy monitoring solution that
uses wireless plug-load meters and interoperates with other
types of sensors. Arch Rock [1] offers a sub-monitoring so-
lution for commercial buildings that uses wireless branch
level meters. Kim et. al. have developed methods to in-
fer power usage using non-intrusive means such as magnetic
sensors [18], and proposed a framework to profile personal
resource consumption using a combination of resource mon-
itoring and activity monitoring [17].

An opposite approach is to place the sensing instrument at
the root of the power distribution network, or load tree, and
use algorithms to increase visibility by disambiguating an
aggregated load from the top down. For example, many util-
ity companies have introduced AMI programs that provide
near-real-time visibility into the aggregate energy consump-
tion of homes. Some utilities are partnering with aggregators
such as the Google PowerMeter [2] project and the Microsoft
Hohm [5] project to provide a rich visual feedback of user
energy usage at the household level. Some utilities have in-
corporated “bill disaggregation” web applications that break
down users’ monthly bills by disaggregating the different
types of loads from their aggregated energy traces. This type
of approach was originally proposed by Hart in 1992 [15].
He proposed disaggregating individual electrical loads based

Figure 1. Snapshot of a small portion of the load tree in a
computer science building. Voltage is stepped down from
the building substation into floor-level electrical panels
which in turn distribute power into either AC outlets in
the low-voltage case or lights and major equipments in
the high-voltage case.

on real and reactive power measurements. The approach is
feasible for a small number of loads that have distinguish-
able differences in power factor. Norford et al. improved
this method with event detection to help disambiguate appli-
ances with similar reactive and real power signatures. More
complex algorithms have been developed and have shown
improvements [19], [14], [26], [8], [20], [21], [24]. How-
ever, this approach is generally less effective in an office en-
vironment in which many loads are based on switched power
supplies, such as desktops, laptops, and LCD screens.

In this work, we deploy a wireless energy monitoring net-
work close to the appliances, but we also deploy a small
number of wireless energy meters at aggregated measure-
ment points as well, in order to collect empirical high fidelity
data over large extents of space and time. We analyze this
data and present our experiences in dissecting the load tree
and improving energy consumption coverage.

3 Load Tree
Energy is distributed through a building as various sub-

flows in a tree-like structure – the load tree – as shown
in Figure 1. Visibility into the load tree is fundamental to
understanding how energy is distributed and used within a
building. In an ideal world, we would have full and detailed
coverage of the load tree by directly monitoring not only the
root of the tree, but also every single load at the leaves of
the tree. However, this is rarely possible. In reality, peo-
ple are often faced with a tradeoff between full coverage and
detailed but partial coverage. A small number of instrumen-



tation points close to the root of the tree provides a com-
plete, albeit aggregated, picture of the entire building. This
level of visibility is common for many buildings, and is an
appropriate extent of coverage for most building managers.
Appliance-level metering such as that provided by plug-load
meters provides detailed power profiles of individual loads.
This level of visibility is appropriate for understanding the
energy consumption at the appliance level.

To ground the discussion in the remainder of this paper,
we review key aspects of the load tree used in our case study.
The load tree begins at the root where a single high-voltage
power line connects the building to its parent substation.
This line delivers power to the entire building. The incom-
ing power is typically stepped-down into several high and
low voltage lines, distributing 3-phase AC power into sets of
electrical panels across multiple floors. The low voltage pan-
els distribute 120V/208V 3-phase power and the high voltage
panels distribute 277V/480V 3-phase power. Panels are nor-
mally divided by location and function. For example, in Fig-
ure 1, there are two low voltage panels, one for the machine
room and one for supplying all the AC outlets in the north-
west region of the 4th floor. There are also two high voltage
panels, one for all the overhead lights and one for the fans.

From the panels, 3-phase power is fanned out into mul-
tiple 2-phase or 3-phase breakers, depending on need. In
our example, the northwest region panel splits into thirty 2-
phase breakers, with each breaker supplying multiple single-
phase AC outlets (labeled as power strips), spread through-
out the physical space in a balanced fashion. Power strips are
chained to establish more levels in the load tree. The lighting
panel fans out into multiple light zones in which all lights in
the same zone are turned on and off simultaneously, using
one or more switches. Within a particular light zone, light
bulbs of varying wattages are combined together to provide
an appropriate lighting level.

4 Energy Monitoring Network

Load Type Count
Laptops 39

Desktops 28
LCDs 68

Projectors 3
Refrigerators 1

Coffee makers 1
Phones 3

Desk lamps 5
Network switches 6

Printers 4
Microwaves 1

Total appliances: 159
Total AC outlets: 340

Table 1. Inventory of appliances within the energy moni-
toring network. A subset of these outlets and appliances
were instrumented.

We instrument a laboratory inside the computer science
building at the authors’ institution that spans an area of 63

   AC Meter 
   Light Sensor 

Figure 2. Location and connectivity graph of AC meters
and light sensors. There are a total of 38 AC meters, 28
of which are spatially distinct, and 6 light sensors. The
vibration sensor, not shown here, is attached to the HVAC
infrastructure in the basement of the building.

ft by 116 ft, or roughly one-third of a floor. This space is
representative of a typical IT office environment with semi-
enclosed cubicles consisting of office appliances like laptops,
desktops, and LCD monitors. Permanent ceiling-mounted
fluorescent lighting is the primary light source and is con-
trolled by a small number of light switches. This lab regu-
larly seats approximately 50 students and faculties. A com-
plete inventory of the appliances found in this laboratory is
listed in Table 1.

We deployed a total of 38 wireless AC plug-load meters
and 6 light sensors as shown in Figure 2. 9 AC meters were
deployed at the power strip level and the rest at the single
appliance level. Some appliance-level meters belong to sub-
trees rooted at power strips that are also metered. These
configurations provide us with fine-grained, time-correlated
data, including both detailed load profiles of individual ap-
pliances and aggregate traces of power strips. By using light
sensors to infer whether a set of lights is on or off, we can
easily estimate their electricity usage without having to di-
rectly measure high-voltage power. This network of meters
and light sensors has been transmitting energy and light read-
ings to a server at a rate of one report per minute for the
past six months, and has collected over ten million readings.
Since this set of empirical measurements is still relatively
sparse in comparison to the total number of loads, we present
several techniques, and formulate several models, to better



Figure 3. Wireless AC plug-load meter.

approximate a detailed coverage of the ideal load tree. We
present some details of our AC meter and wireless network
used in this study in the remainder of this section, and in
more detail in previous work [16].
4.1 Wireless AC Plug-load Meter

To enable high-fidelity continuous measurements of plug-
loads at scale, we designed a wireless energy meter capable
of measuring real, reactive, and apparent power at a max-
imum sampling rate of 2.8kHz and load power up to 1800
watts, as shown in Figure 3, and described in more detail
in prior work [16]. At the same time, we address physical
design questions such as form factor and thermal issues in
order to enable rapid deployment in an office environment.

The AC meter API supports operations such as
read energy(), read power(), and report(ip addr, rate).
These operations are exported to the rest of the network, and
potentially the Internet, using 6LoWPAN [23] header com-
pression.
4.2 Network

A network of meters is essential to obtain time-correlated
coverage of energy consumption over large spatial and tem-
poral extents. Traditional energy monitoring solutions use
a serial port or other wired backchannel to connect instru-
ments to data loggers, which is not scalable or practical at
large scales. Our wireless network allows quick deployment
and instrumentation of a large number of AC plug meters by
using an ad-hoc network layer which provides IP connectiv-
ity to the meters without requiring either wiring installation
or support infrastructure, as described in more detail in [16].
The network provides connectivity between the meters and
other networks using an IP router.

Figure 2 shows the connectivity graph of 44 wireless sen-
sors over the deployment space. They form a moderately
dense network with an average degree of 4. Each sensor node
is configured to report energy readings once per minute via
UDP to a simple daemon process running on a server. Each
UDP packet includes a sequence number, the energy used in
the previous minute, and average, minimum, maximum, and
last instantaneous power observed during this interval. The
server process timestamps the readings and stores them in a
database for later processing.

5 Improving Coverage
A substantial challenge in constructing a high-fidelity

electricity measurement network is that we have neither the
ability nor the budget to measure every device. To address
this shortcoming, we instead create models of the behavior
of each type of appliance by using measured data of similar
devices. In this section, we describe strategies that use multi-
modal data collected throughout our network to construct ac-
curate appliance electricity consumption models, enabling us
to infer consumption of unmetered devices.

A model of appliance behavior is only as good as the data
collected to support that model; however, there are often
multiple ways to measure the usage of a single appliance.
For example, the electrical consumption of a refrigerator can
be obtained in a variety of ways – directly measured using
a power meter, estimated using a log of door opening events
or a time-series of internal light measurements, or inferred
through a record of proximity events where people in the
vicinity of the refrigerator imply increased consumption, for
example. In each of these cases, the sensors are capturing
different phenomena that describe the same underlying be-
havior, namely the electricity consumption of a refrigerator.
Thus, to begin our appliance modeling, we examine some
fundamental questions concerning sampling: what behavior
of the appliance should be measured? How often should we
sample to capture the specific phenomena we are interested
in observing? In this section, we first explore how various
sample window strategies affect the conclusions we reach.

We continue by presenting multiple strategies for con-
structing appliance models, including using empirical mea-
surements to calculate average energy consumption by
minute, hour, and day, accounting for the behavior of indi-
vidual components at the sub-appliance level (within a ma-
chine), and substituting alternate sensors to infer the con-
sumption of electricity of loads that are not easily measured
directly. For each of these cases, we show an instance of ap-
plying our strategy using data collected by our network, and
discuss the applicability of these strategies to other scenarios.
However, we emphasize that these strategies themselves are
not novel – we simply employ them to study the traditional
systems questions of coverage and fidelity in the context of
a multi-modal electricity monitoring network.

5.1 Additivity
Like all flow graphs, an intrinsic property of energy load

trees is additivity - the sum of the power of children nodes
equals the power of the parent. For example, Figure 4 shows
a branch of the load tree with breaker 23 as the root. The
total power flowing out of breaker 23 is the sum of the power
drawn by power strips A and B; the power through power
strip A is the sum of a laptop, a sub-power-strip and a 24”
LCD screen.

Intuitively, this allows us to increase coverage by sum-
ming all the children, given that measurements are available
for all of them, or increase fidelity by calculating the dif-
ference between a measured parent node and measured chil-
dren nodes. In Figure 4, if we place meter M1, M2, and
M3 at power strip A, the laptop, and the sub-power-strip re-
spectively, we can calculate the power of the 24” LCD using



Figure 4. The power that flows through power strip A
is the sum of the power consumed by the laptop, the
24” LCD, and the sub-power-strip. We can calculate the
power at C1 by simply subtracting M2 and M3 from M1.

simple subtraction. In practice, M1, M2, and M3 perform
power measurements according to their own clock, and will
produce readings that are not synchronized. One solution to
address this issue is to perform network synchronization and
time-stamp each measurement, at the cost of additional net-
work bandwidth and energy; alternatively measurements can
be time-stamped at the collection point, with less accuracy.
In either case, power traces from different meters are usually
shifted in phase and often differ slightly in periodicity, in ad-
dition to holes in the data. As a result, before computing dif-
ferences or sums, we need to first clean up the data by resam-
pling it, which can be easily done post hoc. Figure 5 shows
both measured and calculated power of a student’s desk ap-
pliances for 5 hours. The load tree for this student is shown
in Figure 4, rooted at power strip A. We can observe from
this figure that the 24” LCD is not connected to the desktop
but to the laptop, since its power drops from 80W to 10W
when the laptop is disconnected momentarily at 2.5hr.

While applying this technique is straight-forward, it only
works when all N-1 nodes are directly measured in a size
N parent-children set. However, if the number of metered
nodes is less than N-1, in the absence of any other disaggre-
gation techniques, any configuration of metering is equiva-
lent and results in the same degree of visibility.

What is perhaps a more powerful result of additivity is
that one can freely combine a subset of children belonging
to the same parent into a new subtree in the graph without
changing its flows. Physically this corresponds to inserting
a power strip to a parent outlet and connecting some sub-
set of devices plugged into the outlet to the new power strip.
This allows us to instrument the aggregate power trace of the
newly formed subtree rooted at the new power strip. In Fig-
ure 4, the desktop and two 19” LCDs can be thought as orig-
inally belonging to power strip A (measured by M1); a new
power strip is inserted to create the current subtree, measured
by M3. This gives us more flexibility in choosing what com-
bination of loads to monitor in aggregate. We can separate
devices with similar signatures and group together devices
with easily detectable signatures, for optimal disaggregation,
as described by [15], [19], and [8].
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Figure 5. The power profile of a 24” LCD can be cal-
culated by subtracting both the laptop metered at M2
and the sub-power-strip metered at M3 from the power
strip A, metered at M1. At 1.5hr, the desktop and two
19” LCDs are turned on, using an additional 200W seen
by M3 and M1 for about 20 minutes. At 2.5hr, the lap-
top was removed from the workspace, reducing M2 to
0W. The 24” LCD drops into standby mode after being
disconnected from the laptop, drawing around 10W via
subtraction.

5.2 Multi-resolution
Certain features of a particular device can only be seen at

certain resolutions. Using the power profile of a refrigera-
tor as an example, shown in Figure 6, different resolutions
reveal different stories. Figure 6 (B), at a resolution of one
sample per minute, clearly shows two intrinsic characteris-
tics or modes of the refrigerator - the compressor kicks in
about every 15 minutes while the defrost cycle has a period
of around 1 hour. If we zoom in to the turn-on transition and
view at a resolution of 4Hz, as shown in Figure 6 (A), we can
observe a spike of more than 1000 watts. This observation,
which is potentially important for load disaggregation algo-
rithms, would have been lost at the minute resolution. If we
step back and view its load profile at an hourly resolution,
we start to see human influence in the refrigerator’s energy
usage. The increase in energy consumption around 1PM and
8PM indicates increased usage during lunch and dinner. In
some sense, the refrigerator becomes an instrument for char-
acterizing the daily “power” profile of people.

It is clear that each graph reveals a different story about
the refrigerator’s power usage by observing it at a particular
resolution. Therefore, we need to choose an appropriate res-
olution, sampling, filtering, and smoothing windows to both
preserve the power characteristics of the device, as well as
provide clarity to the human who observes and analyzes the
data.

5.3 Empirical Model
To construct models of devices that are not measured, we

average the time-series of devices that are measured. These
measured devices are of three varieties: (1) loads measured
directly, (2) loads calculated using the additivity method de-
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Figure 6. Sampling rate top to bottom: 4Hz, minute sam-
pling, hourly sampling. (A) reveals the turn-on transient;
(B) reveals the compressor and defrost modes of the re-
frigerator; and (C) reveals the human influence.

scribed in Section 5.1, and (3) loads calculated using mea-
sured power strips. We describe each of these in turn.

The first variety is the simplest - measurements are pro-
vided directly from AC meters connected to similar de-
vices throughout the network. Since the electricity data are
recorded every minute, that is the minimum granularity of
our power models, though in practice we use hourly con-
sumption in our calculations.

Next we find each device whose power is not directly
measured by an AC meter, but can be calculated because all
of the other devices in its subtree are measured directly. We
call this a constrained subtree. By leveraging the hierarchi-
cal nature of load trees, we can subtract to find the consump-
tion of this type of device. Together with the directly mea-
sured devices of the same type, these measurements combine
to form the baseline core power model for each appliance
type.

The final step in creating individual device power mod-
els, called the proportional scaling step, is to find those de-
vices that have a parent appliance measured but are not part
of a constrained subtree (e.g. multiple unmeasured appli-
ances connected to a power strip instrumented with an AC
meter). In this type of case, we begin with the core power
model for each appliance. We then proportionally scale the
estimate of the unmeasured devices by using the available
aggregate measurement from the parent device – that is, we
scaled what we would expect from the composition of the
unmeasured devices by what we have actually measured at
the power strip. Figure 7 shows a core model and scaled
model for four specific appliances in our deployment. If ag-
gregate measurements are unavailable for a device, we use
only the core power model for that appliance.

After this process, we arrive at models for each appliance
in the system that incorporate as much relevant empirical
data as possible – devices not measured are a composition
of measured devices of similar type, while devices that are
measured indirectly additionally reflect those measurements.
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Figure 7. Result of calculating an improved empirical
model using proportional scaling from a measured ag-
gregate. By using upstream power measurements in ad-
dition to generic models of appliance behavior by type
(“core power models”), models for specific appliances
can be augmented to incorporate device-specific mea-
surements. Here we look at a 24” LCD, a 17” LCD, and
two laptops.

We use these individual appliance models as the basis for the
office-wide composition models throughout this paper.

5.4 Appliance Signature Analysis
Modern electronic devices are a composition of many

sub-components. These multi-component, multi-state de-
vices have distinguished power traces per state that uniquely
identifies them. This leads to the conjecture that perhaps the
natural level of disaggregating a load tree is not at the appli-
ance level but at the sub-components of the appliance. Fig-
ure 8 (A) shows the power trace of the laptop. We can pull
out two components – the charging curve of its battery, as
modeled in Figure 8 (B), and the rest of the laptop consisting
primarily of the CPU, LCD, and fans, as shown in Figure 8
(C). In this case, we model the laptop charging curve as an
exponential decay with formula shown in Equation 1. This
may aid in disaggregating the laptop power because now we
have a generic model for the sub-components of this type of
laptop.

26.33× e−3.366×10−2(x+4) +12.33e−7.217×10−4(x+4)−10.48
(1)

Additionally, devices that exhibit daily patterns in their
power traces allow for creation of accurate models of daily
consumption from historical data, precluding the need to me-
ter such devices. In Figure 9, we see the power consumption
of the Water Dispenser over the same day of the week for
three weeks, excluding the week of spring vacation. Though
no clear pattern exists, a rough average can be extracted from
Figure 9 (B), which shows the daily human influence on the
device’s power trace. However, looking at the cumulative



10AM 11AM 12PM 4PM 5PM 6PM 7PM 8PM
0

50
Enveloping Total Power of Laptop!Fig (A)

Time

P
o

w
e

r 
(W

a
tt

s
)

10AM 11AM 12PM 4PM 5PM 6PM 7PM 8PM
0

10

20

30
Battery Charging Model!Fig (B)

Time

P
o
w

e
r 

(W
a

tt
s
)

10AM 11AM 12PM 4PM 5PM 6PM 7PM 8PM
0

20

40
Laptop Others (CPU,LCD,Fan,etc)!Fig (C)

Time

P
o

w
e

r 
(W

a
tt

s
)

Figure 8. Laptop energy consumption disaggregation at
the sub-component level.

graph of Figure 9 (C), a clear correlation in the cumulative
power consumption of each Wednesday emerges.

The fundamental fact is that the power trace of an ap-
pliance is the superposition of power traces of multiple sub-
components within that appliance. In the case of a laptop, the
power trace of the charge and discharge state of its battery,
the CPU, and the LCD can be modeled separately; therefore,
the most basic unit of disaggregation may not be the appli-
ance, but actually the functional units within it. Moreover,
the process of inference and disaggregation involves iden-
tifying not only the patterns within the device, but also the
effects of human interaction with the device.

5.5 Multi-modal Sensing
One challenge often encountered when trying to instru-

ment a building is that certain consumers of energy are either
hard to measure or inaccessible. For example, HVAC electri-
cal energy is converted to other forms of energy in a central
location, which is secured and inaccessible. Even if one is to
obtain permission to enter the premises, special sensors such
as CT clamps are needed to monitor consumption. However,
there are multiple ways to obtain equivalent energy measure-
ment without directly measuring consumption.

HVAC systems such as chillers and pumps usually contain
relatively high horsepower motors. A close inspection of our
building-wide HVAC control room reveals that these systems
produce very noticeable vibrations. To demonstrate this, an
Epic-based node [12] with both a three-axis accelerometer
and a vibration sensor was used to measure the duty-cycling
schedule of a motor that drives an air conditioning unit. Mul-
tiplying this duty cycle by the ON power produces a real-
time power profile. Figure 10 (A) shows a trace of one axis
of the accelerometer over an hour, and Figure 10 (B) shows a
trace of a vibration sensor over the same hour. For the partic-
ular vibration sensor used, the number of threshold crossings
at each motor event varies, but the sensor identifies the begin-
ning of motor events well. Either type of sensor produces a
proxy measurement for calculating the electrical energy used
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Figure 9. Water dispenser daily energy consumption over
the same day of the week for three weeks. Notice the gen-
eral trend in power consumption in (B) as well as in (C).
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Figure 10. Figure (A) shows the output of one axis of an
accelerometer attached to a large motor driving air con-
ditioning equipment over an hour. Figure (B) shows the
output of a simple vibration sensor attached to the same
motor over the same hour. Each sensor indicates when
the motor is operating and allows for real-time estima-
tion of HVAC energy consumption.

by a large motor that is otherwise cumbersome to measure.
Additionally, in most cases, sensors appropriate for a par-

ticular form of energy can be used to measured it in its natu-
ral unit then convert back to electrical energy using the trans-
fer function along the path of the conversion process. For
example, temperature sensors could be used to detect heat
flow or AC usage, and flow sensors could be used to detect
ventilation usage.

Furthermore, un-conventional sensors can be used to in-
fer usage or help in improving the accuracy of existing elec-
trical sensors. For example, proximity sensors carried by
individuals can be used to determine the human component
to the power profile of refrigerators, or they can be used to
allow real-time energy accounting of shared resources such



Figure 11. Only 4 light sensors are needed to cover 26
light bulbs since they are controlled together by 4 sets of
switches and motion sensors.
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Figure 12. Light sensor readings can be easily converted
to power using thresholding.

as refrigerators or water heaters, as described in more detail
below.

Another shared resource to account for is the energy con-
sumption of overhead lighting. However, to measure it di-
rectly, we would need more than ten high-voltage sensors
such as CT sensors installed in the electrical panel – this is
both cumbersome and costly. Instead, recognizing the fact
that all 26 lights fall into 4 light ”zones”, controllable only
in aggregate, we can simply instrument one light bulb for
each of the 4 light zones, as shown in Figure 11. We deploy
six Telos motes [25] equipped with light sensors and pro-
grammed with the same sampling schedule and networking
stack as the plug-load meters.

The top graph in Figure 12 shows the raw PAR (pho-
tosynthetically active radiation) readings while the bottom
graph shows the projected power reading using a simple bi-
nary filter with a constant multiplier. As we can see, PAR
readings change from near zero to roughly 1085 lumens at
around 9AM, indicating that the light has been turned on.
The ON/OFF transition is obvious, and can be converted to
a 1 or 0 using a simple threshold. To find the ON power,
we simply counted the types of light bulbs and summed their
rated power.

6 Decomposition
Disaggregating the load tree down to its leaves - the indi-

vidual loads - gives us the basic building block from which
we can recompose according to other grouping criteria. De-

composition allows one to better understand the data, iden-
tify areas for improvement, and create more actionable forms
of visualization.

In this section, we present three ways to recompose our
computer science building load tree - by function, by space,
and by individual. Functional decomposition recomposes the
load tree by function. For example, in our initial load tree in
Figure 1, we can group all three LCDs into one functional
group - LCD, and the laptop with other students’ laptops
into another group - laptop, and so forth. This is arguably
the most natural form of recomposing a load tree - a direct
regrouping of leaves according to their function. Spatial de-
composition recomposes devices based on where they are.
This allows us to answer questions such as “Which room
uses the most energy?” or “What is the energy consump-
tion of the machine room?” Unlike the functional decompo-
sition, the unit of recomposition is often higher in the load
tree, such as power strips or even circuit breakers. However,
for some devices that are shared in space such as lights, one
might need to subdivide it based on what proportion of it is
illuminating a unit of space. Individual decomposition re-
composes the loads by personal usage. For most appliances
in an office, it is a simple one-to-one correspondence, but for
some shared appliances such as refrigerators and lights, they
should be attributed proportionally to different individuals
over time based on some definition of usage.

To enable functional, spatial, and individual decomposi-
tions, we perform a detailed survey of a portion of the 4th
floor, as shown in Figure 11. We associate meta-data with
each device in a database, such as its type of appliance,
where it is, and to whom it belongs. The number of loads
and sensors are shown in Table 2. We apply techniques de-
scribed in Sections 5 to disaggregate the load tree into 96
appliances, each with average hourly power consumptions
over a day, some directly measured and some inferred.

Category Counts
Rooms and cubicles 6

Students 28
Appliances 96

Lights 26
AC Meter 19

Light sensors 4

Table 2. Survey of densely instrumented region, depicted
in Figure 11.

6.1 Functional Decomposition
Functional decomposition groups together loads that are

of similar type. This type of aggregation is useful in studying
characteristics for a particular load class, finding trends, and
making comparisons between load classes. This view also
helps in validating the effects of a targeted energy reduction
effort by looking at the aggregate power of a particular load
class over time.

For example, Figure 13 shows a small portion of the load
tree that includes four different functions or load classes -
laptop, desktop, LCD, and light. Using techniques described
in the previous sections, we disaggregate the load tree into



Figure 13. A portion of the load tree is decomposed into
individual appliances, then re-aggregated into four func-
tional classes - laptop, desktop, LCD, and light.

!"#$%&'(

)*+(,-./%(

01+(

,2'%&'(

)+(

,3!(

*)+(

4(

*(

0(

5(

6(

)(

7(

8(

*( 5( )( 8( 1( **( *5( *)( *8( *1( 0*( 05(

!
"
#
$
%&
'(
)
*&

+,-$&'."/%*&

,3!(57(

,2'%&'(06(

,-./%(07(

!"#$%&'(00(

Figure 14. Stacked graph of aggregate power consump-
tion grouped by functional class over a day.

individual loads (leaves of the tree), albeit with varying de-
grees of accuracy. With meta-data associated with each load,
in this case the function, we re-aggregate by simply sum-
ming across functions. Other statistics over these functional
groups such as average and variance are often useful for un-
derstanding characteristics of loads as well.

By grouping 96 appliances and 26 lights into four func-
tional classes, we can observe their respective contribution
to the total load and their tread over the course of a day, as
shown in Figure 14. We see that desktops are by far the
largest energy consumer, accounting for more than half of
the total energy. Furthermore, they stay on regardless of the
time of day. Using functional decomposition, we identify
that students and professors fail to turn off desktops after
leaving the lab, wasting approximately 30kWh of energy ev-
ery day. In comparison, laptops are much more efficient,
using only 5% of total energy. Lighting power consumption
is also very revealing. During the day, it remains at peak
usage, as one might expect since most office buildings do
not adjust lighting level based on ambient light. However,
from this figure, we see that lights remain at maximum power
from hour 20 until midnight (and likely later if we choose a
longer view) even when there is very little computer usage,

Figure 15. Spatial decomposition of the load tree. Three
rooms (Room-A, Room-B, and Room-C) contain several
plug loads (laptop, desktop, LCD screens) and light fix-
tures. Directly measuring the energy used by a particular
space may not be possible if power arrives via multiple
load trees, like wall outlets and built-in lighting.

as evidenced by the minimal LCD power. This shows us that
either the time out for the light auto-shutoff (triggered by
the motion sensors) is longer than the periodicity of human
movement at night, or that one or two students are keeping
all the lights on. The power consumption of LCDs seems to
track laptops fairly accurately, showing that in this labora-
tory, most students and professors use laptops as the primary
computing platform, as opposed to desktops.

6.2 Spatial Decomposition
Disaggregating the load tree provides visibility into the

energy consumption of individual loads, but it does not pro-
vide visibility into how energy is consumed over space. For
example, how much energy does the fourth floor use per
day? What is the average power drawn by each office? What
does the instantaneous power draw of a laboratory “look”
like? Answering such spatial decomposition questions re-
quires energy consumption to be projected onto space, poten-
tially from multiple load trees, and reaggregated along spa-
tial boundaries. Figure 15 illustrates this problem for a typ-
ical environment and the remainder of this section presents
our initial efforts to project energy consumption over space.

For each disaggregated load in our database, we main-
tain coordinate fields that include a load’s approximate x,
y, and z coordinates within the building. We also maintain
a database of logical and physical spaces like offices, con-
ference rooms, hallways, floors, or even the entire building.
Each one of these spaces is defined by a bounding box con-
sisting of six planes. For simplicity, we assume a rectangu-
lar building with bounding planes orthogonal to the build-
ing walls, but the basic idea can be generalized to arbitrary-
shaped bounding boxes. Computing a spatial decomposition
is then a simple matter of filtering loads by their coordinates.

Although coordinates provide point locations of energy
consumption, in some cases the utility of an electrical load
actually spans a wider physical area. Lighting, for exam-



Figure 16. The spatial energy consumption across sev-
eral offices in an office building. The empirically mea-
sured average power draw of several loads is averaged
over space using a square smoothing kernel with rounded
corners. This figure highlights that the occupants in room
487 have a higher average power demand than those in
neighboring offices.

ple, can illuminate a single desk or an entire room. Heat can
propagate across a room from a single space heater. And a
projector, radio, or TV can inform or entertain all the occu-
pants in the room. In such cases, it can be useful to distribute
the energy used by a load over space using a smoothing ker-
nel, especially if the consumption data are to be used for
visualization purposes. Visualizing spatial energy consump-
tion, however, presents an additional wrinkle to the problem:
energy consumption in one space is often unrelated to con-
sumption in an adjacent space. For example, a halogen lamp
placed next to a wall usually illuminates only the room in
which it is located. While it may be useful to smooth or
spread such point loads over space, indiscriminately doing
so leads to unexpected and perhaps inaccurate results.

We currently visualize spatial energy consumption as fol-
lows. We begin with a blueprint-style floorplan of the space.
We then create a pair of two-dimensional matrices whose ra-
tio of rows to columns match the aspect ratio of the physical
space. The actual number of rows and columns depends on
the desired spatial granularity (in our current design, each
square foot of space is mapped to one element in the ma-
trix). For each load in this space, we first add its consump-
tion to the corresponding element in the first matrix, then run
a load-specific smoothing kernel over the matrix, then zero
all elements that fall outside of the load’s nearest enclosing
space (typically the surrounding walls), and finally add the
resulting values to the second matrix. This process is re-
peated for each load in the space to be visualized. Once all
loads have been smoothed, truncated, and projected onto the
second matrix, we generate a contour plot over the second
matrix and project a transparent copy of the contour onto the
floorplan. Figure 16 shows the output of this process.

Figure 17. Individual decomposition of the load tree.
Three building occupants use a mix of electrical loads.
Some loads, e.g. laptops or desktops, are dedicated to
one user while other loads, e.g. lights or a refrigerator are
shared by some subset of the occupants. Directly measur-
ing an occupant’s fractional usage may not be possible so
approximation techniques are needed.

6.3 Individual Decomposition
A common question among building occupants is the de-

ceptively simple, “What is my energy consumption?” None
of the decomposition approaches already described answer
this question. Functional decomposition can provide the en-
ergy usage of each load, but a single load may be shared
by multiple people, as in the case of the lights or a refrig-
erator. Spatial decomposition can provide visibility into the
energy consumed over space, and identify power hotspots
in a building, but it does not tie this usage to specific occu-
pants. In this section, we present our preliminary approach to
addressing the individual decomposition question, illustrated
in Figure 17, and some thoughts on extending this approach.

To estimate the energy consumed directly by an individ-
ual, each dedicated load is tagged with its owner’s informa-
tion. Computing the direct energy footprint becomes a mat-
ter of aggregating the consumption across all loads “owned”
by a single user. Computing the fractional contribution due
to shared load is a little a bit more challenging. For each
user, we identify the nearest enclosing space (e.g. office or
wing), aggregate the energy usage of all shared loads in the
space (e.g. lights, refrigerator), and then divide by the num-
ber of occupants whose “home” coordinates fall within that
enclosing space. The resulting figure provides a per capita
energy usage of the shared resources.

Figure 18 illustrates the individual decomposition gath-
ered from our empirical data. The data reveal a number of
interesting observations. Most notably, individual consump-
tions have a wide distribution and the “typical” consumer is
the one who does not appear to actually spend time near his
or her devices. Of the daily average energy usage of 89 kWh,
63 kWh is due to dedicated resources and 29 kWh is due to
shared resources. For just over half of the occupants, the
dedicated component of consumption dominates the shared
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Figure 18. The distribution of per-occupant average
power across a group of nearby occupants. The over-
all average draw (across all occupants in the monitored
area) is 132 W. Each bar includes the fractional contribu-
tion from the shared lights and refrigerator (38.5 W), as
well as the dedicated contribution from each user’s per-
sonal loads like laptops, desktop, and monitors.

component. However, for just under half the occupants, the
shared contribution is slightly greater than the dedicated one
(which is due almost exclusively to idle LCD panels). This
suggests that some users who do not use their LCD panels
regularly should turn them off.

While Figure 18 provides some insight into individual de-
compositions, and provides some guidance into how group
usage could be reduced, it does not easily distinguish useful
and wasted energy. For example, if a user is near his or her
computer and actively using the LCD screen, we might call
that energy consumption useful. In contrast, an LCD screen
that displays the screen manufacturer’s logo as a screen saver
all night while the user is asleep might be called wasted en-
ergy. Currently, we do not distinguish between these two
cases. One possibility for this additional level of decompo-
sition that we are currently exploring is to have users carry
a wireless keyfob or amulet that listens for radio transmis-
sions and periodically reports the list of recently heard nodes
to a server. Using this crude form of localization, we may
then be able to further decompose individual consumption
into times when a load spends energy in the presence of its
owner and times when it spends energy in the absence of its
owner. Additionally, by attributing energy consumption to
a mobile user, we can readily calculate how an individual’s
energy footprint spreads across time and space.
6.4 Electrical Decomposition

Beyond the scope of individual consumers of electricity,
another critically important stakeholder in the electricity tree
of an office building is the facility personnel. These peo-
ple are principally concerned with aggregate electricity mea-
surements, and often only monitor electricity at a whole-
building scale. Though the functional decomposition in Sec-
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Figure 19. Per-circuit loads in our office deployment.
Loads can be migrated within each grouping simply by
moving to a different socket on the same outlet. This data
could guide a building manager to improve load balanc-
ing among circuits.

tion 6.1 provides many powerful analytical methods to build-
ing personnel, this section aims to examine one more: a de-
composition based on electrical system structure. This is es-
pecially relevant to facility personnel because they are often
the sole stakeholder aware of the electrical layout of a build-
ing: the distribution, breakers, and branches of the load tree.
To display the benefit of having measurements categorized
by electrical structure, we examine a particular anecdote that
arises as an artifact of our office’s electrical system but may
provide guidance for future electricity decomposition exer-
cises.

In the office setting under study, electrical sockets are
made available to people through a series of floorboxes,
where a floorbox consists of connections to all the wired ser-
vices of the building: telephone lines, Ethernet ports, and
electricity. In each floorbox, there are two sets of two out-
lets each, with each set of outlets in a particular floorbox
on a different breaker circuit. However, the pair of breaker
circuits in a floorbox is unique – that is, no other floorbox
will have access to the same two circuits. Additionally, to
further distribute load in the office, an individual circuit is
always shared between two floorboxes, resulting in a situ-
ation of circuit triples, whereby each member of the triple
shares exactly one floorbox with each other member of the
triple. This design is intended as a strategy for distributing
load across the circuits; Figure 19 shows both the electrical
load of each circuit as well as the distribution of loads across
a circuit triple. In cases where the loads on a circuit triple are
extremely disparate (e.g. circuits 1, 3, and 5), distributing
load can be achieved by simply relocating plug-loads from
one outlet in a floorbox to another, protecting the electrical
system from overload.
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Figure 20. Aggregate trace of measured LCDs in the lab-
oratory over a four-week period. The white rectangles
represent the work week, shaded vertical strips highlight
the weekends, and the solid horizontal line represents the
average consumption over the entire duration.

7 Improvements
By far, the most beneficial result in building a dense en-

ergy measurement network is opening the door to a potential
wealth of electricity savings. In this section, we relate two
specific anecdotes that resulted in reduced electricity con-
sumption, the first of which resulted in up to a 32% reduction
in LCD electricity consumption, and the second of which
slashed the sleep power of a desktop computer by a factor of
50.

Figure 20 provides an aggregate consumption of all of the
LCD monitors measured in the laboratory over the course
of four weeks. Table 3 provides the weekday average for
each five-day period, represented by a white rectangle on
the graph. At the beginning of this timeframe, the authors
made a presentation to the laboratory that enumerated the
wastage of LCD monitors when unplugged from laptops but
not turned off. This, along with generally spreading the word
about the electricity measurement network, led to a signifi-
cant initial reduction in LCD energy consumption - nearly a
third from week 1 to week 2. However, as the effect of this
impulse diffused, so did the reduction in electricity consump-
tion, nearly returning to week 1 levels by week 4. Without
drawing any concrete conclusions from this experiment, it
appears that a single notice, though initially powerful, may
taper off in effect over time without reinforcement.

We note that the aggregated measurements may include
loads that are themselves aggregated, such as power strips
that contain both an LCD and a desktop. Though this places
the meaning of the absolute values from the figure in jeop-
ardy, we feel that the relative pattern is not obfuscated.

The second anecdote deals with our experience reducing

Week 1 2 3 4
Average Power (kW) 5.92 4.03 4.53 5.70

Change (%) N/A -31.9% +12.5% +25.8%
Table 3. Work-week average aggregate power for
measured LCDs, along with week-by-week percentage
changes.
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Figure 21. This is a trace of a student’s desktop machine
running Windows XP before and after installing power
management software. The machine was reconfigured on
this day to drop into full sleep mode after 15 minutes of
idleness, reducing the idle power from 119.0 Watts to 2.4
Watts.

the idle energy consumption of desktops running Windows
as their operating system. Our analysis begins with observ-
ing that the idle average wattage of a typical Windows ma-
chine in the laboratory is roughly 119.0 Watts. As this is ex-
cessive for a computer doing no useful work, we sought out
various energy management solutions, including both third-
party packages as well as Windows’ own energy manage-
ment suite. We decided on a third-party product named Auto
Shutdown Manager [13], which provides the ability to set
both thresholds and more complex rules for shutting down
and waking up the PC and its components.

In our experience, the software detected keep-alive packet
traffic that was preventing any of the existing energy-saving
algorithms from taking hold by triggering the Wake-on-LAN
function of the machine’s network card. By blocking these
requests and experimenting with a variety of thresholding
schemes (i.e. go to sleep when there is no mouse or key-
board activity for 10 minutes and CPU utilization remains
less than 40% for the entire duration), we were able to get
the machine to regularly go to sleep when not in use. The
effect of this change is shown in Figure 21, a time-series
of power readings during the day when the auto shutdown
software was enabled. The average power usage after the
change is only 2% of the usage prior to the change (2.4 W
versus 119.0 W). No doubt this change makes a significant
difference, but it does come with the tradeoff of increased
wake-up times – machines take about 10 seconds to become
operational when triggered after sleeping.

To quantify the potential total energy reduction if all of
the desktop PCs in the laboratory were running Windows
and experienced similar proportional reductions in their idle
power usage, we applied the same rules as on the initial ma-
chine to traces of power consumption from each of the other
measured desktops. We continued this analysis by recalcu-
lating the models for each desktop in the lab, and present
the results in Figure 22. This graph shows a 15% reduction
in the peak envelope and a 30% reduction in the baseline
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Figure 22. Estimated functional decomposition of the
laboratory energy consumption if all of the desktops in-
corporated energy management software.

desktop energy consumption. Going forward, we intend to
deploy this software more widely, both in the lab as well as
externally.

8 Conclusions
Wireless sensor networks have been widely deployed for

monitoring space (e.g., microclimate and habitat monitoring)
and monitoring things (e.g., condition-based maintenance,
asset tracking, and animal behavior). Some of the most im-
portant applications of this technology going forward will be
in reducing energy consumption and environmental impact.
In this paper we have described our experience in building
and using a network for high-fidelity energy usage monitor-
ing. This turns out to be a network for monitoring the inter-
actions of space and things, and many classic sensor network
issues appear within it in a new form.

The fundamental structure of residential and commer-
cial electrical power flow is the load tree. It branches
through several levels (transformers, bus bars, panels, break-
ers, power strips, receptacles) to individual appliances and
within those appliances to various subsystems. The cover-
age problem is recast in terms of this load tree, rather than
as overlapping regions of space. Instruments at higher lev-
els of the tree provide broader coverage, but in aggregate
form. Placing instruments at lower levels improves fidelity.
As it is a network of instruments, measurements from dis-
tinct points can be combined to resolve additional specific
loads. Sampling the population of things of interest can be
used to extrapolate to the larger group. The combined impact
of seemingly insignificant features, such as the LCD screen
turning on when unplugged to warn the now absent user, can
be observed network-wide.

Intelligence at the sensor, in-network processing, and ag-
gregate processing all appear in this network in interesting
forms. For example, sampling rate is not just a matter of sig-
nal bandwidth. Collecting and processing time-series pro-
vides a means of feature extraction which can be used to
further disaggregate loads. Combining this with multiple
measurements provides means of distinguishing loads with
similar, overlapping signatures. Viewing this stream at mul-
tiple levels of temporal resolution allows the coarse effects of
usage to be separated from the intrinsic behavior of the de-

vice in operation. Or, in conjunction with model building, it
may be used to elucidate the internal operational states of the
device. Multimodal sensing is utilized to observe activities
and infer energy consumption where it is costly or difficult
to measure the power usage directly.

While the load tree is the fundamental means of power
delivery and consumption, understanding how to reduce en-
ergy consumption often involves recomposing the usage in
terms of where, why, and by who the energy is used. By as-
sociating metadata about the source of all the measurement
data and matching it with metadata describing the environ-
ment in which it occurs, we are able to construct virtual load
trees that project directly onto a functional, spatial, or indi-
vidual perspective. Ultimately, this ability to measure and
model will hopefully lead to broad means of mitigation.
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