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Abstract
I2C is a popular interconnect bus for integrated circuits that em-
ploys an open-drain design to support multiple controllers. Origi-
nally designed for television motherboards with a static configura-
tion of chips, I2C is now used in nearly every corner of electronics,
from wearables to phones to satellites. Some emerging applica-
tions, however, are more dynamic and distributed than I2C can
support today, limiting its utility. In particular, one typically static,
design-time parameter—the value of a pull-up resistor—is chosen
to roughly match the total distributed bus and gate capacitance,
ensuring a pull-up rise time that satisfies the I2C spec. But with
greater dynamism—when many I2C nodes are added or removed
at run-time—a static pull-up resistor can lead to a bus that is at
best inefficient and at worst inoperable. In this paper, we present
a system that can measure the rise time in situ and at I2C data
rates, allowing us to optimally adjust the pull-up resistor at run-
time. With this rise time measurement capability in hand, we show
how it can be used for other useful and novel functions, including
detecting when I2C nodes are added or removed, enabling an effi-
cient inband-interrupt signaling scheme that eliminates the need
for interrupt polling, and even full-duplex reverse data transfer
encoded into clock edges. We implement our design, called I4C,
using commercial microcontrollers and discrete electronics, and
evaluate it on a testbed of several nodes, demonstrating its viability
and efficiency.

CCS Concepts
• Computer systems organization → Embedded and cyber-
physical systems; • Hardware → Communication hardware,
interfaces and storage.

Keywords
I2C, SMBus, Dynamic Bus Management, Plug-and-Play

ACM Reference Format:
Guangyu Feng, Tess Despres, Paul de La Sayette, and Prabal Dutta. 2025.
I4C. . . Improving I2C’s Dynamism and Efficiency. In The 23rd ACM Con-
ference on Embedded Networked Sensor Systems (SenSys ’25), May 6–9, 2025,
Irvine, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3715014.3722063

This work is licensed under a Creative Commons Attribution 4.0 International License.
SenSys ’25, Irvine, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1479-5/2025/05
https://doi.org/10.1145/3715014.3722063

1 Introduction
From its humble beginnings in the 1980s as the Inter-Integrated
Circuit communications protocol to connect chips on television
motherboards, I2C has blossomed into one of the most pervasive
board- and system-level interconnect buses in existence today [11].
Wearable devices and environmental sensor systems network mod-
ules together with I2C [30, 40, 41]. Computing systems, ranging
from phones to gaming consoles to data centers, use I2C, along-
side derivative protocols such as SMBus [16, 26]. Robotic systems
communicate using I2C, and the protocol has even gone to space
with variants such as SPA-1 [23, 29, 32]. I2C is a widely-adopted
industry standard because it occupies a sweet spot that balances
speed, space, and complexity. I2C offers modest bus speeds (typi-
cally 100 kHz), supports multiple controllers that can independently
initiate communications (with built-in support for arbitration), and
requires only two signal lines which makes it an ideal choice for
small devices (with very constrained pin counts and often limited
space for routing buses).

A victim of its own success, today’s emerging applications in-
creasingly demand more dynamism than I2C can efficiently sup-
port, even with hot-swap capable interface chips. Some contempo-
rary applications—like networked smart clothing, environmental
sensing systems, and robotics—benefit from modular, dynamic de-
signs [20, 24, 28, 31, 35]. System-level dynamism enables rapid,
on-the-fly reconfiguration for different types of conditions, such
as daisy-chaining between three and 36 energy-harvesting energy
meters in a circuit breaker panel and connecting them to a data log-
ger or radio [22]. Beyond plug-and-play sensors, dynamic systems
can also integrate distinct controller devices (e.g. microcontrollers)
to distribute functionality efficiently. Furthermore, by allowing
devices to fail gracefully, dynamism enhances system reliability,
particularly in harsh or hostile environments where failure is more
common, by adapting operations to the available resources.

Problems arise, however, when unmodified I2C is used in such
dynamic systems. I2C was not designed to support a variable num-
ber of devices because the open-drain design requires statically
configuring the value of a pull-up resistor at design-time. This
means that pull-up resistors are often configured for the worst case,
anticipating the largest number of devices and highest possible bus
capacitance, which results in a higher power dissipation than nec-
essary. Perhaps worse, since I2C was not designed for dynamism,
adding or removing devices in a running system risks jolting the
bus into a stuck state, halting communications. Fortunately, hot-
swap capable interface chips alleviate the stuck-state problem, but
they do not solve the general problem of dynamism and efficiency.
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In this paper, we introduce I4C, a set of backwards-compatible
enhancements to I2C that better supports dynamism in systems.
Since I2C is already well supported on many devices, we prioritize
the ability to share a single physical bus to concurrently support
I2C and I4C, preserving full I2C functionality while improving the
operation of legacy devices by reducing total bus power dissipation,
and enabling new capabilities between I4C devices. I4C addresses
the dynamism challenge by measuring the bus rise time in situ. We
focus on rise time because if the bus pull-up resistors are too weak,
as additional devices are added, the bus capacitance and rise time
can increase beyond the I2C specification. Sensing rise time makes
it possible to adjust the pull-up resistance, to maintain a healthy rise
time for a range of dynamic configurations. Adjusting the pull-up
resistors can also simultaneously reduce power dissipation when
fewer devices are on the bus, because a larger resistor can be used,
which limits current when the bus is driven low. I4C measures and
adjusts the bus rise time in real-time.

By measuring the bus, we can enable a slew of other features as
well. Monitoring the rise time can detect anomalies and identify
signal integrity issues. Even in static configurations, I2C pull-up
configuration is difficult to get right. For example, target devices
may include unknown internal pull-ups and long wires over large
ground planes can introduce unexpected capacitance. I4C automat-
ically handles these cases. Additionally, I4C can detect rise time
changes when devices are added or removed from the bus. Detect-
ing a device change is a useful system feature for checking if all
devices are operational and for prompting the controller to assign
addresses and track system resources when conditions on the bus
appear to have changed due to persistent rise time variations.

With a small amount of logic on the target device, we can extend
I4C to enable in-band interrupts. In I2C, interrupts are not built-in
and systems need to either poll target devices, wasting cycles when
no communication is needed, or implement an interrupt line. In I4C,
a key insight is that target devices can use rise time modulation as
a side channel signal. Each target device is assigned its own rising
edge which it can modulate to signal an interrupt. This allows
multiple target devices to signal their pending interrupts within
a single I2C transaction which may be completely unrelated to
any pending interrupts. I4C introduces interrupts and full-duplex
communication into I2C without adding additional lines on the bus.

In this paper, we design, implement, and evaluate I4C, which
automates a typically static and manual operation—pull-up resistor
selection—using rise time detection and modulation circuits. I4C is
designed with the high-level goals of supporting dynamism, both
at configuration and run-times, prioritizing power efficiency, and
enabling full-duplex communication and interrupts. We combine
rise time measurement, pull-up resistor adjustment, and rise time
modulation to meet these goals and implement our system using a
testbed of Raspberry Pi Pico 2 (RP2040) devices [14], custom circuits,
and software. We show that we are able to successfully measure and
vary rise time across a wide number of target devices. Additionally,
our I4C system saves power compared to I2C systems configured for
the same number of devices. Finally, we show detection of dynamic
device addition and interrupts using a combination of rise time
modulation and sensing. I4C demonstrates that I2C can be enhanced
along several dimensions to enable backwards-compatible, dynamic
systems without requiring additional wires.

2 Related Work
We start with a brief introduction to I2C, its trending modularity,
and its major derivatives, then review key bus operations related
to dynamism—hot-swapping, device discovery and departure, dy-
namic address assignment, and service discovery and binding—and
end our discussion with pull-up resistor selection strategies.

2.1 I2C Background
I2C is a half-duplex serial communication protocol for efficient data
exchange between processors and peripheral devices. It transmits
data sequentially over only two physical lines: SDA (for data) and
SCL (for clock). These lines form a shared bus where multiple con-
trollers and targets communicate. In the communication protocol,
a controller initiates data transfer by addressing a specific device,
followed by sequential data exchange and acknowledgment signals.

At the physical layer, I2C uses an open-drain design. Each device
has a transistor with its drain connected to the shared bus line and
its source grounded, while a pull-up resistor connects the bus line
to the supply. This configuration forms an RC circuit, impacting the
bus rise time proportional to the product of the pull-up resistance
(𝑅𝑝 ) and wire/gate capacitance (𝐶𝑏𝑢𝑠 ). As devices are added, the
total bus capacitance increases. A device transmits ‘0’ by turning
on the transistor, thus grounding the bus line, and transmits ‘1’
by turning it off, allowing the pull-up resistor to pull the bus to the
supply voltage. This design prevents bus contention with wired-and
bus arbitration: if multiple devices write conflicting values on the
bus simultaneously, the ‘0’ dominates. The same principle allows
the target of a message to hold the SCL (clock) line low if it needs
more time to perform the task—a technique called clock-stretching.

2.2 I2C Based Systems
Although I2C does not natively support dynamic device addition
and removal, engineers have long explored ways to use it dynam-
ically, both during bus configuration and active operation. This
need has become more pressing with the rise of large-scale sensing
systems—such as tactile sensing arrays with over 40 accelerometers
using I2C buses [43]—and modular systems which would benefit
from a dynamic I2C bus operation. Companies such as Useful Sen-
sors have offered various sensing modules that can be easily added
or swapped on top of the I2C protocol [19], while modular controller
boards are used for robotics where different modules such as sensor
and power supply boards can be connected to make a “custom”
control board [28]. Similarly, LegoSENSE creates a modular I2C
based IoT platform for sensing [45], and the MASS system, built on
the I2C bus, explicitly trades off power efficiency for enhanced mod-
ularity [25]. These developments, along with many other sensor
systems that benefit from dynamic modularity [20, 33, 34, 38, 41, 42],
underscore the growing demand for dynamic I2C bus operation,
but they do not address the technical challenges that I4C does.

2.3 I2C Derivatives
A variety of I2C-derivative protocols have emerged with the goal of
either increasing the capabilities of the I2C bus or avoiding some of
its more problematic constraints. These derivatives include SMBus,
PMBus, ACCESS.bus and I3C, closely-related siblings like TWI, and
purely mechanical adaptations like Qwiic and STEMMA.
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SMBus, introduced by Intel in 1995, is designed for system man-
agement in computers and enhances I2C reliability and efficiency
through features such as built-in timeout, standardized commands,
and low-power modes [16]. It is interoperable with I2C, but requires
that devices acknowledge their own addresses, utilize a minimum
SCL clock frequency of 10 kHz, support additional commands, and
include a low-power mode. Similarly, PMBus was designed for
power-management by defining a set of standardized commands
and response formats for power management tasks, including com-
mands to control and set output voltages [15]. Atmel introduced the
Two Wire Interface (TWI) [7], which limits certain advanced I2C
features to reduce hardware complexity and resource commands.
ACCESS.bus, a collaboration between DEC and Philips, enhances
I2C modularity by adding dedicated power and ground lines that
enable hot-swapping and daisy-chaining of peripheral devices on
a host PC [21], but it never gained market traction and was su-
perceded by USB. Sparkfun developed the Qwiic system to reduce
the mechanical complexity of wiring and enable plug-and-play
sensors over I2C [17]. Adafruit has also adopted this method for
making quick prototypes using I2C [8]. I3C, under development by
the MIPI Alliance I3CWorking Group, combines features of I2C and
SPI to get a faster (10 Mbps), two-wire, low-power communication
channel targeting smartphones [13]. These protocol extensions and
derivatives illustrate that evolving demands have long pushed I2C
into new regimes, sometimes possible within the I2C spec and at
other times requiring new buses to meet needs.

However, these adaptations fail to address key challenges related
to dynamic operations on an I2C bus. SMBus, PMBus, TWI, Qwiic,
Stemma, and ACCESS.bus remain within the I2C framework, but
lack support for dynamic configuration, while SPI and I3C introduce
more fundamental changes that require hardware modifications.
Compared with I4C, SPI does not support dynamism, and I3C, while
offering partial dynamism support for I3C targets—such as address
resolution protocol (ARP) and in-band interrupts—neither supports
multiple active controllers on the bus nor enhances operations on
legacy I2C devices. Moreover, I3C does not detect I3C device de-
partures nor does it address the static pull-up resistor issue when
communicating with traditional I2C devices. These limitations high-
light an unmet need for increased dynamic capabilities for legacy
I2C devices—a gap that I4C aims to address.

2.4 Dynamism in I2C and Derivatives
In this section, we discuss the existing support for dynamism in I2C
and derivative protocols, and how I4C extends these capabilities.

Hot-Swapping. Hot-swapping devices—adding and removing
devices while the bus is powered—is a valuable feature for modern
dynamic systems that I2C was not originally designed to support.
Hot-swapping involves a few key challenges. First, devices are de-
signed such that power pins receive power before signal pins to
prevent data corruption [39]. Second, conflicting transactions need
to be avoided to prevent data corruption. This can be prevented by
ensuring that devices only transmit after detecting a stop condi-
tion, or bus idle condition. Some buses, such as SMBus, incorporate
additional timeout safeguards, to reset the bus if a transaction does
not complete within the time limit. I4C adopts timeout, retrans-
missions, bus idle/stop detection, and wired-and bus arbitration

to handle such conflicts. Third, when devices are first connected
to the bus, their sudden surge in current draw from the bus and
sudden increase in bus capacitance can result in bus voltage dips.
Pre-charging the device’s internal capacitance can help prevent the
resulting device disruption or bus data errors. Alternatively, rise
time accelerators can help by injecting current into the line when
in transition and resulting in a faster rise time, but they can cause
signal distortion when multiple devices are connected. Another
mechanism to support hot-swapping is buffering different segments
of the bus with an IC such as the TCA9511A [10] to reduce the
total capacitance and prevent spikes. The trade-off is that buffering
requires a pull-up resistor on every bus segment, increasing power
draw. To address this challenge, I4C takes a different approach to
support hot-swapping, by detecting rise time variations, adjusting
the pull-up resistance, and regulating the bus current as needed,
while avoiding rise time accelerators and buffers.

Device Discovery and Departure. Tracking device arrivals to
and departures from the bus helps a system track available resources.
In I2C, the standard approach relies on polling, where the controller
repeatedly polls the bus to discover new devices and check if known
devices are still present. To improve upon polling, some systems
make target devices temporarily assume a controller role and send
heartbeats to announce their arrival and presence—thoughmost I2C
targets lack the hardware capability to do so. However, both polling
and heartbeat-based methods can be expensive, and during stable
periods of bus configuration—when there is not device churn—they
waste bandwidth, which could be better spent on communications.
I4C eliminates this inefficiency by detecting rise time changes,
which indicate a change in bus capacitance when devices are added
or removed. Only when a change is detected will I4C poll to discover
new devices or remove departed ones, reducing the bandwidth and
power overhead of existing approaches.

Dynamic Address Assignment. For a newly added device,
the controller on the bus must identify its address while ensur-
ing that it does not have address conflicts with existing devices.
SMBus addresses this by using an ARP, where the controller col-
lects all devices’ addresses via a broadcast command and dynami-
cally reassigns new, unique addresses to devices with conflicts [16].
However, ARP only works for devices responding to the broadcast
commands—typically controllers—and traditionally, needs to be
triggered by polling to detect device changes or timeouts. In con-
trast, triggers for I4C ARP are efficient—executed only when an I4C
controller detects that the bus configuration has changed.

Service Discovery and Binding.When devices are added to
the bus, understanding their capabilities is important for the system
to function efficiently. SMBus and PMBus reserve certain addresses
for certain devices such as smart batteries [16]. It is not practical,
however, to assign addresses for a large set of device types, because
I2C addresses are short (7-bit or 10-bit), limiting the number of
possibilities. Buses like Display Data Channel (DDC), developed for
display interfaces, solve this problem by including an Extended Dis-
play Identification Data (EDID) structure which is communicated
automatically upon device connection [18]. I4C initiates service
discovery after detecting a change in the bus rise time and uses
predefined encoded values to represent a device’s services and ca-
pabilities, removing the need to map addresses or data structures
to services, but permitting that level of indirection if useful.
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Figure 1: (a) Overview of the I2C/I4C system. I4C supports (i) traditional I2C devices and (ii) I4C-enabled ones, all on the same physical
bus. (b) Example I4C bus transaction. I4C: (i) controllers automatically adjust pull-ups after measuring reference edge rise times (⟨ Cal ⟩),
(ii) targets signal pending interrupts by modulating SCL rising edge rise times (⟨ Pending Interrupt Vector ⟩), and (iii) support full-duplex
data transfers using the same scheme with targets modulating clock edges (⟨ Full-Duplex Data Transfer ⟩) during the data byte(s) transfer
phase from the controller to the target during an I2C write command.

2.5 Pull-up Resistor Selection
Adding or removing devices at run-time makes static pull-up resis-
tor values suboptimal. The open-drain bus design of I2C requires
pull-up resistors whose resistance values strike a balance. With
a static configuration of chips, designers must satisfy I2C system
specifications [11], including maximum rise time (1,000 ns in stan-
dard mode and 300 ns in fast mode), limiting the maximum resistor
value. Conversely, the spec limits the maximum allowable sink
current to 3 mA, limiting the minimum pull-up resistance.

Power-sensitive designs employ static values closer to the maxi-
mum to limit unnecessary power dissipation, but this leaves less
margin for additional capacitance from new devices or wiring [46].
Some researchers have even proposed toggling off resistors to save
power [27]. Since fixed pull-up resistors cannot adapt to dynamic
changes in bus capacitance, a standard approach in larger and mod-
ular systems is to segment the bus with buffers, which help isolate
capacitance in each segment and maintain signal integrity. How-
ever, this solution introduces new challenges: each segment must
have its own pull-up resistors, increasing power dissipation, and
the buffers themselves add capacitance. Additionally, the fundamen-
tal challenge of selecting optimal pull-up resistance remains—now
applied to each segment instead of the entire bus.

Another alternative is to assign each device (or group of devices)
its own single pull-up resistor, matched to its gate capacitance, to
offset the increase in bus capacitance and maintain a constant rise
time. However, precisely pairing resistors to gate capacitance is
challenging, and themethod fails if any device lacks a dedicated pull-
up—as is common with most I2C devices. Moreover, this approach
does not account for cable length or other extra capacitance. By
dynamically selecting the pull-up resistance value in real-time, I4C
eliminates the static resistance trade-offs, offering both low-power
operation and sufficient margin for newly added devices, while
avoiding the complexity and power inefficiency of precautionarily-
segmented networks.

3 System Overview
Figure 1a (top) shows a typical I2C network of controllers and
targets, augmented with I4C-enabled devices. SCL (clock) and SDA
(data) lines connect all the devices together. An INT (interrupt) line
is sometimes used (outside of the I2C specification) to allow targets
to notify a controller of a pending interrupt. Static pull-up resistors
(shown left) are used to pull the bus voltage to a high value (‘1’)
while controllers and targets drive the bus to a low value (‘0’), and
controllers drive SCL even when a target is transmitting data.

An I4C controller includes a hardware and software subsystem
that can: (i) measure the rise time of the I2C SCL and SDA signals
on a clock cycle-by-cycle basis, (ii) detect the arrivals or departures
of other devices, (iii) process the stream of rise time measurements
and I2C protocol states, (iv) control the values of programmable
pull-up resistances on the SCL and SDA lines to balance speed and
efficiency, and ensure correctness, (v) extract a pending interrupt
request number embedded in an SCL rising clock edge by a target,
potentially in response to a shared interrupt line being asserted, (vi)
communicate in (nearly) full-duplex with a target, and (vii) execute
an ARP process to dynamically select the bus controller.

An I4C device can signal a pending interrupt by modulating the
rise time of a particular clock pulse’s rising edge during the address
phase of an I2C bus transaction, or by modulating the clock’s rising
edges during the subsequent bytes, to transmit full-duplex data. In
both cases, the target device’s address uniquely identifies the edges
that the target device is permitted to modulate.

Figure 1b (bottom) shows a typical I2C bus transaction with I4C’s
sensing and modulation of clock edges highlighted. The I4C con-
troller measures the rise times shown in cyan to adjust the pull-ups
on the SCL and SDA lines. Two devices indicate pending interrupts
by modulating the rise times shown in indigo (SCL rising edges 3
and 6). A target transfers data to the controller (0b00110010) by
modulating the SCL rise times shown in teal whiles the controller
is simultaneously transmitting data to the target on the SDA line.
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Figure 2: I2C signals traverse four stages. The stages, High,
H→L, Low, and L→H, yield distinct power draws.

4 Design
I4C’s primary design goal is to support greater dynamism in low-
power I2C networks while achieving high efficiency and strong
adherence to the I2C spec. I4C achieves these goals by introducing
new capabilities to I2C controllers in the form of high-resolution
signal rise time measurement and coarse-grained pull-up resistor
control, and to I2C targets in the form of fine-grained pull-up control
on select clock edges. These capabilities enable new side-channels
that convey crucial information, including bus status, interrupt
flags, and even full-duplex data streams hidden in plain sight.

4.1 Design Goals and Constraints
Motivated by the vision of an ad hoc group of a few—or many—I2C-
compatible devices connected together and automatically config-
ured in plug-and-play manner, we share our design considerations.

Greater Dynamism.We envision supporting as few I2C devices
as may be needed for an application, or the maximum number of de-
vices possible on an I2C segment, limited only by bus constraints (or
actual bus failure, if so desired).When devices are added or removed,
the changes are quickly detected on the very next I2C transaction,
triggering algorithmic adjustment of pull-up resistor values to en-
sure performance, efficiency, and correctness. Device churn also
initiates higher-level protocols like address resolution, service dis-
covery, and resource binding immediately thereafter. And, if the bus
becomes loaded beyond its specified operating regime, signaling
that such a condition has occurred and the bus is operating in a
“red zone” prior to bus failure.

Higher Efficiency. With the ability to detect signal rise time
changes due to changes in bus capacitance or pull-up resistance,
many avenues for efficiency become possible. Device churn is
quickly detected without any periodic polling overhead (e.g. energy,
latency, or bandwidth). The pull-up resistor values on I2C’s SCL
and SDA lines are tuned to the actual (and dynamic) bus capaci-
tance rather than typically far more conservative estimates, which
minimizes power dissipation. The energy and latency required to
identify the source of a pending interrupt is greatly reduced com-
pared to polling when, using I4C’s approach, the target can raise
an interrupt flag by modulating the rise time of a target address-
specific clock edge in the next transaction. The latency can be
reduced even further when the target asserts a shared interrupt line
(INT), which immediately triggers the next I2C transaction. Finally,
full-duplex communication, similar to SPI’s MISO/MOSI model, is
possible when the controller transmits data to the target using SDA
(like MOSI) while the target transmits data to the controller by
modulating the rise time of SCL clock edges (like MISO).

I2C Protocol Compliance. For maximum utility, I4C’s support
for greater dynamism with higher efficiency requires strict adher-
ence to the I2C bus specification. In particular, I2C standard mode
requires the following conditions are met:

High Rise
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Figure 3: FSM for rise time measurement. The SCL and SDA
rise times are measured by counting the number of fast clock cycles
that occur between the low and high states. This FSM enables I4C
to measure and report the rise time during I2C communications.

• 𝐶𝑏𝑢𝑠 ≤ 400 pF (the total bus capacitance including wire and
gate loads cannot exceed this figure).

• 𝑅𝑝 ≥ 𝑉𝑑𝑑/𝐼𝑚𝑎𝑥 (the pull-up resistor must limit current to
no more than 3.3 mA independent of the bus supply voltage,
which can be either 3.3 V or 5.0 V):
⇒ If 𝑉𝑑𝑑 = 3.3 V, 𝑅𝑝 ≥ 1.1 kΩ
⇒ If 𝑉𝑑𝑑 = 5.0 V, 𝑅𝑝 ≥ 1.67 kΩ

• 𝑇𝑟𝑖𝑠𝑒 = 0.85𝜏 = 0.85 · 𝑅𝑝 · 𝐶𝑏𝑢𝑠 ≤1,000 ns (the 30%-to-70%
rise-time for a bus with 𝐶𝑏𝑢𝑠 capacitance and 𝑅𝑝 pull-up
resistance, is further constrained as follows):
⇒ If 𝐶𝑏𝑢𝑠 = 50 pF, 𝑅𝑝 ≤ 23.5 kΩ
⇒ If 𝐶𝑏𝑢𝑠 = 400 pF, 𝑅𝑝 ≤ 2.9 kΩ

Note that I2C’s fast mode uses somewhat different values.

4.2 I2C Power Model
With the key bus parameters and their constraints presented, we
now discuss how these parameters contribute to I2C’s power dis-
sipation. Figure 2 shows the four stages that I2C’s SCL and SDA
transition through. The power dissipated in these states are as fol-
low, emphasizing the critical importance of minimizing 𝐶𝑏𝑢𝑠 and
maximizing 𝑅𝑝 and 𝑓𝑆𝐶𝐿 :

High (Idle): There is minimal power dissipation in this state
other than very small leakage currents.

High→Low: The energy stored in𝐶𝑏𝑢𝑠 , the bus capacitance rep-
resenting the total gate andwire load, is dissipated by the device that
drives the bus low. The energy lost as heat is 𝐸𝐻→𝐿 = 1

2𝐶𝑏𝑢𝑠𝑉
2
𝑑𝑑

for
a single SCL or SDA edge transition and 𝑃𝐻→𝐿 = 1

2𝐶𝑏𝑢𝑠𝑉
2
𝑑𝑑

𝑓𝑆𝐶𝐿 ,
when SCL is clocked at 𝑓𝑆𝐶𝐿 .

Low: Power is dissipated in the pull-up resistor and to a lesser
extent by the device driving the bus low. This loss is approximated
by 𝐸𝑙𝑜𝑤 = (𝛼𝑙𝑜𝑤/𝑓𝑆𝐶𝐿) · (𝑉 2

𝑑𝑑
/𝑅𝑝 ), where 𝛼𝑙𝑜𝑤 represents the

fraction of each clock cycle that the signal is driven low (a factor
since I2C’s SCL may be unbalanced).

Low→High: The bus capacitance, 𝐶𝑏𝑢𝑠 , is charged via the pull-
up resistor, 𝑅𝑝 , which dissipates the same energy per transition
independent of the value of 𝑅𝑝 . This is because the current in the
resistor is given by 𝐼 (𝑡) = 𝑉𝑑𝑑

𝑅𝑝
𝑒−𝑡/𝑅𝑝𝐶𝑏𝑢𝑠 . The energy lost as heat in

the pull-up resistor is given by 𝐸𝐿→𝐻 =
∫ ∞
0 𝐼2 (𝑡)𝑅𝑝𝑑𝑡 = 1

2𝐶𝑏𝑢𝑠𝑉
2
𝑑𝑑

,
which is equal to the energy stored in the capacitor, independent
of the actual value of 𝑅𝑝 .
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Figure 4: FSM for controller rise time adjustment. 𝑅 is the
pull-up resistance value, 𝑅𝑚𝑖𝑛 is the minimum available pull-up
resistance value, and [𝐺𝑚𝑖𝑛,𝐺𝑚𝑎𝑥 ] is the target rise time range.
This FSM allows the controller to regulate the rise time of the bus.

4.3 I4C Controller
The I4C controller measures the rise time of every single rising edge
of I2C’s SCL and SDA lines. For clarity, the following discussion
only covers SCL, but identical logic also tracks SDA. The measure-
ment chain begins with two comparators; one is configured to
trigger when𝑉𝑆𝐶𝐿 ≥ 0.3 ·𝑉𝑑𝑑 and the other when𝑉𝑆𝐶𝐿 ≥ 0.7 ·𝑉𝑑𝑑 .
The time difference between the low-to-high transitions of the two
comparators captures the SCL rise time. The FSM shown in Figure 3
takes these two comparator signals as asynchronous inputs and
counts the number of cycles of a fast clock that elapse between them
to measure the SCL rise time. The FSM also identifies abnormal be-
havior via two warning conditions: (i) a capacitance warning checks
for a sudden voltage drop during a rising edge which indicates bus
capacitance has exceeded the I2C limit and (ii) a resolution warning
which identifies rise time events in which where the rise time is
shorter than the minimum interval that the FSM can measure.

Conversely, the FSM fast clock’s minimum frequency is deter-
mined by the resolution needed to measure the SCL rise time. Recall
that we use rise time measurements to detect device arrivals and
departures, which we expect change the bus capacitance by at
least ±10 pF since I2C loads are restricted to 10 pF and PCB wire
traces are typically around 1 pF/cm. The fastest rise time occurs
when 𝑅𝑝 = 1.1 kΩ and 𝐶𝑏𝑢𝑠 = 10 pF, yielding 𝜏 = 11 ns and
𝑇𝑟𝑖𝑠𝑒 = 0.85𝜏 = 9.3 ns, implying 𝑓𝐶𝐿𝐾 ≥ 107 MHz. Because rise
time is linear in𝐶𝑏𝑢𝑠 , the same 𝑓𝐶𝐿𝐾 is needed to resolve rise times
when 𝐶𝑏𝑢𝑠 increases from 390 pF to 400 pF, assuming 𝑅𝑝 is fixed.

However, 𝑅𝑝 is not fixed. Rather, it is adjustable under soft-
ware control for minimizing power, subject to the I2C protocol
constraints, as shown in Figure 4. This FSM selects the best pull-up
resistor from a set of choices that fall within an acceptable range
of values. When greater resolution is needed than 𝑓𝐶𝐿𝐾 provides,
increasing 𝑅𝑝 within this acceptable range provides proportionately
greater resolution without requiring higher clock rates.

Beyond the basic rise time measurement and modulation func-
tions, the controller also takes actions depending on the particular
pattern of changes in the rising edges. For example, when a new
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Figure 5: FSM for target device rise time modulation.When
the target detects a start condition, it modulates rising SCL edges
based on the shifted out bit from the shift register. This FSM shows
that a target can toggle the rise times of specific SCL edges.

device joins or leaves the bus, controller software (not shown here)
detects a change in the rise time of the first rising edge of SCL across
consecutive transactions. This discovery then triggers address res-
olution, service discovery, and resource binding, to identify the
device that may have just joined or left. Or, if the controller detects
a change in the rise time of any of the 2nd through 𝑁 th rising edges
in an I2C transaction (for 𝑁 ≤ 10), then one (or more) interrupt(s)
are pending, which triggers targeted polling of the device(s).

In some networks, there may be more than one controller, lead-
ing to conflicting rise time modulation actions. To prevent such
conflicts, we can use the ARP protocol to assign unique local ad-
dresses, and designate a special address which is assigned to the
controller responsible for the modulation.

We conclude our discussion of the I4C controller design with
a note about estimating the actual bus capacitance in the pres-
ence of pull-up resistors outside of I4C’s control. First, observe
that if the only pull-up is the one under the control of the FSM
in Figure 4, then determining 𝐶𝑏𝑢𝑠 is straightforward. Since rise-
time (30%-to-70%) is 0.85𝜏 , and 𝜏 = 𝑅𝑝𝐶𝑏𝑢𝑠 = 𝑇𝑟𝑖𝑠𝑒/0.85, we see
𝐶𝑏𝑢𝑠 = 1.18 · 𝑇𝑟𝑖𝑠𝑒/𝑅𝑝 , allowing us to ensure both 𝑅𝑝 and 𝐶𝑏𝑢𝑠

remain within the I2C spec. The challenge arises if there are other
pull-ups on the bus, since 𝑇𝑟𝑖𝑠𝑒 = 0.85 · (𝑅𝑢𝑛𝑘𝑛𝑜𝑤𝑛 | |𝑅𝑝 ) ·𝐶𝑏𝑢𝑠 . In
that case, we have two unknowns and only one equation, which
makes ensuring 𝑅𝑢𝑛𝑘𝑛𝑜𝑤𝑛 | |𝑅𝑝 ≥ 𝑉𝑑𝑑/𝐼𝑚𝑎𝑥 difficult. We address
this issue by selecting two different known values of 𝑅𝑝 , termed
𝑅1 and 𝑅2, and generating two equations with two unknowns:
𝜏1 = (𝑅𝑢𝑛𝑘𝑛𝑜𝑤𝑛 + 𝑅1)𝐶𝑏𝑢𝑠 and 𝜏2 = (𝑅𝑢𝑛𝑘𝑛𝑜𝑤𝑛 + 𝑅2)𝐶𝑏𝑢𝑠 , which
can yield both 𝑅𝑢𝑛𝑘𝑛𝑜𝑤𝑛 and 𝐶𝑏𝑢𝑠 , letting I4C ensure protocol in-
variants in presence of unknown or varying pull-up resistances.

4.4 I4C Target
An I4C target is comparatively much simpler than the I4C con-
troller and offers only two key functions—interrupt signaling and
full-duplex data transmission. These functions are built on the abil-
ity to modulate any particular rising edge(s) of the SCL line by
adding and removing a controlled impedance from the line. An I4C
target modulates any one of the 2nd through 𝑁 th rising edges of
the SCL line using the FSM shown in Figure 5 (𝑁 = 10 for 7-bit
I2C addresses). The index of the rising edge that a target should
modulate is chosen so index = I2C_ADDR mod (𝑁 − 1) + 1. Adding
a shift register to this FSM allows multiple SCL clock edges to be
modulated, enabling full-duplex communications.
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Figure 6: I4C testbed. The testbed includes: (i) an I4C controller with switchable resistance modulation arrays and a comparator rise time
measurement circuit, (ii) a base with an I2C backplane and several I2C target sockets, and an I4C target with a rise time modulation circuit.

5 Implementation
In this section, we present the details of our I4C prototype imple-
mentation, which is built around the Raspberry Pi Pico (RP2040)
and three custom printed circuit boards (PCBs), as Figure 6 shows.

5.1 I4C Controller
The I4C controller implements rise time measurement, pull-up
resistor control, interrupt processing, and device/service discovery.

5.1.1 Rise TimeMeasurement. I2C rise time is defined as the elapsed
time between the SCL (or SDA) voltage crossing a low and high
threshold (30% and 70%, respectively, of 𝑉𝑑𝑑 ). Each threshold is
generated by a resistive voltage divider connected to𝑉𝑑𝑑 and𝐺𝑁𝐷 .
TLV3202 comparators compare the SCL voltage to the thresholds,
and the comparator outputs are wired to GPIO pins on the RP2040
controller. The controller determines the rise time by measuring
the elapsed time between the low-to-high transitions of the two
comparators, as Figure 7 shows.

The RP2040’s Programmable IO (PIO) module executes the rise
time measurement program in about 30 lines of PIO assembly, im-
plementing the FSM shown in Figure 3. Each assembly instruction
executes in a single RP2040 clock cycle. The program stays in the
reset state until 𝑉𝑆𝐶𝐿 or 𝑉𝑆𝐷𝐴 becomes low. Upon a low threshold,
the voltage comparator output changes, and the program transi-
tions to the rise state and starts counting the number of clock cycles
elapsed until the high threshold voltage is detected. The rise time is
the clock cycle count multiplied by the RP2040 clock period (8 ns).

The PIO memory and FIFO buffer to the main program are lim-
ited to 2 and 8 bytes, respectively, while I2C rise time events occur
at 100 kHz. To strike a balance between interrupting the main pro-
gram too frequently and overflowing buffers, our implementation
generates an interrupt when the FIFO is half full, which triggers
the main program to drain the FIFO and clear the interrupt.

5.1.2 Pull-Up Resistor Control. The pull-up resistor control keeps
the rise time below the maximum, and recovers the bus in case of
a stuck-low state, by setting a low resistance. To implement this,
we use a selectable array of pull-up resistor paths. We could also
use a digital potentiometer as an alternative implementation. The
pull-up resistor control circuit is shown in Figure 7. Resistor step
values were carefully chosen to give an appropriate rise time range

of [𝑚𝑎𝑥𝑟𝑡 × 𝑎,𝑚𝑎𝑥𝑟𝑡 ] where a is a design parameter (𝑎 < 1) and
𝑚𝑎𝑥𝑟𝑡 is the maximum rise time (set to 1,000 ns according to the
I2C specification). When 𝑎 is determined, the circuit resistors can
be picked to provide logarithmic steps, where 𝑅𝑖/𝑅𝑖+1 = 𝑎1/(𝑛−1)

with 𝑛 being the number of resistance levels available. The resistor
path is chosen using a dual 4-channel analog multiplexer, Analog
Devices DG409 [2], which is manipulated by the controller’s two
GPIO pins. We control the multiplexer by implementing the FSM
shown in Figure 4 in C code on the RP2040. The FSM switches
between the four resistance levels to control the rise time.

5.1.3 Interrupt Processing. The I4C controller is also responsible
for receiving and processing interrupts from targets. The first 10
SCL rising edges are reserved for targets to signal pending inter-
rupts in our I4C implementation because I2C transactions must
have at least ten rising edges. The first SCL rise time is reserved
for calibration—to provide a reference rise time—and it is never
modulated by any target. In our current implementation, if a bus
has more than 9 devices, multiple devices will be assigned to a
single interrupt index, so the controller may need to poll all devices
whose addresses would map to that index. The controller subtracts
each rise time from the first reference rise time to test whether any
targets have pending interrupts, which is currently implemented
in C code on the RP2040. The identity of interrupting target, in
I4C, is discovered immediately by the controller upon receipt of
the modulated SCL edge (as long as the number of targets is ≤ 9).

5.1.4 Device and Service Discovery. The controller in I4C can de-
tect device churn when the rise time at an unmodulated SCL index
changes beyond an empirically determined threshold. The change
triggers ARP and subsequent service discoveries. In I4C ARP, de-
vices initially have a default I4C address of 0x55 and respond with
an unique per-device ID. The ARP procedure starts with the con-
troller broadcasting a discovery command to 0x55. If this command
succeeds, the controller reads the unique ID at 0x55, takes advan-
tage of I2C bus arbitration to isolate one responding device, and
then assigns the isolated device a new address using its unique ID.
This process repeats until no device responds to the default address.
Once addresses are assigned by the controller, service discovery
starts. The target device resources are tracked in a “service registry”
which is a table data structure that tracks the target registration,
type, address, and custom field which can be used for priority.
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Figure 7: Rise time measurement circuit. The controller uses
two comparators to determine when the bus lines pass the threshold
voltages, enabling the controller to track the I4C bus rise time.

5.2 Target
The target device implementation includes a modulation circuit
and modulation logic.

5.2.1 Rise Time Modulation. There are two aspects to rise time
modulation on the target—the mechanics of modulating a single
bit and the process of modulating the correct set of bits, which we
discuss in this section.

Modulation mechanism. A target modulates the rise time of a
bit by turning on a switch to connect a pull-up resistor in parallel
with the existing bus pull-up resistor(s). This is implemented with a
simple modulation circuit, shown in Figure 8b. The circuit consists
of a PMOS transistor connected to𝑉𝑑𝑑 that is used to gate a pull-up
resistor on SCL. The PMOS itself is controlled by a modulation
signal, which is triggered under either target software control or
separately with discrete logic.

The target controls the modulation signal using the FSM shown
in Figure 5. We implement this FSM on the RP2040 device in ap-
proximately 30 lines of PIO assembly. After an I2C start condition
is detected, the PIO shift register, preloaded by the main program,
shifts out a bit at every SCL falling edge. If the bit is ‘1’, the RP2040
target device pulls the modulation GPIO pin low, connecting the
pull-up resistors in parallel to modulate the incoming rising edge.
The modulation process is complete when the I2C stop condition
is detected. Both interrupt and full-duplex communication can be
simultaneously implemented with this modulation scheme.

Clock edge modulation assignment. To prevent multiple tar-
gets from concurrently modulating the same clock edges, each
device is assigned its own edge for interrupt signaling, while full-
duplex communication modulates clock edges distinct from those
reserved for interrupts. Additionally, a target can initiate a full-
duplex message only when it has been specifically addressed. In
our implementation, to initiate full-duplex communications, the
controller initiates a write operation with full-duplex command
code followed by a read, a common pattern in many I2C communi-
cations. Upon receiving the command code, the target prepares the
data for transmission to the controller by loading it into the PIO
shift register, thereby initiating full-duplex communication.
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Figure 8: Rise time modulation circuits. Circuit (a) generates a
control signal for modulation, replicating the PIO-based interrupt-
ing logic, and (b) uses a PMOS transistor to modulate rise time on
SCL edges, based on the control signal. Circuit (a) can act as an
alternative to a PIO-based approach, allowing the target device to
modulate the rise time precisely on SCL edges.

Power optimization and modulation alternatives. Unlike
PIO-based rise time sensing, which needs a high-frequency clock for
resolution, the PIO-based rise time modulation does not inherently
require one. A potential power optimization could be scaling down
the clock frequency. We developed a circuit-based method, as an
alternative to the PIO-based implementation, to generate the control
signal for interrupt rise time modulation, as shown in Figure 8a.
The left part of the circuit detects active I2C communication using
a Schmitt-triggered D flip-flop (74HCS74 [9]) clocked by SDA, with
the D input and the negated asynchronous reset connected to SCL.
As per I2C specifications, SCL remains low at SDA edges except at
the stop condition, resulting in Q’, the indicator of communication
status, set to high at the first SDA rising edge, remaining high
throughout the transaction, and being set back to low during the
I2C stop condition.

The right part of the circuit tracks the number of SCL falling
edges elapsed during the current I2C bus transaction (i.e. since the
most recent I2C start condition) using a 4-bit counter (74HC163) [1].
The flip-flop’s Q’ output is connected to the negated synchronous
LOAD pin of the counter. Upon detecting a stop condition, the
counter resets and preloads 𝑋 − 1 with all bits inverted, where 𝑋
is the index of the rising edge to be modulated (counting from 1).
During the next transaction, when the 𝑋 th SCL falling edge occurs,
the counter overflows and triggers the modulation control signal
to modulate the following 𝑋 th rising edge. This circuit, however,
does not support I4C’s full-duplex communication.

Table 1: I4C custom commands. Our implementation of I4C
uses the following custom commands to facilitate device discovery,
interrupt handling, and data processes.

Command Description
COMMAND_DISCOVER Request target
COMMAND_ASSIGN Assign address
COMMAND_GET_INTERRUPT Get interrupt status
COMMAND_CLEAR_INTERRUPT Clear interrupt status
COMMAND_READ_SENSOR Read sensor data
COMMAND_SEND_RADIO Send radio data
COMMAND_STORE_DATA Request save data
COMMAND_REQUEST_DEVICE_TYPE Request device type
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Figure 9: I4C program measured SCL rise times compared
with SCL rise times measured with a logic analyzer for
ground truth. The specifications maximum rise time is notated
at 1000 ns. As the number of devices increase, we see an increase
in the measured rise times, showing that we are able to accurately
measure rise time using I4C.

5.2.2 Communication Scheme with a Controller. Our I4C imple-
mentation includes a set of application level commands that are
used to interact with device discovery, address assignment, data
processing, and interrupt operations. The process begins when a
controller writes commands to a target device. After receiving a
command, a target will wait until the next I2C stop condition oc-
curs before it processes the command. Table 1 lists the set of I4C
commands. When a rise time change is detected, the discovery, ad-
dress assignment, and device type request commands are invoked
to identify new targets and assign them addresses. We also imple-
ment commands for receiving and clearing interrupt information.
For our application demo, we implement commands to read sensor
data, store data, and send data over the radio. These commands
demonstrate the basic I4C primitives, but additional commands
could be added to satisfy a variety of other application needs.

5.3 System Integration
Controller and target RP2040 devices, programmed for I4C commu-
nication, can co-exist with our custom I4C devices to form a full
system. Testbed implementation includes comparators and switch-
able pull-up resistor arrays on the I4C controller PCB, along with a
resistor modulation circuit on the I4C target PCB. The full hardware
testbed is shown in Figure 6.

Bus recovery is an important I4C feature for handling errors or
misconfiguration. I4C detects abnormal behavior, such as a sudden
voltage spike or drop on the line, and can issue a retransmit. I4C
can also detect if the system is operating outside of the I2C rise
time specification due to extra bus capacitance or misconfigured
resistors. A common failure mode in I2C is that the bus becomes
stuck low, which our implementation automatically detects using
a timeout. If a stuck-bus is detected, I4C attempts to recover the
bus by setting the lowest possible resistance to pull-up the bus and
then retransmitting any failed transactions.

6 Evaluation
In this section, we use our prototype implementation to evaluate
our claims and characterize the performance of the I4C design.

Figure 10: Program measured I4C SCL rise times. The I4C
program keeps the rise time below, or close to the I2C specification
of 1,000 ns. When the number of devices reaches 2 and 11 respec-
tively, the program picks a lower resistor to lower the rise time.
This shows I4C can dynamically adjust the rise time as the number
of devices changes.

6.1 Measurement Accuracy
We validate that our system is able to accurately measure rise
times across a range of different conditions. We measured with
three different pull-up resistance values on our testbed. For each
resistance, we varied the number of targets on the bus from one to
seven devices, with one controller device. We used our I4C system
to measure the rise time, and also captured the analog waveforms
using a Saleae logic analyzer with a 50 MS/s sampling rate.

Our I4C implementation uses comparators to trigger the high and
low voltage thresholds. Our low voltage threshold was 0.97 V and
our high voltage threshold was 2.25 V, approximating the 30% to 70%
rise time for a 𝑉𝑑𝑑 of 3.3 V. We then recorded over 1,000 SCL rising
events using a logic analyzer. By post-processing the waveform and
measuring the time between the signals crossing the low and high
thresholds, we established a ground truth for the signal rise time
behavior. In parallel, our I4C programmeasures the rise time, with a
resolution of 40 ns. Figure 9 compares the I4C program’s measured
rise time with the post-processed ground truth data. We measured
rise times both below and above the maximum rise time specified in
the I2C standard and found that the I4C program accurately tracked
the rise time trend across the entire range of test points that we
evaluated.

6.2 Dynamism in Action
To test rise time adjustment, we configured our bus with 4 different
resistor choices and let the I4C controller pick the appropriate
resistor to keep the rise time close to the maximum allowed by the
I2C standard. We set the I4C program to keep the rise time below
the specified maximum of 1,000 ns, while varying the number of
devices on the bus from 1 to 17. When the capacitance increases,
and therefore the rise time also increases, the program dynamically
switches to a lower resistance value to keep the rise time within
the specification. Figure 10 shows the rise time, measured using
30%-to-70% rise time on the Saleae logic analyzer, varying as more
devices are added to the bus. When a 2nd device is added to the bus,
the rise time drops, which corresponds to a change from 10 kΩ to
4.7 kΩ. When an 11th device is added to the bus, the rise time again
becomes too high, and the I4C controller automatically readjusts
the bus pull-up resistance.
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Figure 11: Power dissipation I2C vs I4C. Power dissipation is
higher with smaller resistors because there is more current flowing
through the resistors when the bus is driven low. This shows that
I4C is able to dynamically utilize a larger resistor, saving power.

6.3 Power Savings
Another benefit of dynamic resistor adjustment is that it offers
a chance to tune the power draw to better match the number of
devices on the bus. We tested the power draw of the controller,
with different pull-up resistor values, as the number of devices is
varied. We used a bread board set up with 17 target devices and a
Keithley 2401 source meter to measure the power draw of a single
controller and circuits, including the processor, pull-up resistors,
and rise time measurement circuit. To establish a representative I2C
baseline power draw, we removed the comparator circuit and I4C
code. Meanwhile, in the I4C system, there is a pull-up resistor in
series with an analogmultiplexer which increases the resistance and
decreases power dissipation. I4C switches resistor values to remain
at or below a 1,000 ns maximum rise time. Figure 11 compares the
I4C power to I2C power. I2C data points are only shown for the
number of devices which stay within the rise time specification
of 1,000 ns. In a dynamic bus designed for 17 targets, if only one
device is connected, I4C will use a 10 kΩ pull-up resistor while I2C
uses a 2.2 kΩ one, which results in a savings of 5.4±0.2 mW.

6.4 Interrupt Timing
Another benefit of I4C is that target devices can send interrupts by
varying the rise time. I2C itself lacks mechanisms to send interrupts
at all, requiring controllers to poll periodically to check for target
device requests. A common way to add interrupts to I2C is to add
a third line—a shared interrupt (INT)—between all devices on the
bus. When a target needs to signal an interrupt, it drives INT low.
Since all the target devices share a single line, the controller knows
a device is requesting interrupt service, but it does not know which
one. Therefore, the controller has to check each device’s interrupt
status, usually in a round robin fashion, until the interrupt line is
clear. For each device polled, the controller addresses the target,
sends a request payload, and receives response payload from the
target. This method both requires three signal lines, and interrupt
service latency scales with the number of devices on the bus. The
total communication overhead for polling a single device amounts
to 27 bits, consisting of three data frames of 9 bits each. In contrast,
the I4C protocol can identify interrupting devices immediately

Figure 12: Interrupt signaling via rise time modulation. On
the next I2C transaction, the target modulates the second rising
edge of SCL to indicate an interrupt. The timeline shows that target
devices are able to modulate the SCL rise time precisely and send
interrupt signals to the controller.

Figure 13: Digital waveform showing a “radio” device dynam-
ically added to the bus. The I4C program detects a change in rise
time, updates the device table, and then uses the preferred radio
target instead of the “storage” target. This illustrates I4C’s ability
to dynamically detect and discover new devices using the rise time.

after decoding the modulated clock edges in the first data frame.
For a scenario of 9 devices, I4C can achieve a 13.5× improvement
in interrupt time compared to polling in the best case, and 27×
improvement compared to the worst case, when the target is the
last device accessed. Figure 12 captures a trace of an I4C target
device sending an interrupt by modulating the rise time of SCL.

6.5 Putting it All Together
Motivated by one of our opening examples—daisy-chaining energy-
harvesting energy meters in a circuit breaker panel and connecting
them to a data logger or radio [22]—we now show how such an
application with extreme dynamism could be supported by our I4C
system. To test overall dynamism, we configure three Raspberry Pi
Pico devices: a sensor, storage, and radio device. Our I4C program
prioritizes the radio over local storage for data transmission. The
sensor periodically sends in-band interrupts to the controller. At
the beginning, the controller writes sensor data to the wired storage
device. Afterward, we dynamically plug in a radio device, causing a
change in rise time which is detected by I4C. I4C then runs ARP and
service discovery and updates the device table. Once the device table
is updated, our I4C program switches to using the radio instead of
the storage device. This sequence is shown in Figure 13.
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Table 2: I2C feature enhancements with I4C integration.We compare different combinations of I2C and I4C controllers and targets
across key features: pull-up resistance adjustment, dynamism detection, dynamic device service management (e.g. ARP, service discovery,
and resource binding), bus load monitoring, in-band interrupt, worst-case interrupt delay (9-device configuration), interrupt source ID,
in-band full-duplex communication, and target-to-controller full-duplex initialization delay. “1:1” and “1:N” indicate the ratio of interrupt
lines to total interrupt-capable devices (N). Parameter definitions: 𝑇𝑡𝑥_𝑔𝑎𝑝 (time until next I2C transaction), 𝑇𝑏𝑦𝑡𝑒 (duration of an 8-bit byte
transaction), and 𝑇𝑝𝑜𝑙𝑙_𝑔𝑎𝑝 (time until next polling transaction, ≥ 𝑇𝑡𝑥_𝑔𝑎𝑝 ). Additional I2C targets on the I4C bus operate as I2C baseline
devices, without affecting I4C target device functionalities.

Controller Target Pull-Up
Res. Adj.

Dynamism
Detection

Dynamic
Svc. Mgmt.

Bus Load
Monitor

In-Band
INT

WC INT
Delay

INT Src ID In-Band
FD Comm

Target FD
Init Delay

I4C
Controller

I4C + 1:1
INT Ln

✓ ✓ ✓ ✓ ✓ 0 ✓ ✓ 0

I4C + 1:N
INT Ln

✓ ✓ ✓ ✓ ✓ 𝑇𝑏𝑦𝑡𝑒 ✓ ✓ 0

I4C ✓ ✓ ✓ ✓ ✓ 𝑇𝑡𝑥_𝑔𝑎𝑝 +
𝑇𝑏𝑦𝑡𝑒

✓ ✓ 𝑇𝑡𝑥_𝑔𝑎𝑝

I2C + 1:1
INT Ln

✓ ✓ -∗ ✓ × 0 ✓ ×

I2C + 1:N
INT Ln

✓ ✓ -∗ ✓ × 27 ∗𝑇𝑏𝑦𝑡𝑒 × ×

I2C ✓ ✓ -∗ ✓ × 𝑇𝑝𝑜𝑙𝑙_𝑔𝑎𝑝+
27 ∗𝑇𝑏𝑦𝑡𝑒

× ×

I2C Baseline × × -∗ × × 𝑇𝑝𝑜𝑙𝑙_𝑔𝑎𝑝+
27 ∗𝑇𝑏𝑦𝑡𝑒

× ×

∗ Depends on the type of I2C targets used (e.g. whether they support address assignment).

7 Discussion
In this section, we discuss I2C/I4C coexistence, I4C power overhead
and potential mitigations, and other limitations and future work.

7.1 Legacy Device Support
I4C can accommodate both I2C devices and I4C-capable devices.
While I4C targets benefit fully from I4C features, such as faster
interrupts and dynamic addressing, legacy I2C device performance
is still enhanced by I4C. Non-programmable legacy devices cannot
generate interrupts via resistor modulation, but they can still be
detected by an I4C controller. Programmable legacy devices can
only do address assignment if their software supports ARP, but they
can still be augmented to use an INT pin or GPIO to modulate rise
time for in-band interrupts or full-duplex communication. Despite
the limitations of legacy I2C devices, the core dynamism features of
I4C are still retained, even in environments with only legacy targets.
Table 2 presents a comprehensive overview of I4C features across
different combinations of I2C and I4C controllers and targets.

7.2 Power Overhead
Our PIO-based implementation of I4C requires the use of a high
frequency clock, resulting in power-inefficiencies. To address this
challenge, we explore two low-power oriented design paths: lever-
aging more efficient high frequency clocks, and using a circuit
design that eliminates the need for a high frequency clock.

7.2.1 High-Frequency Low-Power Clocks. Recent advances in oscil-
lator design have enabled high-frequency clocks to operate with
minimal power draw. For instance, Naing et al. developed 61 MHz
oscillator that draws as little as 43 µW [36]. Wu et al. introduced a

204 MHz oscillator with a power draw of 47 µW [44], while Nelson
et al. developed a 2 GHz oscillator that draws 22 µW [37]. These ad-
vances show the potential of integrating low-power, high-frequency
clocks with off-the-shelf MCUs to perform rise time measurement.

7.2.2 Alternative Circuit Designs. For controllers not equipped
with high-frequency clocks, a circuit-based solution could be used
as an alternative to the PIO program. We introduce both an ADC-
based concept, shown in Figure 14, and a comparator-based concept,
shown in Figure 15, that could perform rise time measurement.

In the ADC-based circuit, rise time is converted to an analog
voltage signal using a ramp generator. In the ramp generator, a
switch connects a current source to a capacitor which is controlled
by the output of the low and high threshold voltage comparators
on SCL. The capacitor voltage reflects the rise time measurement
and is the output of the ramp generator, which is passed to an ADC
and read using the SPI input of a microcontroller.

The comparator-based circuit uses a similar ramp generator
approach, but also includes three comparator circuits, with three
references voltages𝑉𝑡ℎ1,𝑉𝑡ℎ2,𝑉𝑡ℎ3. These threshold voltages corre-
spond to the minimum acceptable rise time, maximum acceptable
rise time, and rise time threshold for modulation detection, respec-
tively. The minimum and maximum rise time comparator (Comp 1
and Comp 2) outputs are connected to a flip-flop triggered at the
first rising clock event of an I2C transaction, ensuring that only
the unmodulated first rise time is measured and fed to the micro-
controller. The third comparator circuit (Comp 3) compares 𝑉𝑡ℎ3
with bus voltage to detect the rise-time modulation imposed by
any device. It stores the modulation information in a shift register,
which will be read by the microcontroller.
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Figure 14: ADC-based rise time measurement circuit. The
digitalized rise time is captured and transferred to the microcon-
troller via a high-speed communication protocol such as SPI. This
circuit could act as a low-power solution for rise time measurement,
without relying on low-power high-frequency clocks.

The controller uses a multiplexer to set the shift register’s mode
(read/write) and corresponding clock source—SCL for writing and
controller clock for reading. However, because there is no mecha-
nism for the shift register to signal whether it is full, the controller
will not be able to read until completing the transaction, limiting
modulation status detection to the last 8 clock edges. To address this
challenge, a modification to the I4C protocol is needed—disabling
full-duplex communication and requiring interrupting devices to
modulate the corresponding edge once every byte instead of every
transaction. Despite sacrificing the full-duplex interrupt feature,
the comparator-based approach can still directly operate with GPIO
pins on a microcontroller.

We estimate the power draw of both the ADC- and comparator-
based approach using datasheet specifications of potential compo-
nents [3–6, 9, 12]. Both approaches are estimated to draw roughly
400 𝜇W. This is approximately two orders of magnitude lower than
the power draw of the RP2040 when used for rise time sensing and
one order of magnitude lower than the power savings achieved
through pull-up resistance adjustments presented in the evaluation.
We expect that the power draw would be even lower if the circuits
were integrated on a chip.

7.3 Limitations and Future Work
I4C and our implementation of it have a number of limitations as
discussed in this section. One major one is the small scale of our
testbed, which limits the number of devices we could test.

Implementation Anomalies. The RP2040 stretches the fre-
quency of the bus as rise time increases, which could affect power
draw and bandwidth with larger rise times. The rise time noise did
not pose a problem in our tests, but with other resistor values (e.g.
larger modulation resistor) and in larger systems, rise time noise
could vary.

Scalability. We chose a relatively small modulation resistor to
ensure that the SCL rise time was sufficiently modulated, but there
is a trade-off with the number of devices which can be assigned to
modulate the edge. Many devices toggling small resistors in parallel
may prevent other devices from pulling the bus low, given I2C’s
3 mA current sink limit, which could break communications.

Cost of Discretes. I4C requires modifications to the I2C system
in terms of additional circuitry, which adds cost and space to the
system, although the number of discrete components is relatively
small. However, if cost and space were to be sufficient concerns,
this functionality could be incorporated into integrated circuits.

EN OUTRAMP
GENERATOR

+

−

Comp 3
𝑉𝑇 3

Q

D Q
8-bit
shift

register

𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒 > 𝑇3

𝑀𝑈𝑋

𝐼𝑆_𝑅𝐼𝑆𝐼𝑁𝐺
𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝐶𝑙𝑜𝑐𝑘

𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑙𝑒𝑟 𝑆𝑒𝑙𝑒𝑐𝑡

+

−

Comp 2
𝑉𝑇 2

Q

D Q

Flip-Flop

𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒 > 𝑇2

+

−

Comp 1
𝑉𝑇 1

Q

D Q

Flip-Flop

𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒 > 𝑇1

Q

D Q
SET

RST

Flip-Flop
𝐶𝑂𝑀𝑃_𝐿𝑂𝑊

𝐶𝑂𝑀𝑃_𝐻𝐼𝐺𝐻

𝐼𝑆_𝑅𝐼𝑆𝐼𝑁𝐺

NAND
1𝑠𝑡 𝑅𝐼𝑆𝐼𝑁𝐺

𝑅𝑓 𝑖𝑙𝑡𝑒𝑟

𝐼𝑁_𝐶𝑂𝑀

𝐶𝑓 𝑖𝑙𝑡𝑒𝑟

Figure 15: Comparator-based rise time measurement circuit.
Three comparators capture bus device dynamism and clock edge
modulation status, which is parsed by the microcontroller. This
circuit could act as a low-power solution for rise time measurement,
without relying on low-power high-frequency clocks or SPI.

Standard Speed. In this paper, we only demonstrate that I4C
works up to the standard speed of an I2C bus (100 kHz). In the
future, we could use the rise time values from multiple resistors
to gain more information about the bus capacitance, or measure
internal pull-up devices on target devices.

Fault Tolerance.When many devices are in the same system,
we assign unique addresses, but this does not prevent misconfigured
or malicious devices from conflicting; we could incorporate an abort
process in the case of conflicts, or implement orthogonal codes to
handle multiple simultaneous transmissions.

8 Conclusion
We foresee a future in which I2C is enhanced to support dynamic
systems. With this in mind, we design and implement I4C, which
leverages rise time measurement, automatic pull-up adjustment,
and rise time modulation to enable dynamism and power efficiency
in I2C based systems. Building on rise time measurement and mod-
ulation, we also demonstrate automatic device detection, address
assignment, and service discovery. With a small amount of logic on
the target device, I4C can reduce interrupt latency by roughly 30×
vs I2C. And with its I2C-compatibility, anyone can compare I4C
against their legacy I2C system, and even get SPI-like full-duplex
with little additional cost and full invisibility to I2C operations!
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