
33July 2015 | Volume 19, Issue 3 getMobile

[mAkers]

eMergence of the
iot gateWaY
platforM

prabal dutta University of Michigan iqbal Mohomed Samsung Research America

connecting all the things
Many believe that the Internet of Th ings (IoT)
represents a future in which trillions of devices will
be connected to the Internet within the next decade
or two. Today’s IoT devices are connected wirelessly
in three main ways: (i) tethering to Bluetooth Smart
(or “BLE”) capable smart-phones via device-specifi c
apps, (ii) connecting through app-specifi c hardware
gateways over a variety of diff erent radio interfaces,
and (iii) using shared Wi-Fi access points located in
homes and offi ces. Smartphones, custom gateways,
and access points have thus far provided adequate
connectivity for current IoT devices, but the
limitations of this approach are becoming clear.

Today, users must install a new app on their
smartphones for each new device with which they
intend to interact. Th is is akin to requiring one to
install a new web browser for each distinct website
that one visits. While this may have been tolerable
when the web was in its infancy, and the number
of websites could be counted on one hand, the
approach would be considered seriously broken
as the number of sites increased even slightly. Yet,

users are willing to tolerate exactly this situation
today with IoT devices. Th e diff erence is that the
notion of casually browsing the physical world
is an idea whose time has not yet come but is
technologically ripe.

Many IoT devices are bundled with their own
proprietary gateway that connects the device to the
Internet. Th e Kevo door lock from Kwikset comes
with its own gateway. So does the August lock, Hue
lights, Sonos sound system, and a myriad of other
IoT devices. What’s unfolding today is no diff erent
than requiring a unique access point for each website
one visits. Once again, while this approach may be
tolerable with just a few devices, it is untenable with
the expected proliferation of IoT devices.

Ultimately, phones and gateways provide three
key functions for an IoT device: (i) a user interface,
(ii) network access, and (iii) in-network processing.
Currently, these functions are packaged within
mobile apps and custom gateways but there is no
reason that they cannot be provided generically to
all applications in way that requires neither custom
smartphone apps nor proprietary gateways. Indeed, Ill

us
tr

at
io

n,
 is

to
ck

ph
ot

o.
co

m

getMobile July 2015 | Volume 19, Issue 334

[mAkers]

such an approach would allow a much more
fl uid interaction of phones and devices, by
obviating the need to download myriad
apps, and also keep the shoe closet from
becoming a tangled mess more reminiscent
of the wiring closet.

Wi-Fi connectivity is one way to avoid
these problems, but it too is not enough.
Many imagine a world in which their IoT
devices are marshaled into an application
that spans several of them and executes
an application across the device ensemble.
Unfortunately, deploying such applications
today requires low-level programming with
soft ware like Th e Th ing System [1] or inter-
cloud interactions like the Kevo-triggered
Nest control mediated by UniKey’s cloud
service. Th e former is diffi cult to use and
latter fails whenever Internet connectivity is
lost (and leaks private data to the cloud).

Instead of this patchwork quilt of largely
incompatible smartphone apps, stove-piped
proprietary gateways, and unnecessary
cloud mediation, imagine if there were a
principled, open standards-based approach
to connecting all the things, both to the
Internet, and to each other. Indeed, such
things are now on the horizon.

Mobile gateWaYs
Today’s IoT smartphone apps confl ate a user
interface, network access, and in-network
processing, integrating these functions
in a single, monolithic piece of soft ware.
Th is has two major drawbacks. First,
every new device requires an app install,
which makes casual interactions between
phones and devices impossible. Second,
limited operating system support for cross-
application communications makes device-
to-device data sharing and orchestration
diffi cult to achieve, even when mobile
apps have been pre-installed. Some recent
eff orts, including iBeacon, UriBeacon, and
EddyStone have sought to address aspects
of this problem.

Apple’s iBeacon allows BLE beacons
to advertise specially formed packets that
are received by nearby smartphones and,
potentially, trigger actions on the phones,
based on the data contained in the beacon.
An iBeacon payload contains three key
fi elds: a 16-byte UUID, a 2-byte Major
identifi er, and a 2-byte Minor identifi er.
In one usage model, a retailer generates its
own UUID, assigns a unique Major id to

each of its retail locations, and a Minor id
to each distinct area within a location. Th e
retailer would also release a smartphone
app that it would encourage its customers
to download. Th is app, run in background
mode, would register with the phone’s OS
to receive only those beacons that contain
a specifi c UUID. Th e result is a retailer’s
smart phone app will receive beacons that
identify the phone’s approximate location
within a store, enabling context-specifi c
advertising using lock screen notifi cations.

iBeacon technology is focused on
enabling retail micro-location services. Th e
iBeacon model assumes that customers
are willing to install retailer-specifi c apps

– one for each retail chain or independent
store – on their phones to receive the
beacons advertised by only that retailer.
Th ese restrictions make using iBeacon in
more general settings diffi cult. First, we
would expect many BLE devices off ered by
many diff erent vendors that all use diff erent
UUIDs to oft en be collocated in home
and offi ce settings for applications beyond
micro location services. Second, neither a
single UUID nor a single app for all such
devices would be viable, and indeed would
be antithetical to the iBeacon model.

Google’s UriBeacon enables BLE
beacons to advertise URNs or URLs that a
nearby smartphone can receive and follow

figure 1. The stove-piped nature of today’s IoT: Unlike mobile, tablet, and phone platforms
that all use the same network layer gateways, namely cellular and WiFi, today’s IoT devices
use a myriad diff erent application specifi c gateways that exist as device-specifi c smartphone
apps or custom gateway hardware. This situation detracts from the user experience, results in
unnecessary hardware deployment, hampers orchestration across multiple devices and creates
new failure modes.

35July 2015 | Volume 19, Issue 3 GetMobile

[mAkers]

to obtain additional data about the beacon
or, more likely, the environment in which
the beacon is situated. Used in this way,
an UriBeacon provides a cyber-physical
hyperlink, enabling broadcast beacons to
contain an index to information or services
relevant to the current physical context.

EddyStone, the successor to UriBeacon,
is used in Google’s Physical Web Project to
provide additional functionality supporting
ambient device interactions. In particular,
an EddyStone-enabled app or browser
can navigate to an advertised web page,
providing peripherals devices with rich
user interfaces served from the cloud, but
not interactively with the device itself. A
drawback to UriBeacon and EddyStone
technologies, ostensibly by design, is that
the beacons themselves transmit limited
data – typically the URL/URN – but do
not appear to support direct interactions
between the smartphone and beacon.
Rather, interactions are indirect, with the
smartphone interacting with the cloud, and
the beacon left to find an independent path
to upload its dynamic content to the cloud.

But this design point may not be needed.
Dynamic but encrypted content from the
beacon could be transferred through a
smartphone to the cloud (to be stored for
later use), and then unencrypted with a
cloud-provided key and rendered in the
smartphone once cloud delivery finishes.
This creates a symbiotic relationship: the
phone gets dynamic data and the beacon
gets an infrastructure-free cloud pathway.

This approach eliminates the need to
provision a data backhaul for dynamic
beacons – a costly and painful step in
deploying persistently connected end
devices today – and opens the door to
richer and more dynamic interactions.
Of course, in other cases, it may not be
necessary to encrypt data at all. For example,
smartphone-hosted apps could be allowed
direct interaction with a BLE beacon if the
phone can prove close proximity, perhaps
using an optical or radio-based challenge-
response handshake protocol. Such proximal
access would mirror the kind of access
patterns observed in physical environments
– proximity to a light switch, for example,
affords one the opportunity to manipulate
it while higher-order social mechanisms
exists to resolve contention from concurrent
accesses from multiple users.

The key to making such designs work
revolves around new networking services
and incentives. Smartphone-based
transport services with strongly verifiable
delivery semantics are needed. Moreover,
these services must be broadly available in
smartphones to be generally useful. And
there’s no reason to limit these services
to just smartphones – they may be just as
useful in immobile gateways.

iMMobile gateWaYs
The widespread adoption of BLE-enabled
smartphones has fueled the consumer IoT
space. The phone provided two key, but
missing, pieces – a “last inch” network and
a “remote” user interface – accessible easily
from a nearby purse or pocket. With phone
in hand, accessing embedded and wearable
IoT devices became possible for the masses
and ushered in consumer experimentation
with IoT by technology early adopters. But,
some of these IoT devices clearly had value
even in the absence of a nearby smartphone
to act as its display and network. A great
example is the BLE-enabled door lock that
opens when one comes home by commu-
nicating with one’s smartphone. But what if
one wanted to unlock the front door when
an out-of-town visitor called to say that she
had arrived early? Such scenarios require
persistent, rather than intermittent, access
to the wide area network, underscoring the
need for an immobile, always-on gateway.

Lacking a standardized, widely deployed
network for BLE and various flavors of
ZigBee and 6LoWPAN over 802.15.4, IoT
device vendors – from Phillips to Sonos
to Kevo – have resorted to shipping their
own gateway hardware, turning shoe
closets into wiring closets. Recognizing the
chaos of this approach, a number of recent
efforts have sought to converge on smaller,
more capable gateways. Home Depot &
Wink’s Hub, Lowe’s Iris Hub, Samsung’s
SmartThings Hub, and Staples Connect
are all examples of commercial gateways
that support a variety of radio protocols
including a mix of WiFi, ZigBee, Z-Wave,
and Lutron, among others. Unfortunately,
many of these systems are essentially closed,
to varying degrees, that at best provide a
small amount of programmatic access and
at worst constrain hackers, makers, and
users to the set of devices and software
hand-selected by the vendors.

In contrast to the standalone hub model,
there appear to be efforts underway to
integrate the hub/gateway functionality
into devices that offer some other utility.
For example, Nest acquired Revolv – a
startup company focused on building a
general-purpose, multi-protocol gateway
– with the likely goal of integrating the
basic gateway functionality into their own
products that have already been deployed
(e.g. Nest Thermostat), are now emerging
on the market (e.g. Google’s OnHub), or
will soon emerge, presumably with support
for emerging industry standards like those
being defined by the Thread Group and
Bluetooth SIG for standardizing IP-based
access to IoT devices.

Devices like Nest’s Learning Thermostat,
Fantem’s Oomi Cam and Amazon’s Echo
use a home’s existing Wi-Fi to gain network
access. What’s interesting about some of
these devices, like the Nest Thermostat or
the Oomi Cam, is they include additional
radios. Once a dual- or multi-radio device
connects to a home’s Wi-Fi network, it can
then be a gateway for other devices – like
BLE, 802.15.4, or Z-Wave devices that
cannot connect to a home’s Wi-Fi network
directly – with nothing more than a remote
software upgrade. With IPv6 adaptation
over 802.15.4 and, recently, over BLE
links using 6LoWPAN, it may soon be
possible for embedded devices to both gain
wide-area access for the kind of scenarios
envisioned above and for these devices
to interact with each other over the local
network, enabling the Intranet of Things.

The multi-radio IoT gateway/hub is a
new component whose role is being explored
and defined largely in the commercial sector
with limited opportunities for academic
tinkering on the platforms, protocols,
security services, orchestration model, or
user experience – at least for the products
currently available on the market. One
reason vendors seem to be “rolling their
own” is due to the lack of established
standards (and in some cases, too many
competing standards for the same thing).
Furthermore, security and privacy concerns
have caused local communication between
devices and gateways to often be encrypted,
making reverse engineering all the more
challenging. Unfortunately, history has
shown that this is likely to lead to poor
design choices, resulting in incomplete

GetMobile July 2015 | Volume 19, Issue 336

[mAkers]

protocols, security vulnerabilities, and user
frustration.

In contrast with vendors focused on
either stove-piped gateways that are a
component of a vertically integrated IoT
system, like Kevo’s BLE door locks and
gateway, or stand-alone/device-integrated
gateways, like Revolv/Nest Thermostat, that
may soon support “standardized” protocols
like Thread, others vendors including Intel
are offering reference gateway platforms that
can be customized by manufacturers. Intel’s
IoT gateway software stack includes support
for connectivity, manageability, security
and execution, making it easier for third
parties to build custom IoT gateways on the
base platform. However, most of the upper
layer protocols that could be used to enable
generic, multi-radio, multi-device gateways
are not provided.

enseMble orchestration
Although many IoT systems are standalone
today, much of the expected value of the
IoT depends on orchestrating a wide range
of different devices into new applications.
Unfortunately, orchestration today is a
tangle of competing architectures and
ecosystems. One model involves cloud-to-
cloud interactions between vendor clouds.
This is the approach taken today to link a
Nest Thermostat and a Kevo door lock, for
example. While it may be easier to structure
cloud-to-cloud interactions between a few
clouds and a small number of devices, the
approach scales poorly since the number
of possible interactions grows quadratically
with the number of devices. Reliability
also suffers due to the dependence on
multiple remote clouds over frequently
unreliable access networks, rather than local
computing resources.

Two other approaches may be better
suited to reliable, distributed orchestration.
The first of these involves standardizing
protocols within an ecosystem and
encouraging vendors to build compliant
devices, which of course limits the choices
to the supported devices in the ecosystem,
but ensures compatible devices. This is the
approach that AllJoyn, ZigBee, Insteon, and
EnOcean took. The second of these models
involves adapters to devices to support
programmatic or rules-driven orchestration,
which is the most flexible but requires
hardware dedicated to hosting the adapters

and applications, as many devices may be
incompatible with one another. This is the
approach that Revolv, SmartThings, and
The Thing System took, requiring their
own gateway or hub to provide the point of
orchestration.

Apple and Google are starting to build
out their own ecosystems targeted at the
home. Apple’s HomeKit is taking a two-
pronged approach to integrating devices:
certified devices that have been tested
(and licensed) and bridged devices that are
limited to non-actuation roles. In this way,
Apple retains considerable control over the
HomeKit ecosystem and the device vendors
who can participate in it. By most accounts
today, it appears that unincorporated
organizations or academic researchers will
face difficulty is fully participating in the
Apple HomeKit ecosystem. While it may be
difficult for researchers to integrate their own
devices into HomeKit, it appears likely that
the research community will be able to write
and deploy apps that target the HomeKit
model, where devices are given names and
natural language-based automation will
allow orchestration of these devices.

Google/Nest is taking a slightly more
open route, working on standardizing a
low-level set of networking protocols to
connect devices, using Thread, but planning
likely open but still proprietary protocols
(Weave from Nest) and programming
frameworks (Weave from Google) to offer
localized orchestration between devices
without the need for an Internet connection.
Nest is exposing a rather limited subset
of the functions of their devices to other
devices using Weave, but it remains to
be seen how much of the internal device
functionality will be eventually exposed to
third party devices and services. By keeping
some key functions closed, Nest ensures
that their devices cannot inadvertently or
intentionally misused to take control of a
home’s actuation points nor can the devices
be subsumed into third party ecosystems,
at least not as fully functioning devices.

app store for the gateWaY
As a growing number of devices, gateways,
and frameworks gain market traction,
it seems plausible that the gateway will
support various programmable functions.
One way of supporting such functionality
could be an app store for the gateway – a

sandboxed execution environment that
can download and host apps which use
data from sensors, control actuators, and
orchestrate a variety of interactions between
the devices, cloud, and users. This would
allow users to download and deploy a
variety of different applications.

One can imagine linking smartphones
and the immobile gateways into one “virtual”
gateway that spans multiple gateways and
executes applications across all of them. The
gateways would then serve the dual roles of
network layer gateways, providing network
access to the devices, and application layer
gateways, placing the application logic at the
nearest or most appropriate gateway.

closing thoughts
According to a recent Gartner report [3],
IoT is currently near the peak of inflated
expectations. To get from disillusionment to
enlightenment, many problems will need to
be solved. How do we secure these systems
and maintain privacy, while still allowing
openness and interoperability? There are
also many open questions with respect
to how consumers will actually interact
with IoT systems. Will we live in a world
where expert developers will create general-
purpose applications (the predominant
model for smartphone applications), will end
users become programmers or will the smart
home automatically learn user preferences
and desires. Recent advances in speech
recognition and natural language processing
present great opportunity for influencing
how IoT will develop and ultimately be
used at home and in the workplace. Will
traditional web-scale infrastructure be
sufficient at IoT scale, or will new a paradigm
shift occur in the backend to tackle efficient
data processing in aggregates, soft real-
time interactivity and user mobility? The
possibilities afforded by the IoT vision are
very exciting, and we are convinced that
this will be an important and growing area
of research in the years to come. n
Disclaimer: All views and opinions expressed
in this article are solely those of the authors
and not of their employers.

references
[1] http://thethingsystem.com/dev
[2] https://developer.apple.com/ibeacon/
[3] http://www.gartner.com/newsroom/id/3114217

