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Abstract
Remote sensor data can provide valuable insights. For example, data
about animal migration patterns can inform conservation efforts,
microclimate knowledge can be used to predict weather events, and
city usage data can be used to inform infrastructure planning. How-
ever, networking sensor systems is an engineering hurdle that must
be overcome to gain this crucial information at scale. We argue
that to efficiently retrieve data, we should treat data files in sensor
systems like the ducks in the classic story “Make Way for Duck-
lings” by Robert McCloskey. In the story, in order for the ducks to
reunite their family, they must cross a bustling downtown Boston.
Despite all the complexities of highways, bikes, and pedestrians, the
ducks safely make their journey thanks to people clearing a path.
In this paper, we argue that we must similarly “clear the path” for
data retrieval in sensor systems and that doing so requires hiding
the complexity of networking sensor platforms. Specifically, we
argue that a desirable developer experience would be to simply
write data to a local file on a sensor platform and have the files
“magically” appear in a cloud storage location. To make progress
towards this vision, we use the SD protocol as a narrow waist to
decouple the network stack from sensor platform development. We
call this system SDcloud and present a prototype SDcloud imple-
mentation as a proof-of-concept for networking sensors. We also
discuss additional benefits that focusing on the data files in sensor
networks can enable such as data processing applications.

CCS Concepts
• Computer systems organization→ Sensor networks; Real-
time system architecture; •Hardware→ Sensor devices and plat-
forms; Wireless integrated network sensors; Networking hard-
ware; External storage; • Networks → Sensor networks.
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Figure 1: Conventional sensor platforms are typically built
with a complex networking stack to reliably communicate
to the cloud, in addition to any local storage. Instead, we
propose decoupling sensor development from wireless net-
working by using the SD interface as a narrow waist. This
allows developers to collect data and send it to the cloud with-
out the need to explicitly invoke any networking functions,
enabling the simpler SDcloud sensor platform.

1 Introduction
Distributed sensor systems can enable environmental monitoring
and physical infrastructure monitoring at scale [5, 25, 32]. We have
seen tremendous progress towards this goal with innovations in
sensor capabilities and novel connectivity options [23, 26, 36]. De-
spite the promise of such sensor systems, building sensor platforms
remains a tedious undertaking for sensor system developers. By sen-
sor platform, we mean a combination of components (e.g., sensor,
microcontroller, local storage, battery, and radio) which is physi-
cally co-located and used for sensing; multiple sensor platforms
might all be part of a larger sensor system. We assume, in this paper,
that sensor platforms can communicate, either directly or through
a gateway, with the cloud to transfer data. Concrete examples of
such sensor platforms today include wild fire monitoring [18] and
smart city sensing [19].

Building sensor platforms is a challenging proposition for devel-
opers because it requires the integration of multiple components
for applications with varying data volume requirements, infrastruc-
ture availability, and power constraints. Due to the diverse solution
space for sensor platforms, sensors often require bespoke networks
custom built for a single sensor application. The engineering effort
to create custom solutions for each new sensor deployment can be
prohibitive, leading to a world full of network-isolated things which
require manual data retrieval.

We believe that the sensor platform development process would
benefit from a focus on the essential task of gathering and analyzing
the data, rather than network engineering. This leads us to the
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question, how can we easily retrieve data from distributed sensors?
We posit that from a developer’s perspective, an easier experience
would be to simply write data into a local file and have the file
“magically” appear in a storage location in the cloud. Our key insight
is that we can achieve this ideal if we move the network interface to
reside behind the local storage, taking advantage of the ubiquitous
SD standard. To do this, we propose SDcloud, shown in contrast
to a typical sensor platform stack in Fig. 1, which uses the SD
card standard as a common interface to network sensors. SDcloud
interacts with the sensor at the physical layer by plugging into
a standard microSD slot. The components inside of SDcloud, in
addition to providing local storage, can transparently copy data
over from the SD card to the cloud using an SDcloud network
stack. This approach offers a familiar abstraction which uses the SD
interface as a narrow waist between the sensor and the network.

We argue that the SD interface is a logical place to hide the
networking complexity due to SD’s mature standardization, and
relatively ubiquitous support and use on embedded platforms [10,
15, 19]. Centering the data, in the form of a familiar and well sup-
ported file system, makes integrating networking into new sensor
platforms easy. Developers can continue to write data to what ap-
pears to be a local SD card, with the same libraries that were used
without networking. This helps prevent reimplementation because
completely different sensor platforms could easily use the same net-
work stack without writing code for a different microcontroller and
application. Another benefit of this decoupling is ease of evolution
in the networking stack. For example, we envision trying different
technologies (e.g., LoRaWAN,WiFi, or even backscatter) could be as
simple as swapping out SDcloud modules which support different
networking stacks. The SD standard is also backwards compatible,
allowing network isolated sensors deployed in the field to benefit
from SDcloud by simply plugging in a module without reflashing
firmware. Finally, SDcloud can provide a common platform for data
processing functions such as filtering, or compressing data before
sending, which minimizes the amount of time a power hungry
transmitter is turned on.

In the rest of this paper, we motivate SDcloud by discussing the
current process of building a sensor platform, highlighting the com-
plexity involved and that SDcloud aims to avoid. We also introduce
a proof-of-concept system, discuss applications and limitations to
our system, along with open research directions following from
SDcloud. We hope this paper sparks dialogue about how to make
sensor platforms easier to deploy for a wide range of developers.

1.1 Developing a Sensor Platform
To concretely illustrate the process for developing a sensor platform,
we can use the example of adding wireless networking to the popu-
lar Bosch BME688 sensor [7], an off-the-shelf, coin cell powered, air
quality monitor. This sensor measures relative humidity, barometric
pressure, ambient temperature, and gas concentration (VOC). The
sensor comes in a compact 3 mm x 3 mm form factor. Bosch sells
a development printed circuit board (PCB) populated with eight
sensors for logging data and testing sensor configurations. The
development board for this sensor does not include a wireless radio,
so the first task when networking this sensor is to choose the phys-
ical radio technology that is appropriate for our environment and

select an associated hardware chip to handle the networking and
interface with the radio. For an indoor environment, Bluetooth Low
Energy (BLE) and WiFi are both natural choices because existing
infrastructure (e.g., routers and cell phones that can provide back-
haul) is typically available. Bosch recommends using the Adafruit
HUZZAH32 PCB [12] for networking and interfacing with their
development board. The Adafruit HUZZAH32 PCB conveniently
includes an ESP32 chip which supports both BLE and WiFi radios.
Once the development hardware platform is selected, a BLE and/or
a WiFi program must be developed. Without including any libraries
or customization, BLE and WiFi applications on the ESP32 will
be approximately 156 and 112 lines of embedded C code respec-
tively, based on examples provided by Espressif [9]. Finally, a server
application must be used to receive and store the data.

While this example requires knowledge of embedded develop-
ment boards and the ability to write embedded C code, in many
ways it illustrates a simple development process for a basic sensor
platform. In this case, Bosch has a development hardware platform
which connects to the Adafruit HUZZAH32 board out-of-the-box.
Additionally, the chip on the Adafruit board, ESP32, is a well sup-
ported microcontroller with examples freely available and a robust
developer community to provide support and resources. A more
typical development path might require physically wiring devices
together over a communication protocol such as I2C or SPI and writ-
ing low-level code to interface with these protocols, or developing
a custom PCB to interface between sensors, a microcontroller, and
a radio. Research has shown that knowledge of embedded systems
is a real barrier to setting up networking for crucial distributed
sensor systems [22].

Yet one might still argue that buying components, building a
small PCB, and programming a microcontroller is simple. However,
we point out that this is not enough for a robust, real-world deploy-
ment. Many applications, such as asset tracking, include sensitive
identifying information which should be encrypted both locally
and in transit. Sensor networks can face intermittent connectivity,
even when robust infrastructure exists, due to outages. To avoid
losing data, systems should implement reliable transport to resend
dropped data packets. Flexible connectivity options can also be
extremely valuable for deployments. For example, with tightly cou-
pled sensor and network stacks, moving a device from a yard with
WiFi to a remote field, requires rewriting the embedded network
code to support a long range communication technology such as
LoRaWAN. The key to SDcloud is that instead of creating sensor
platforms which couple network stacks with the sensor, we decou-
ple sensor development from networking complexities by hiding
the networking behind the SD card slot. This vision goes beyond
simply replacing one hardware platform with another, because
unlike other networked platforms, it is transparent to the sensor
and requires no specialized embedded systems knowledge to set
up. This efficiently clears the way to pipe data files to a remote
file system, and provides a natural compute platform for handling
networking, removing the need for sensor developers to deal with
the complexities of networking, allowing them to focus on their
unique sensing, power, and mechanical concerns.
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2 Background and Related Work
In this section, we situate SDcloud with the existing capabilities of
SD cards, various networks, and deployed sensor platforms.

2.1 SD Cards
SD cards are non-volatile flash memory devices widely used in
embedded devices such as the ESP32 Thing Plus from Sparkfun and
MKR Zero boards from Arduino [8, 10]. The small form factor of
microSD cards, 15 mm x 11 mm x 1 mm, requires these boards to
add only a small slot, which has developed into an industry stan-
dard [15]. During the development process, SD cards are often used
to store sensor data locally. Data can then be manually retrieved
and processed on a separate computer.

In considering potential strategies, we examined how SD cards
are typically networked as I/O devices. The standards committee
introduced SDIO in 2001 [16]. SDIO allows an I/O aware host device
(i.e., a device that supports special SDIO commands) to commu-
nicate with another device such as a WiFi, BLE, or GPS module
through the SD card physical interface. Since SDIO works as an ex-
tension to the normal SD card interface, hosts are able to use SDIO
commands to control a range of external modules. SDIO also works
with storage cards; combo cards incorporate both SDIO functional-
ity and SD card storage in the same familiar form factor. However,
to make use of the SDIO capabilities of a card, the host device (in
the case of SDcloud the host would be the sensor) must be I/O
aware, meaning it has to know how to send SDIO commands. The
SD card must also be SDIO compatible because SDIO commands
are a superset of the normally supported SD commands.

We take a different approach by supporting wireless connectivity
with non-I/O aware hosts, such as sensors which are only capable
of interacting with a normal SD card. This means that the sensor
does not require any a priori knowledge of wireless capabilities to
have data transferred using SDcloud. There have been a number
of industry solutions which take advantage of the SD interface to
network SD cards such as the Toshiba FlashAir and Eye-Fi, which
were designed specifically to transfer files from cameras to a nearby
laptop over WiFi [2]. 3D printers have also made use of networked
SD cards to transfer files to the printer. These devices, while useful
and an inspiration for SDcloud, are designed for a single purpose
and do not support bidirectional communication or applications.

The SD protocol works by sending a six byte command to the
SD card, which responds according to the command format. Com-
mands include set mode, register reads, read block, and write block
among others. Since this protocol is standardized, the commands
and responses can work with multiple different digital communi-
cation modes including SD mode and SPI mode. The SPI interface
is well supported on many microcontrollers, making it an ideal
interface on which to build SDcloud.

2.2 Distributed File Systems
Distributed file systems, which are file systems distributed across
multiple locations, can allow for remote access to files from any
device [17, 21, 35]. SDcloud takes inspiration from distributed file
systems by caching commands on the SDcloud hardware module,
and providing location transparent access to the sensor client. How-
ever, distributed file systems solve a distinct systems challenge, in

which multiple hosts access shared files which are distributed over
many devices. In SDcloud, there is only one client which accesses
files and one copy—the networked file copy.

2.3 Alternative Networks
There has been a resurgence of both commercial and research fo-
cused networks to support distributed sensors. For example, Ama-
zon Sidewalk [1] extends Wi-Fi enabled Amazon devices to IoT de-
vices in the surrounding area of a home, by using Amazon devices
as gateways, Helium [3], known as “The People’s Network” uses
LoRa [4], to connect devices to gateways in people’s homes, and
Hubble Network [11] promises to connect off-the-shelf BLE devices
to satellites. There have also been academic proposals to use peo-
ple’s phones to opportunistically backhaul sensor data [20, 33, 38].
These networks offer compelling and powerful communication ca-
pabilities at a lower cost point (i.e., in terms of power and price)
compared to cellular IoT, but while these creative networks are
exciting and offer new connectivity models, they are underutilized
since connecting sensor devices to them is still difficult. One reason
that connecting sensors is difficult is because of how tightly coupled
the networking stack is with the sensor application. To integrate a
sensor with these networks to create a platform, developers must
ensure they have the appropriate physical radio for the network,
and a microcontroller that is supported by the network. Even with
the correct hardware and supported libraries, companies might
require developers to register and provision sensors before they
can be deployed [13].

2.4 Sensor Deployments
The research community is not new to deploying wireless sensor
networks for applications ranging from tracking animal popula-
tions [25, 27] and monitoring ecosystems [28, 31], to sensing for
city-based infrastructures [24, 37]. The ecology conservation com-
munity has cleverly embraced open source sensor platforms for
deployments to address the prohibitive cost of commercial data
loggers [29, 30]. A survey of 248 conservation technology users
noted that while networked sensors had huge perceived potential
to address environmental challenges, tool interoperability and scal-
ing data analysis remained challenging [34]. Researchers working
closely with communities to build sensor networks have noted that
adding technologies, such as new types of wireless connectivity,
can often be more effort than the benefits are worth, compared with
field-tested methods such as manual data retrieval [22]. While SD-
cloud does not solve all of these problems, we believe that moving
towards easily configurable, modular embedded platforms can help
enable more affordable deployments with greater ease.

2.5 The Missing Link
There is a key missing link between unique and creative networks
and bespoke sensor designs. Some firms have tried to address the
gap in sensor network capabilities, by offering connectivity mod-
ules [6, 14]. However, these modules connect over physical layer
protocols such as UART, SPI, or I2C requiring developers to write
low-level, embedded code on their sensor platforms to interface
between the sensor and the connectivity module. While drivers
might exist for these communication protocols, the developer must
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Figure 2: The SDcloud architecture relies on multiple layers
between the physical interface with the sensor over the SD
card slot and the physical radio which communicates with
the cloud. The path that data travels from sensor to cloud is
shown with vertical arrows.

still properly pack data into packets and send the data according to
the specifications of the sensor connectivity module. We propose
SDcloud can act as a bridge between these two paradigms.

3 System
In this section, we outline our first cut at a design of an SDcloud
system along with the challenges we faced. We also discuss the
details of our prototype implementation. Our architecture uses a
microcontroller in between the sensor and a backup SD card to
interface with the sensor over the SD protocol and manage wireless
networking. The SDcloud architecture is shown in Fig. 2. We use
a layered approach to intercept SD commands and data blocks
using the SPI interface. We translate these electrical signals into SD
commands and data blocks which are then passed to our onboard
SD card. We periodically pull files from the SD card and upload
them to a file server which can be accessed remotely.

We strategically chose to sit in the middle between the sensor
and SD card as opposed to wiring the sensor directly to the SD card.
Connecting the sensor directly to the SD card would limit SDcloud
to either snooping on the wires to discover new data or periodically
scanning the SD card. Snooping on the physical lines without being
in the middle would not allow SDcloud to inject control commands
or adjust the timing. Injecting commands is crucial to make sure
that SDcloud can keep up with sensor traffic. Therefore, for more
flexibility and configurability, we choose an architecture that places
our microcontroller between the sensor, SD card, and physical
radio. This allows SDcloud to simulate data processing while the
microcontroller transfers data to the cloud, does computation, or
communicates with the SD card all by holding the data line low. We
can be dishonest to the sensor about the true capabilities of the SD
card. For example, we clock our SPI communication to the SD card
faster than the communication to the sensor. We could also hide a
portion of the SD card from the sensor and reserve it for SDcloud
applications as discussed in Sec. 4.

Since the SD protocol is highly standardized, the possible sensor
behavior is bounded, but we also must respond appropriately to

Figure 3: Our SDcloud prototype includes a custom baseboard
PCB and an ESP32 Sparkfun Thing Plus where the SDcloud
architecture is implemented in embeddedC code using FreeR-
TOS.

commands as they arise. This is the key challenge of SDcloud. SD
card controllers are typically purpose-built chips embedded within
the SD card. These chips interface with the SD host and the flash
memory, keeping to a rigid timing schedule by responding correctly
to SD commands within microseconds.

3.1 Implementation
We built our own PCB to act as a baseboard for the ESP32 Thing
Plus and interface with the sensor SD card slot. This hardware
prototype is shown in Fig. 3.

Having our own baseboard helps control for signal integrity
issues that long wires could introduce and works with the stan-
dard microSD form factor of our sensor prototype (another ESP32
Sparkfun Thing Plus). For timing, command responses must occur
within the next eight bytes after a command, as defined by the
clock. Our sensor prototype clocks the communication with SD-
cloud at 400 kHz, meaning we have only 0.16 ms to respond. To
meet this tight timing constraint, we pre-cache the initialization
sequence, so that the command responses are ready to send to the
sensor even before the command is received. For dynamic reads and
writes, there are also timing constraints, which are not practical to
pre-cache. Based on the SD protocol, reads and writes that do not
recieve a response within 100 ms and 500 ms respectively, will fail.
Sensors can implement longer timeouts, but must at least comply
with the minimum set by the standard. We can take advantage of
this timeout window to do SDcloud processing. For example, on a
read or write, we tell the sensor to wait by holding the physical line
low while we interact with the onboard SD card in the background
to read or write the appropriate data.

There are many possible wireless interfaces which SDcloud could
support, such as LoRa, BLE, WiFi, or even potentially cellular. For
our prototype, we focused on WiFi using HTTP due to ease of
development and ubiquity. This also allowed us to easily test our
device in lab. We discuss adding other network stacks and the
modularity of changing out network stacks in Sec. 4.

We used the ESP32 Thing Plus from Sparkfun [8] as the core of
SDcloud, and we have two tasks running on the microcontroller.
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The first task is a peripheral SPI interface which waits for and
responds to commands from the sensor. The second task is a central
SPI interface which sends commands to the SD card. These two
tasks are pinned to separate cores and given high priority. The
ESP32 also acts as a file server and writes files from the SD card
using HTTP.

4 Limitations, Challenges, and Future Work
Currently, we know how the sensor behaves because it is imple-
mented as another ESP32 Thing Plus development board which
reads and writes fake sensor data files to the SD card. This allows
us to make a number of simplifying assumptions, to validate the
feasibility of SDcloud. For example, we have knowledge about the
timing of commands that the sensor sends. We also restrict the
clock rate of the sensor to 400 kHz, which is typically only used to
probe the SD card during initialization, before it begins running at
a frequency of 20 MHz or higher for data transfers. Meeting the
timing requirements of the SD protocol is a key challenge. In the
future, we would like to avoid artificially restricting the clock rate
and dynamically respond to the sensor with the SDcloud capabil-
ities. This would mimic how SD cards with different capabilities
adjust the timing of the bus by telling the sensor their capabilities.

Additionally, we focused on only the SPI interface because it is
commonly supported and used in embedded systems. The drawback
of this approach is that not all sensors or SD host devices use SPI,
some use SD mode. We plan to develop an SD mode driver to
complement our SPI mode driver to parse signals appropriately
based on the mode used by the sensor.

The SD protocol includes over 60 commands. In our prototype,
we only support the commands that our sensor uses. We believe
that these are the most common commands including read, write,
and various register reads. These commands, though, may not cover
a large enough number of devices. To address this we plan to im-
plement responses for the minimum required set of commands for
an actual SD card. Pre-caching commands is a good solution for
the initialization sequence because it allows us to have responses
immediately ready for the initialization sequence, but if the initial-
ization sequence is not ordered as we expect, we could respond with
incorrect byte sequences. We plan to address this by pre-building a
dictionary of responses for possible commands that might be called
during initialization. To help with this effort, we are in the process
of doing a measurement study to discover what the SD command
sequences are for a variety of different devices.

Our prototype exists on a board which supports WiFi and BLE.
We have implemented connectivity over WiFi and plan to also
implement BLE. Because flexibility is key to creating easy deploy-
ments, we would also like to support LoRa and cellular IoT. This
will require integrating new radios into SDcloud.

Another key challenge in many sensor networks is power man-
agement. In our prototype, we do not address this challenge leaving
it for future work. We imagine that SDcloud can be self-powered
using a small battery so as not to drain the sensor battery, but we
have yet to explore different power constraints and tradeoffs in our
hardware prototype, especially since sensors may power off the SD
card slot when it is not being used.

SDcloud could also store small applications on the SD card be-
cause we control both the interface to the sensor and the SD card.
We imagine that these applications could be configurable on the
server side, creating a control path from server to sensor, along
with the data retrieval path from sensor to server. Applications
could determine how frequently or under what conditions to send
data. Since turning on the radio on a sensor node is a power hungry
operation, doing data compression, filtering or anomaly detection
on the node could provide important power and bandwidth savings.
Applications could also potentially span multiple SDcloud sensor
nodes and coordinate based on data shared between the nodes to
decide if any data should be transferred or to share status informa-
tion. Understanding the status of a sensor, and if it is active, can
be reassuring and helpful even if data is not needed. Of course,
multiple applications raise the specter of conflicting data accesses,
which must be addressed.

Creating a lab prototype of SDcloud is just the first step. We plan
to test our system in the field on network-isolated sensors, recog-
nizing that new tools are only as useful as their end applications
are to real people.

5 Conclusion
In this paper, we center sensor platform development around the
SD protocol as a narrow waist interface. This reframes development
and data retrieval to be about the data files themselves (i.e., the
ducklings). We provide an architectural framework and prototype
implementation of SDcloud. We hope that this effort can help make
networking sensor systems easier for developers. More generally,
we believe that creating easy-to-use sensor platforms should be a
top level priority for the research community, and we hope this
work generates more discussion on the topic.
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