
Securing the Deluge Network Programming System

Prabal K. Dutta, Jonathan W. Hui, David C. Chu, and David E. Culler
Computer Science Division

University of California, Berkeley
Berkeley, California 94720 USA

{prabal,jwhui,davidchu,culler}@cs.berkeley.edu

ABSTRACT
A number of multi-hop, wireless, network programming sys-
tems have emerged for sensor network retasking but none of
these systems support a cryptographically-strong, public-
key-based system for source authentication and integrity
verification. The traditional technique for authenticating
a program binary, namely a digital signature of the pro-
gram hash, is poorly suited to resource-contrained sensor
nodes. Our solution to the secure programming problem
leverages authenticated streams, is consistent with the lim-
ited resources of a typical sensor node, and can be used to
secure existing network programming systems. Under our
scheme, a program binary consists of several code and data
segments that are mapped to a series of messages for trans-
mission over the network. An advertisement, consisting of
the program name, version number, and a hash of the very
first message, is digitally signed and transmitted first. The
advertisement authenticates the first message, which in turn
contains a hash of the second message. Similarly, the sec-
ond message contains a hash of the third message, and so
on, binding each message to the one logically preceding it
in the series through the hash chain. We augmented the
Deluge network programming system with our protocol and
evaluated the resulting system performance.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; D.4.6 [Operating Systems]: Security and Pro-
tection

General Terms
Algorithms, Design, Experimentation, Performance, Relia-
bility, Security

Keywords
Wireless Sensor Networks, Dissemination Protocols, Net-
work Programming, Authenticated Broadcast, Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’06,April 19–21, 2006, Nashville, Tennessee, USA.
Copyright 2006 ACM 1-59593-334-4/06/0004 ...$5.00.

1. INTRODUCTION
Wireless sensor networks (hereafter sensornets) represent

a new computing class consisting of large numbers of highly
resource-constrained nodes [8, 16, 32] which are often embed-
ded in their operating environments [36, 43, 27], distributed
over wide geographic areas [15, 34, 4], or located in remote
regions [42, 18, 3]. These networks must operate unattended
for extended periods of time during which evolving analysis
and requirements can change application semantics, creating
the need to alter system behavior. Many such changes are
possible by varying management parameters [38], execut-
ing database queries [10], or downloading scripts [25]. More
substantial changes require installing new program binaries
using single- or multi-hop wireless network programming
schemes [35, 17, 22, 23]. Network reprogramming provides
great flexibility and convenience for retasking large-scale,
embedded, distributed, and remote systems. Unfortunately,
none of the proposed solutions incorporate cryptographically-
strong, public-key-based techniques for verifying authentic-
ity, checking integrity, or ensuring freshness of the program
binary. The goal of this study is to explore whether and
how these existing systems can be secured efficiently.

Conventional approaches to verifying program authentic-
ity and integrity, and ensuring freshness, are poorly suited
to the extreme resource constraints typical of sensornets.
First, since wireless is a broadcast medium, an attacker can
easily inject or corrupt a packet which passes the CRCs used
by link layers. Such an attack can be detected but not before
the entire program has been downloaded. Since the offending
packet(s) cannot be identified, the entire program must be
discarded. Second, since most sensor nodes have only a few
kilobytes of RAM, yet programs are typically tens of kilo-
bytes, the nodes must buffer the program in larger flash (or
EEPROM) memory before verifying program authenticity,
integrity, or freshness. However, writing to flash memory is
expensive [9] and requires a higher operating voltage. Some
flash technologies only allow whole sector erases, requiring
the entire image to be dropped or major portions of it copied
to a different sector, so this buffering exacerbates the cost
of a failed verification. Third, in the event of an attack, the
energy cost of receiving, storing, and verifying the program
is largely expended by the victim at a small expense to the
attacker. Section 2 reviews these issues further.

There are three essential elements to securing network
programming. First, given a multi-hop network of wireless
sensor nodes with network programming capability, we wish
to augment this system so that it can efficiently authenticate
a program binary. By authenticate, we mean that a recipient

may be reasonably certain that a binary was actually created
by its purported author and not forged by another party.
Second, the secure network programming system must be
able to verify integrity incrementally as each packet arrives.
By integrity, we mean that it is computationally infeasible
for the binary to be changed in transit without the changes
being detected by the recipient. Third, the system must en-
sure freshness in the sense that older versions of a program
cannot be installed over a newer installed version. In ad-
dition to these goals, privacy may play a role in the design
space. Detailed security and efficiency requirements, as well
as simplifying assumptions, are presented in Section 3

In contrast with earlier approaches to code signing, our
approach transforms the secure network programming prob-
lem to signing and verifying digital streams. This problem
has a surprisingly simple and efficient solution for a finite
stream whose contents are known a priori and can be deliv-
ered reliably [11]. Our key observation is that network pro-
gramming fits these requirements perfectly: a program bi-
nary is a finite length octet string whose contents are known
ahead of time. The transformation involves mapping the
program binary into a series of messages, with each message
containing a cryptographic hash of the next message in the
series, and digitally signing the head of the hash chain. This
approach supports an incremental receive-verify-store model
which is far more resistant to attack than the receive-store-
verify model used by network programming systems such as
Deluge [17]. Our design is presented in Section 4.

The two cryptographic primitives used in our security
protocol are digital signatures and cryptographic hashes.
Our particular implementation uses RSA signatures [33] and
SHA-1 hashes, but any other convenient signature and hash
scheme could be used. We ported an existing RSA imple-
mentation [41] for the Mica2 to the Telos platform [32] and
improved its performance by incorporating Montgomery re-
duction. An empirical evaluation of our cryptographic prim-
itives and security protocol is presented in Section 5.

2. RELATED WORK
In this section, we review the sensornet literature on net-

work programming, cryptographic primitives, and security
services, as well as the security literature on code signing
and authenticated broadcast. Finally, we review concurrent
research on secure network programming, highlighting the
tradeoffs between three different approaches.

2.1 Sensornet Network Programming
A number of bulk data dissemination protocols suitable

for network programming have been proposed. These pro-
tocols include Multi-hop Over-the-Air Programming [35],
Deluge [17], Infuse [22], and Multi-hop Network Program-
ming [23]. The protocols differ in their design choices but
they all have two things in common. First, they are used to
disseminate a program over a one- or multi-hop sensornet.
Second, none of them were intended to provide security and
all are vulnerable to simple, but debilitating attacks.

Since Deluge is the de facto TinyOS network programming
system, in the interest of space, we focus exclusively on it
in this section. However, the other network programming
systems are vulnerable to nearly identical attacks. Deluge
requires each node to periodically broadcast the program
version available for sending. This advertisement is not au-
thenticated, and any node in the network may advertise any

version number. Since the radios in use today support a rel-
atively small number of channels, and TinyOS [39] supports
16-bit group identifiers in the packet header to multiplex
access to a channel, an attacker can simply scan the radio
channels and listen promiscuously for all group identifiers
on each channel to discover a running instance of Deluge.
Deluge also exports a simple, one-hop network querying in-
terface. Any unauthenticated node can query the network to
obtain the program version number currently installed and
the program binary pages received and pending. Without
authenticated broadcasts, and given the ability to actively
query or passively probe the network state, an attacker can
advertise a new version number, disseminate any number of
arbitrary packets, program any number of nodes, and hijack
the entire network.

Deluge uses 16-bit cyclic redundancy checks (CRC) across
both packets and pages to verify program integrity. The
CRCs do not protect against an attacker injecting a bogus
program or program fragment. Thus an attacker could com-
promise system integrity in a manner that is undetected by
using a CRC. The programs themselves, like the advertise-
ments, are not authenticated. Hence, during the transmis-
sion of a legitimate program, an attacker may inject any
number of malicious packets. Recipients will be unable to
distinguish between the legitimate and spoofed packets.

There are various low-bandwidth, denial-of-service (DoS)
attacks available for exploitation as well. For example, a
method for DoS is to simply continue increasing the version
number. In doing so, a legitimate user would be unable
to inject a new program since its version will soon become
obsolete. Another example for DoS occurs when an attacker
inserts a packet that purposely causes the page-level CRC
to fail, which causes the node to drop the entire page and
request it again. The main issue is that the node detects one
or more corrupt packets, but cannot pinpoint which one, and
therefore must request the entire page again.

2.2 Security Primitives and Services
TinySec implements link layer security in sensor networks

via a network-wide shared secret key [19]. TinySec provides
authenticity and secrecy as long as the shared secret key is
not compromised. The main difficulty is that every receiver
can both verify the authenticity of the message as well as
generate authentic messages. Since current mote-class de-
vices are not tamper-resistent, it is simple for an adversary
to physically compromise a node or mount a side-channel
attack [21, 20] when a large number of nodes is available,
so we were motivated to explore public-key approaches that
can tolerate node compromise.

Recent research results have demonstrated the feasibility
of public-key cryptography schemes on 8- and 16-bit micro-
controllers. Malan et al. have implemented elliptic curve
operations over the field F2p , and demonstrated an ECC
Diffie-Hellman key exchange [26] on mote-class devices. Wa-
tro et al. have implemented modular exponentiation, the
central primitive for RSA cryptography [41]. Gura et al.
have implemented ECC and RSA primitives on 16-bit pro-
cessors [13], and have extrapolated these primitives to pro-
vide estimated running times of signature and verification
operations. Digital signatures [6, 33], the cryptographic so-
lution to the problem of data authentication, are usually
based on public-key primitives and are an important mech-
anism for authenticated broadcast since every receiver can

verify the authenticity of the message without being able to
generate authentic messages. The drawback with digital sig-
natures are their large size and long verification time, which
make using them for packet-level protection too costly.

Sizzle [12] is a new end-to-end security service that im-
plements the Secure Sockets Layer on motes in a standards-
compliant way. Secure sockets use public-key operations to
authenticate peers and private key operations to establish
private, end-to-end unicast connections. However, the use of
end-to-end unicast communications is not compatible with
the broadcast-based dissemination algorithms used in Del-
uge and other network programming systems.

2.3 Code Signing
Code signing is a common technique for authenticating

the source and verifying the integrity of data and executable
files. Most popular approaches to code signing compute a
digest of each file, sign the digest, and then distribute the
file, digest, and signature together. For example, the Java
Archive (JAR) format allows one or more files to be pack-
aged together and digitally signed. A signed JAR file con-
tains a manifest file (MANIFEST.MF) which includes the full
pathname and digest of each file in the archive, a signature
file (*.SF) that contains a digest of each attribute in the
manifest, and a digital signature file (*.DSA) that contains
a signature of the *.SF file as well as the certificate of the
entity that signed the archive.

Conventional code signing techniques are based on digi-
tally signing a hash of the entire program. Since the hash is
computed over the entire program, the signature cannot be
verified until the program is received in its entirety, which
presents several problems. First, if the verification fails,
there is no way to identify which particular packet(s) caused
the failure because packets are not verified individually and
can be spoofed. Second, since most program binaries are
larger than the available RAM, unverified packets must be
written to power-hungry flash, wasting energy prematurely.
Third, in the event of an attack, the energy cost of receiv-
ing, storing, and verifying the program is expended by the
victim at a relatively small expense to the attacker.

2.4 Authenticated Broadcast
The literature in the area of authenticated broadcast pro-

vides fruitful ideas but also underscores the difficulty of the
problem. Perrig and Tygar [31] present an overview of the
authenticated broadcast problem including a scheme pro-
posed by Gennaro and Rohatgi [11] that we adapted for se-
curing network programming. This scheme is often ignored
because of its dependence on reliable, in-order delivery. Per-
rig and Tygar also present TESLA [29] and BiBa [28], their
solutions to authenticated broadcast. TESLA, and its sensor
network variant µTESLA, provide broadcast authentication
via key chain hashes [30] while BiBa achieves authenticated
broadcast via precomputed hash collisions and chains.

TESLA, µTESLA, and BiBa all rely on loose time syn-
chronization and require dynamic server state to be main-
tained in the form of precomputed key chains and the cur-
rent index within those chains. The protocols follow models
in which the data are revealed and then, a short time later,
are authenticated. Dependence on loose time synchroniza-
tion is necessary because these protocols all assume the data
are unknown a priori and hence cannot be authenticated
before they are generated. In the case of network program-

ming, this assumption is false: the data (i.e. the program)
are known a priori. These schemes usually assume a one-
to-all broadcast channel or one with predictable transmis-
sion latencies. These assumptions do not hold for network
programming. First, many dissemination protocols do not
make lock-step, page-by-page consistency guarantees, and
instead choose to pipeline pages in a multi-hop network for
efficiency reasons. In such cases, a routing wormhole can
circumvent the security of these schemes. Second, sensor-
nets regularly experience long periods of disconnected op-
eration [37]. Because of pipelining and disconnected opera-
tion, a broadcaster cannot easily determine when it is safe to
release the next key in the key chain. If the broadcaster were
to distribute the next key before some nodes receive the data
for the current round, an attacker could use this key disclo-
sure to forge a signature for an arbitrary data payload. The
problem with dynamic server state is that it makes multiple,
independently-operating broadcasters impossible.

Perrig and Tygar [31] review several other schemes for
authenticated streams that have various underlying assump-
tions. HTSS, for example, operates under the assumption
that the entire data object is known ahead of time and builds
a Merkle hash tree over all the packets. The Merkle tree au-
thentication information consists of hashes of all siblings to
the path from the packet to the root making it robust to
message loss, but robustness to packet loss is not necessary
because Deluge provides reliable dissemination. The draw-
back of HTSS is that it requires twice as many hashes as
packets, which makes it only half as efficient as [11].

2.5 Secure Network Programming
Lanigan et al. have recently and independently proposed

Sluice, an approach quite similar to ours [24]. The key dif-
ference between their protocol and ours is the granularity of
the authentication. Sluice verifies hashes at the page-level
rather than at the packet-level. The key benefit of Sluice
is that it requires less overhead than our approach since
the space, time, and message overhead of a hash can be
amortized over the multiple packets that constitute a page.
However, the cost of network reprogramming is relatively
small compared to the cost of day-to-day operations [7], so
the overall advantage of this optimization is limited. The
worst-case costs, however, are more severe. Hashing at the
page-level exposes a node to the simple, low-bandwidth DoS
attacks described earlier. In the event of an attack, there is
no mechanism to pinpoint a spoofed packet. Since a single
bad packet causes the entire page to be discarded, Sluice is
vulnerable to asymmetric attacks in which the attacker ex-
pends a small fraction of the effort that the attacked node
expends, yet the attacker is able to impede or even halt pro-
gramming progress. Finally, the cryptographic primitives
that Sluice uses are more than an order of magnitude slower
than the ones used in our implementation, but a more judi-
cous use of cryptographic primitives, and careful tuning of
those primitives, will make Sluice’s speed competitive.

Deng et al. have also proposed similar protocols for secure
network programming [5]. Their approach allows packets to
be verified out-of-order by first sending a hash tree over the
packets followed by the packets themselves. While the hash
tree does not need to be sent with a total order, a partial
order is required, so their approach relaxes, but does not
fully eliminate, the ordering requirements. In addition, their
scheme requires greater memory to store the hash tree.

3. PROBLEM DEFINITION
In the context of the background and related work, we

now formulate a crisp definition of the problem and the re-
quirements for a complete solution.

3.1 Security Requirements

• Authenticity. The source of a program must be verified
by a node prior to installation, ensuring that only a
trusted source can install a program.

• Integrity. It must be possible to ensure that a program
has not been altered during transit from the trusted
source to recipient.

• Freshness. An earlier version of a program binary
cannot be installed over a program with the same or
greater version number, ensuring a node always installs
the most recent version of a program binary.

• Compromise Tolerant. It must not be possible to use
a compromised node to cause an uncompromised node
to violate the above security requirements.

• Delay Tolerant. Nodes in the network may experience
long periods of disconnected operation so there must
be no dependence on time synchronization.

3.2 Efficiency Requirements

• Incremental Verification. Authenticity, integrity, and
freshness must all be verified before a packet is written
to flash.

• No Dynamic Server State. A server should maintain
only static state (e.g. a public-key pair) but not any
dynamic state (e.g. a precomputed key chain and the
current position in that chain).

3.3 Simplifying Assumptions

• The authenticated broadcast protocol does not need to
be robust to message loss since the network program-
ming service itself provides reliable dissemination.

• The authenticated broadcast protocol does not need
to tolerate out-of-order delivery since the network pro-
gramming service itself buffers and pipelines on page
boundaries and uses selective negative acknowledge-
ments to request retransmissions of missing packets.

• Communications privacy is not supported but can be
provided by a link-layer encryption service like Tiny-
Sec [19].

• Computationally efficient digital signing of program
binaries is unnecessary since a PC-class computer gen-
erates such signatures but efficient verification is re-
quired since mote-class nodes perform the verification.

3.4 Threat model
Due to the distributed and embedded nature of sensor

nodes, we assume an attacker can compromise an arbitrary
number of nodes or introduce an arbitrary number of new
malicious nodes. Because nodes communicate wirelessly, we
do not trust the wireless medium. An attacker may eaves-
drop on, inject, change, delete, and delay packets. We as-
sume that the attacker cannot compromise the trusted server
which safeguards the secret key used for digital signatures.

4. DESIGN AND IMPLEMENTATION
This section presents our design of a secure network pro-

gramming system. First, we present the cryptographic no-
tation used in this section. Then, we present an overview of
our design. Finally, we present the details of our design.

4.1 Notation
We use the notation presented in Table 1 in the remainder

of this section. This notation was adapted from Abadi and
Needham [1].

Table 1: Cryptographic Notation.
Symbol Meaning

A, B Principals
S A trusted server

D, X, Y User data
Mt,i A message of type t and (optionally) index i †

CA Principal A’s certificate
H(X) A cryptographic hash of X

PK A public-key in a public-key system
SK A secret-key in a public-key system

[X]SK X is signed with SK
N A nonce

† The notation for a message of type t and (optionally)
index i from A to B with payload X is:

Mt,i , A → B : X

4.2 Design Overview
The process used to transform a program to a stream of

packets for secure network programming is illustrated in Fig-
ure 1. A program is divided into P fixed-sized pages, except
possibly the last one. Each page is divided into G fixed-size
packets, except possibly the last one. A hash of each packet
i, is computed and placed in the previous packet, except for
the last packet whose hash field contains zeros. The hash of
the first packet is digitally signed and the hash and signa-
ture, taken together, form the advertisement packet for the
program.

When an advertisement packet is received, the receiving
node checks the program identification and version number
in the packet (not shown in Figure 1 for clarity). If the pro-
gram information matches and the version number is greater
than the one currently running on the node, the node checks
the digital signature. If the digital signature is valid, then
the node caches the hash and uses Deluge’s normal proce-
dure to request the packets in the first page. If packets arrive
in order, they are buffered in RAM like Deluge, with one ex-
ception: as each packet arrives, the hash over the contents of
that packet is checked against the hash in the immediately
prior packet. If packets do not arrive in order, then Deluge’s
selective negative acknowledgements are used to request the
missing packets after the initial transmission of the page is
complete. Any out-of-order packets are buffered optimisti-
cally in RAM. If any inconsistent duplicate packets are re-
ceived, either the packet with the correct hash is cached (in
the case of in-order delivery up to the packet under question)
or a coin toss determines the packet to optimistically cache
(in the case of out-of-order delivery that precludes immedi-
ate verification). If an optimistically cached packet is later
discovered to fail verification, it is discarded and a selective
negative acknowledgement for that packet is signaled. This

1

2

1

3

Program
Pages

Packets

4

5

P

6

G
G - 1

Dn

Dn-1

Di

Dj

Hn

0

Hj+1

Hi+1

D1

[H1]SK

1

H2

G

2

H1

D2 H3

Madv

Mdata,1

Mdata,2

Mdata,i

Mdata,j

Mdata,n-1

Mdata,n

Figure 1: Illustration of the program to packet
transformation used to secure network program-
ming. The shaded boxes represent information
added for security. Note: Several details have been
omitted from the figure for clarity but will be dis-
cussed in the remainder of this section.

process is repeated for the remaining pages until the entire
program binary has been received.

4.3 Node Information
A node is pre-programmed with several pieces of informa-

tion. The name of the trusted server S, and the server’s
public key PK, are pre-installed on the node. A node pro-
gram identifier Xpid is used to identify the program a node
runs. If Xpid is set to a unique value for each application
deployed under the aegis of a particular server S, then mul-
tiple, co-located applications can co-exist.

4.4 Preparing the Program for Dissemination
The first step in preparing a program for secure dissemina-

tion is to query the version number of the currently running
program in the network through a version number request
message, Mver, broadcast from a network basestation:

Mver , S → A : S, Xpid

S is the trusted server, A is an arbitrary node, and Xpid is
the program identifier. The query triggers an advertisement:

Madv , A → S : [S, Xpid, Xver, N, H(N, MD,1)]SKS

Xver is the program version number, N is a random nonce
originally selected by the server, and H(N, MD,1) is the
nonce-seeded hash of the first data message. These fields are
signed with the private key of the trusted server, which es-
tablishes their authenticity. The largest authenticated value
of Xver that is returned from the network becomes the ver-
sion number of the new program. The nonce serves to ran-
domize the hash function which makes precomputing a pre-
image collision computationally infeasible [14].

An application called the packager converts an Intel Hex,
Motorola S-record, or any binary representation of the pro-
gram into an advertisement, Madv, and a list of data mes-
sages, Mdata, collectively called a package:

Madv , A → B : [S, Xpid, Xver, N, H(N, MD,1)]SKS

Mdata,1 , A → B : X1, D1, H(N, MD,2)

Mdata,i , A → B : Xi, Di, H(N, MD,i+1)

Mdata,n , A → B : Xn, Dn, 0
Each data message consists of several header fields, a data

payload field, and a hash field. The packager generates
this list of messages as follows. First, the program is split
into pages. Then, each page is further divided into packets.
Once the data has been appropriately segmented into n such
packet payloads, the packets are built up in reverse from the
Mdata,n to Mdata,1. Message Madv, the advertisement, iden-
tifies the trusted server, program identifier, version number,
nonce to seed the hash, and the hash of Mdata,1. The head-
ers in messages Mdata,1 to Mdata,n contain a composite field,
X, which uniquely identify the data payload in the message.
The elements in X are:

X , 〈pid, ver, page, pkt〉
The contents of the data field, Di, of the i-th data mes-

sage, Mdata,i, is the i-th data block of the program binary.
The hash field in the i-th data message contains the nonce-
seeded hash of the i + 1 data message. Note that each hash
serves as a commitment for the next message to be received.
Therefore, if the very first hash, H(N, Mdata,1) can be au-
thenticated as being from a trusted source, then the au-
thenticity and integrity of all remaining messages follow by
induction.

4.5 Integration with Deluge
The mechanics of dissemination are handled by Deluge [17].

We leveraged the existing implementation and added hooks
to the Deluge code to: (i) check the authenticity and in-
tegrity of advertisements; (ii) intercept and verify packets
as they arrive or as enough information becomes available,
and (iii) remove optimistically buffered packets from Del-
uge’s RAM buffer if these packets fail verification.

Our implementation truncates the SHA-1 hash to 64 bits.
We believe this hash size represents a reasonable balance
between protection and efficiency for a sensor network. Sup-
port for 1024-bit RSA signatures is forthcoming but our
current implementation supports only 512-bit signatures be-
cause only these smaller signatures are compatible with the
Deluge single-packet advertisement architecture and the ra-
dio’s MTU. It is possible to modify Deluge to use several
large advertisement packets, but the changes are cumber-
some and far-reaching, so we avoided them at this point.
We report performance results for a 1024-bit RSA modu-
lus since the 640-bit modulus has been factored by Bahr et
al. [2].

5. EVALUATION
To evaluate the performance of our proposed approach,

we implemented our scheme using TinyOS. We adapted sev-
eral cryptographic primitives to the Telos Rev. B mote [32],
extended Deluge to include authentication and verification
hooks to support our security scheme, wrote a desktop ap-
plication to transform Intel Hex files to the format used in
our protocol, and tested the performance on a real network
of motes.

5.1 Methodology
We performed several experiments to evaluate the per-

formance of our proposal. First, we characterized the static
memory and flash footprint using the standard TinyOS build
process and module memory usage script. Then, we charac-
terized the runtime performance of the cryptographic prim-
itives by instrumenting them, running test vectors through
them, and measuring the running times. After characteriz-
ing the cryptographic primitives, we obtained baseline per-
formance statistics for the standard Deluge 2.0 version in-
cluded in TinyOS. The standard Deluge, labeled Deluge-23
because of its 23-byte payload, was instrumented to log ad-
vertisement, packet, and page reception times, as well as
programming completion times. We then modified Deluge-
23 to use a 64-byte payload and called the resulting variant
Deluge-64. The payload size was chosen to be the same
as the payload plus the hash used in the secure version of
Deluge, called Secure Deluge-56+8, and instrumented to log
packet verification times. The Deluge variants are summa-
rized in Table 2 and all use 5 bytes for the 802.15.4 preamble
and SFD, 10 bytes for the TinyOS radio header, and 5 bytes
for the Deluge header.

Table 2: Details of the Deluge Variants.
Variant Header Payload Page Size

Deluge-23 20 bytes 23 bytes 48 packets
Deluge-64 20 bytes 64 bytes 24 packets

Secure Deluge-56+8 20 bytes 56 bytes 24 packets

We tested our network programming system on the 28-
node Telos Rev. B Omega Testbed shown in Figure 2. The
Telos mote contains a 16-bit MSP430 microcontroller op-
erating at 8MHz, offers 48KB of flash memory and 10KB
of RAM, and provides an 802.15.4 radio that operates at a
data rate of 250kbps in the 2.4GHz ISM band. We used the
default TinyOS MAC backoff algorithm which selects an ini-
tial backoff ∼ U [305µs, 4880µs] and a congestion backoff ∼
U [305µs, 19520µs]. All experiments used CC2420 transmit
power level = 3. This power level results in a three hop net-
work and represents a balance between a fully-disconnected
network and a fully-connected one.

5.2 Cryptographic Microbenchmarks
We used publicly available code whenever possible for each

of our cryptographic primitives and ported it to the TinyOS
environment as needed. The performance of our TinyOS
ports of RSA and SHA-1 are presented in Table 3. In the
table, Time refers to the elapsed time to complete one prim-
itive operation. The primitive operation for RSA-1024 is a
modular exponentiation with e = 3 and for SHA-1 is com-
puting a 160-bit hash with 64-byte blocks over 64 bytes.

Table 3: Performance of Cryptographic Primitives.
Primitive Time RAM ROM

RSA-1024 0.7 s 529 bytes 1.2 KB
SHA-1 0.014 s 95 bytes 2.3 KB

For RSA, we implemented the algorithm in C code as de-
scribed in [13], including the use of Montgomery reduction
to speed modular exponentiation. Using e = 3 and a key

Figure 2: The Omega Testbed at U.C. Berkeley.

size of 1024 bits, a modular exponentiation takes an aver-
age of 0.7 seconds and represents the time to regenerate the
plaintext. Our implementation has a 40% higher running
time than the results reported in [13], which were based on
a highly optimized assembly-language implementation. The
code we used was optimized for 8-bit CPUs and does not
take advantage of the MSP430’s 16-bit core. We believe
comparable or better results are possible after making these
optimizations. We note a significant performance improve-
ment after incorporating Montgomery reduction – running
time for a signature verification decreased from 1.5 seconds
to 0.7 seconds, RAM usage decreased from 755 bytes to 529
bytes, and ROM usage decreased from 2.7 KB to to 1.2 KB.

For SHA-1, we ported public domain code written by
Chuck McManis. SHA-1 produces a 160-bit message di-
gest for a given data stream. The code consumes 95 bytes
of RAM, 2.3 KB of ROM, and takes approximately 14 ms
(median = 13.4 ms, mean = 13.9 ms, standard deviation =
0.86 ms) to hash a stream of 64 bytes using 64-byte blocks.
Once again, no optimizations were made for the MSP430,
so we believe performance could be improved if optimiza-
tions targeted to the MSP430 were implemented. However,
the current performance is generally acceptable even though
the implementation is not optimized for TinyOS’s run-to-
completion task model: calling the hash function results in
14 ms of unyielding computation, constraining the realizable
radio throughput to 76 packets per second.

5.3 Reprogramming Macrobenchmarks
A 21 KB program binary was introduced at the node la-

beled YDDC (upper right corner) and disseminated using
three different Deluge versions: (i) Deluge-23 (standard Del-
uge 2.0), (ii) Deluge-64 (standard Deluge with 64-byte pay-
load, and (iii) Secure Deluge-56+8 (the secure version of
Deluge with a 56 byte payload and 8 byte hash).

We recorded the times at which each node received the
advertisement, finished receiving each page, and completed
programming. Each experiment was repeated three times.
The results are summarized in Table 4 and shown in Fig-
ure 3. Recall that Deluge-23 uses 48 packets per page whereas
Deluge-64 and Secure Deluge-56+8 both use 24 packets per
page.

Table 4: Page count and completion times (mini-
mum, median, and maximum) for Deluge variants.

Variant Pages Min Median Max

Deluge-23 21 133 s 140 s 154 s
Deluge-64 14 83 s 86 s 98 s

Secure Deluge-56+8 16 98 s 102 s 114 s

The median completion time for Deluge-23 is 140 sec-
onds, Deluge-64 is 86 seconds and Secure Deluge-56+8 is
102 seconds. Under ideal conditions, we would expect Se-
cure Deluge-56+8 to require about 15% more messages and
time to complete programming than Deluge-64 due to a 15%
smaller payload size. Indeed a 15% message overhead (i.e.
number of pages) is apparent.

In contrast, however, the data indicate the time to com-
pletion for Secure Deluge-56+8 is close to 19%. Figure 3(a)
offers one possible explanation for this delay. This figure
shows packet reception and verification times for a single
page. What we observe is that packets one through five ar-
rive sequentially and are verified in order. Then, packet six
is lost. The following packet numbers and reception times
(in seconds) were recorded in arrival order:

1, 0.000000000000

2, 0.018035888671

3, 0.035888671875

4, 0.053771972656

5, 0.072204589843

...

7, 0.091674804687

Note that inter-packet arrival times for packets one through
five are approximately 18 ms but the time between packets
five and seven is approximately 19.4 ms – much less than the
expected value of approximately 36 ms. Since a hash veri-
fication takes about 14 ms, it appears as if packet 6 arrived
before packet 5 was verified, so it was dropped. However,
since we did not actually receive packet 6, we can only spec-
ulate. In contrast, packets 17 and 22 appear to have been
legitimately lost. As a result of these packet drops, the page
reception time increases from an ideal of about 0.4 s to about
0.9 s – an overhead exceeding 200%. However, the median
completion times exhibit an overhead of only 19%. These
results are a bit surprising but they can be explained by
channel contention at scale, which impacts completion time
far more than verification delays.

5.4 Completeness of the Design
We show our working system satisfies the security and ef-

ficiency requirements outlined in Section 3. Program source
authenticity is satisfied by the RSA digital signature. The
integrity requirement is met by the resistance of SHA-1 to
pre-image attacks. Collision attacks against SHA-1 have
been reported [40], but such attacks are ruled out by our
threat model. Freshness is ensured by using monotonically

Figure 3: Empirical Results: (a) Packet reception
(J) and verification (I) times for one page of data
(Note: verification times have been delayed by 10 ms
for clarity); (b) CDF of programming completion
time for 28 nodes using Deluge-23 (dotted red line),
Deluge-64 (dashed green line) and Secure Deluge-
56+8 (solid blue line).

increasing and digitally signed version numbers. Compro-
mise tolerance is achieved by not storing any secret keys on
a node. The system is delay tolerant because there is no
dependence on time synchronization.

Support for incremental verification is achieved because
under our hash chain construction, each hash is a commit-
ment for the next message, permitting incremental authen-
tication of packets. In the pessimistic case of extreme packet
loss, the system can still make progress using Deluge’s sup-
port for selective negative acknowledgments. Finally, no
dynamic server state is required since a server only stores its
public key pair, which is static. Other information, such as
the program version number, is retrieved from the network.

6. CONCLUSION
We present and evaluate a system for secure and efficient

network programming in resource-constrained wireless sen-
sor networks. This work demonstrates the feasibility and low
overhead of adding public-key-based program source authen-
tication, strong integrity verification, and freshness checks to
existing network programming services. We tested our im-
plementation on a real testbed consisting of 28 Telos motes.
Our secure network programming protocol can be readily
generalized to solve the problem of secure, reliable, bulk data
dissemination in sensor networks.

7. ACKNOWLEDGMENTS
We thank Chris Karlof, David Molnar, Naveen Sastry,

Jay Taneja, David Wagner, and the anonymous reviewers
for their invaluable feedback. This work was supported by
the NSF under grant# 0435454 (“NeTS-NOSS”), the NSF
Graduate Research Fellowship Program, and DARPA grant
F33615-01-C1895 (“NEST”).

8. REFERENCES
[1] M. Abadi and R. Needham. Prudent engineering practice for

cryptographic protocols. IEEE Transactions on Software
Engineering, 22(1):6–15, 1996.

[2] F. Bahr, M. Boehm, J. Franke, and T. Kleinjung. 640-bit RSA
modulus factored. NMBRTHRY@LISTSERV.NODAK.EDU,
Nov 2005.

[3] V. Bokser, C. Oberg, G. Sukhatme, and A. Requicha. A small
submarine robot for experiments in underwater sensor
networks. In Symposium on Intelligent Autonomous Vehicles,
July 2004.

[4] S. Coleri, S. Y. Cheung, and P. Varaiya. Sensor networks for
monitoring traffic. In Forty-Second Annual Allerton
Conference on Communication, Control, and Computing,
Univ. of Illinois, Sept. 2004.

[5] J. Deng, R. Han, and S. Mishra. Secure code distribution in
dynamically programmable wireless sensor networks. In
Proceedings of the Fifth International Conference on
Information Processing in Sensor Networks (IPSN’06), Apr
2006.

[6] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):74–84,
1976.

[7] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In
Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks (LCN’04), pages
455–462, Nov. 2004.

[8] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler.
Design of a wireless sensor network platform for detecting rare,
random, and ephemeral events. The Fourth International
Conference on Information Processing in Sensor Networks:
Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), Apr. 2005.

[9] P. K. Dutta and D. E. Culler. System software techniques for
low-power operation in wireless sensor networks. ICCAD, 2005.

[10] J. Gehrke and S. Madden. Query processing in sensor networks.
Pervasive Computing, Jan. 2004.

[11] R. Gennaro and P. Rohatgi. How to sign digital streams.
Lecture Notes in Computer Science, 1294:180+, 1997.

[12] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle,
and S. C. Shantz. Sizzle: A standards-based end-to-end
security architecture for the embedded internet. In Third IEEE
Conference on Pervasive Computing and Communications,
pages 247–256, 2005.

[13] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shants.
Comparing elliptic curve cryptography and RSA on 8-bit
CPUs. In Workshop on Cryptographic Hardware and
Embedded Systems, 2004.

[14] S. Halevi and H. Krawczyk. Strengthening digital signatures
via randomized hashing, May 2005.

[15] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher,
L. Luo, R. Stoleru, T. Yan, L. Gu, G. Zhou, J. Hui, and
B. Krogh. Vigilnet:an integrated sensor network system for
energy-efficient surveillance. In submission to ACM
Transaction on Sensor Networks, 2004.

[16] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The
platforms enabling wireless sensor networks. Communications
of the ACM, 47(6):41–46, jun 2004.

[17] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 81–94, 2004.

[18] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife tracking:
Design tradeoffs and early experiences with zebranet. In
Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS X), 2002.

[19] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer
security architecture for wireless sensor networks. In Second
ACM Conference on Embedded Networked Sensor Systems
(SensSys 2004), November 2004.

[20] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
Lecture Notes in Computer Science, 1666:388–397, 1999.

[21] P. C. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. Lecture Notes in
Computer Science, 1109:104–113, 1996.

[22] S. S. Kulkarni and M. Arumugam. INFUSE: A TDMA based
data dissemination protocol for sensor networks. Technical

report, Michigan State Univ., East Lansing, MI, USA, 2004.

[23] S. S. Kulkarni and L. Wang. MNP:multihop network
reprogramming service for sensor networks. In International
Conference on Distributed Computing Systems (ICDCS’05),
Jun 2005.

[24] P. E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure
dissemination of code updates in sensor networks. In The 26th
International Conference on Distributed Computing Systems
(ICDCS ’06), July 2006.

[25] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor
networks. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS X), 2002.

[26] D. Malan, M. Welsh, and M. Smith. A public-key infrastructure
for key distribution in tinyos based on elliptic curve
cryptography. In First IEEE International Conference on
Sensor and Ad hoc Communications and Networks, Santa
Clara, CA, USA, Oct 2004.

[27] J. Paradiso, J. Lifton, and M. Broxton. Sensate media -
multimodal electronic skins as dense sensor networks. BT
Technology Journal, 22(4):32–44, Oct. 2004.

[28] A. Perrig. The biba one-time signature and broadcast
authentication protocol. In Proceedings of the Eighth ACM
Conference on Computer and Communications Security
(CCS-8), pages 28–37, Philadelphia PA, USA, Nov 2001.

[29] A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient
authentication and signing of multicast streams over lossy
channels. In IEEE Symposium on Security and Privacy, pages
56–73, May 2000.

[30] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
SPINS: Security protocols for sensor networks. In Seventh
Annual International Conference on Mobile Computing and
Networks (MobiCOM 2001), Rome, Italy, July 2001.

[31] A. Perrig and D. Tygar. Secure Broadcast Communication: In
Wired and Wireless Networks. Kluwer Academic, 2002.

[32] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
ultra-low power wireless research. The Fourth International
Conference on Information Processing in Sensor Networks:
Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), Apr. 2005.

[33] R. Rivest, A. Shamir, and L. Adelman. A method for obtaining
digital signatures and public key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[34] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry,
and D. Culler. Design and implementation of a sensor network
system for vehicle tracking and autonomous interception. In
Second European Workshop on Wireless Sensor Networks,
Jan. 2005.

[35] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code
update mechanism for wireless sensor networks. Technical
report, UCLA, Los Angeles, CA, USA, 2003.

[36] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An
analysis of a large scale habitat monitoring application. In
Proceedings of the Second ACM Conference on Embedded
Networked Sensor Systems (SenSys’04), Nov. 2004.

[37] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler.
Lessons from a sensor network expedition. In Proceedings of
the First European Workshop on Sensor Networks (EWSN),
Jan. 2004.

[38] G. Tolle and D. Culler. Design of an application-cooperative
management system for wireless sensor networks. In 2nd
European Workshop on Wireless Sensor Networks, Jan. 2005.

[39] University of California, Berkeley. Tinyos.
http://www.tinyos.net/, 2004.

[40] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full
SHA-1. In CRYPTO, pages 17–36, 2005.

[41] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and
P. Kruus. Tinypk: securing sensor networks with public key
technology. In SASN ’04: Proceedings of the 2nd ACM
workshop on Security of ad hoc and sensor networks, pages
59–64, 2004.

[42] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh.
Monitoring volcanic eruptions with a wireless sensor network.
In Proceedings of the Second European Workshop on Wireless
Sensor Networks (EWSN’05), Jan. 2005.

[43] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A wireless sensor network for
structural monitoring. In Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems
(SenSys’04), Nov. 2004.

http://www.tinyos.net/

	Introduction
	Related Work
	Sensornet Network Programming
	Security Primitives and Services
	Code Signing
	Authenticated Broadcast
	Secure Network Programming

	Problem Definition
	Security Requirements
	Efficiency Requirements
	Simplifying Assumptions
	Threat model

	Design and Implementation
	Notation
	Design Overview
	Node Information
	Preparing the Program for Dissemination
	Integration with Deluge

	Evaluation
	Methodology
	Cryptographic Microbenchmarks
	Reprogramming Macrobenchmarks
	Completeness of the Design

	Conclusion
	Acknowledgments
	REFERENCES -9pt

