
Systems for Machine Learning on Edge Devices

By

Shishir Girishkumar Patil

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph Edgar Gonzalez, Chair
Professor Prabal Dutta

Fall 2023

The thesis of Shishir Girishkumar Patil, titled Systems for Machine Learning on Edge Devices,
is approved:

Chair Date

Date

University of California, Berkeley

Systems for Machine Learning on Edge Devices

Copyright 2023
by

Shishir Girishkumar Patil

1

Abstract

Systems for Machine Learning on Edge Devices

by

Shishir Girishkumar Patil

Master of Science in Computer Science

University of California, Berkeley

Professor Joseph Edgar Gonzalez, Chair

Modern edge applications increasingly rely on Machine Learning (ML) based predictions. ML
models deployed in the real world rapidly degrade in quality due to the evolution of data and
our interpretation of data with time. Cloud applications combat model staleness by retraining
models frequently. However, this is challenging on Edge devices such as smartphones and
wearables, since they are characterized by memory and energy constraints, while the ML
models continue to grow bigger. To overcome this, we propose two complementary systems
POET and Minerva.

POET is an algorithm designed to facilitate the training of large neural networks on memory-
scarce, battery-operated edge devices. It optimizes the integrated search spaces of remateri-
alization and paging, two techniques that significantly reduce the memory requirements of
backpropagation. By formulating a mixed-integer linear program (MILP), POET achieves
energy-optimal training within given memory and runtime constraints. This approach not
only allows for training substantially larger models on embedded devices but also enhances
energy e�ciency without compromising the mathematical correctness of backpropagation.

Complementing POET, Minerva o↵ers an end-to-end ML model update system specifically
tailored for microcontroller-based devices. At its core is a novel system abstraction known
as capsules, which facilitates e�cient and flexible ML model updates without necessitating
disruptive full device firmware updates (DFUs). These capsules exploit the pure function
nature of ML model inference, overcoming the challenges typically associated with updating
parts of a running program. Recognizing the absence of ground-truth labels, Minerva presents
a novel technique to evaluate deployed models. Minerva’s e�cient updates and the ability to
shadow-test enable a wide array of embedded devices to receive regular model updates.

Together, POET enables training models locally, and in those scenarios where training
requires the cloud, Minerva enables e�cient deployment and testing thereby opening up
newer domains of computing to exploit ML models.

i

To my Parents.

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction 1

2 POET: Training Neural Networks on Tiny Devices with Integrated Re-
materialization and Paging 3
2.1 Introduction . 3
2.2 Related Work . 5
2.3 Background . 6
2.4 Integrated paging and rematerialization . 7
2.5 POET: Private Optimal Energy Training . 8
2.6 Evaluation . 13
2.7 Conclusion . 15

3 Minerva: E�cient ML Model Updates for Deeply Embedded Microcon-
trollers 19
3.1 Introduction . 19
3.2 Background . 22
3.3 Capsules . 26
3.4 Minerva . 29
3.5 Evaluation . 33
3.6 Related Work . 41
3.7 Generalizability of Capsules . 42
3.8 Conclusion . 43

4 Conclusion 44

Bibliography 45

iii

List of Figures

2.1 POET optimizes state-of-the-art ML models for training on Edge devices. Oper-
ators of the ML model are profiled on target edge device to obtain fine-grained
profiles. POET adopts an integrated integrated rematerialization and paging to
produce an energy-optimal training schedule. 4

2.2 Rematerialization and paging are complementary. This plot visualizes the execu-
tion schedule for an eight layer neural network. We represent logical timesteps
in increasing order on the y-axis while di↵erent layers are represented by the
x-axis. Layers 2 and 3 are cheap-to-compute operators and therefore can be
rematerialized at low cost. However, layers 5 and 6 are compute intensive so it is
more energy-e�cient to page them to secondary flash storage. 16

2.3 POET consumes less energy across diverse models and devices: We
profile the energy usage of each method relative to a full-memory configuration as
the device’s available memory capacity shrinks. For ResNet-18 (top row), VGG
(middle row) and BERT (bottom), POET outperforms competitive methods in
most configurations. When training ResNet-18 on the TX2, POET consumes
up to 35% less energy than DTR while discovering solutions at tighter memory
budgets. 17

2.4 Both rematerialization and paging are necessary for low-energy sched-
ules with limited memory: We compare ablations of POET on VGG for
CIFAR-10 and find that both rematerialization and paging are required to achieve
low-energy solutions at limited memory budgets across all runtime constraint
values. 18

2.5 Optimal integrated rematerialization and paging outperforms Capuchin
(log scale): POET incurs 73% to 140% less energy overhead relative to a full-
memory baseline by rematerializing earlier alongside paging. Capuchin strongly
prefers paging before falling-back on rematerializing activations which makes it
sub-optimal. 18

3.1 Minerva explores an user-space library design that interposes between ML models
and the rest of the application. The operators (code) and weights are stored in self-
contained and isolated capsules enabling rapid update of ML models transparent
to the application logic. 21

iv

3.2 Comparison of machine learning model size to full DFU size and TAB size (Tock
Application Binary, a compiled application to be loaded onto a board with Tock
OS) for several edge applications. ML model size (blue) includes ML operators
and weights. TAB Size includes the ML model size and Tock support modules.
The full DFU size (red) includes ML model size along with application logic, and
networking modules. Unlike the cloud setting, machine learning model sizes are
only a fraction of the total edge application size. 25

3.3 Changes to source-code required on the Edge device. Only two lines are necessary
to support - one to include the library, and one to trigger the swap. 29

3.4 Changes to ML training source-code required to interface with Minerva. Only the
four additional lines are necessary to interface Minerva with Tensorflow/PyTorch,
while the rest of the source-code remains unchanged. 32

3.5 Time taken to Download Update. Downloading the full DFU and TAB far outweigh
the time taken to download Minerva updates, shown in green {ops+weights}, red
{weights}, and purple {ops}. Due to the application size, a DFU is not even
possible for Spektacom! . 38

3.6 Time taken to re-flash update. Notice that this is a log-linear graph. Blue
represents reflashing the entire application binary as part of a DFU, orange
represents Tockloader re-installing the TAB, and green, red, and purple represent
Minerva updates of just the ML model {operators (ops) + weights}, {weights},
and {operators} respectively. 39

3.7 Time taken for complete update. This graph combines download time with reflash
time. Full DFUs (leftmost bar of each cluster) and TAB re-installs (rightmost bar
of each cluster) split time between downloading the update and re-flashing the
binary. Minerva update times, on the other hand, are dominated by time taken
to download the update. Note that the re-flash time for Minerva updates, shown
in blue, are on the order of tens of milliseconds and thus not visible. 40

v

List of Tables

2.1 Comparison of baseline methods under power, compute, memory and generality
metrics. POET satisfies all criteria, enabling end-to-end training on the edge. . 6

2.2 We evaluate a wide variety of battery-powered edge devices. All devices have at
least 32GB of flash memory via an SD card or flash to enable paging of activations
or tensors. FPU is floating-point unit. 12

2.3 POET’s MILP formulation lowers peak memory consumption by 8.3% and im-
proves throughput by 13% compared to POFO [2] on Nvidia’s Jetson TX2 edge
device . 14

3.1 Microbenchmarks for a capsule update (milliseconds). Hashing the capsule far
outweights the time taken to overwrite the capsule by two orders of magnitude.
This suggests that manipulation of the data to provide security and integrity
guarantees dominate the time taken to perform the capsule update. 35

3.2 Microbenchmarks for full DFU (milliseconds). Downloading the update and
reflashing the application occupy on average 94% of the time taken to perform
the DFU. This suggests that reducing the size of data needing to be downloaded
and reflashed will speed up model updates. 36

3.3 Microbenchmarks for Tockloader application install (milliseconds). The time
taken to erase the post-user space flash page is comparable to the application
re-flash time itself. 36

3.4 Memory footprint (KB). Full Device Firmware Updates are approximately 30⇥
machine learning model sizes. 37

3.5 Accuracy changes for three model updates, with and without acceptance testing,
based on ground-truth labels. DCG accurately predicts when model updates are
helpful, without ground-truth labels. 41

1

Chapter 1

Introduction

The advent of deep learning has revolutionized edge computing, with models now widely
deployed for inference on edge devices such as smartphones and embedded platforms. However,
training these models is still predominantly centralized, typically occurring on large cloud
servers equipped with high-throughput accelerators like GPUs, TPUs, etc. This centralized
training model necessitates the transfer of sensitive data from edge devices to the cloud, com-
promising user privacy and incurring additional data movement costs in network bandwidth
and energy. To counter these issues, on-device training methods like federated learning have
emerged, allowing for local training updates without consolidating data to the cloud, as seen
in applications like Google Gboard and iPhone’s Automatic Speech Recognition (ASR).

Despite these advancements, current on-device training methods struggle to support
state-of-the-art models such as large language models (LLMs) due to the limited device
memory insu�cient for storing activations for backpropagation. To address this, prior work
has suggested strategies like paging to auxiliary memory and rematerialization to reduce
memory footprint, but these often lead to increased total energy consumption. Our work
introduces POET (Power Optimal Edge Training) [36], a novel algorithm that optimally
combines paging and rematerialization, scaling e↵ective memory capacity with minimal energy
overhead. POET reframes edge training as an optimization problem, enabling the training of
sophisticated models like BERT on mobile-class edge devices. This is achieved by formulating
an integer linear program (ILP) that discovers optimal schedules on weather to retain in
main-memory, page to secondary storage, or rematerialize each later of a neural network
resulting in minimal energy consumption. POET also strictly adheres to application specified
memory and runtime constraints to accommodate training during device idle times, and is
designed to work with existing architectures without approximations.

While training locally enables devices to keep up with personalized experiences, often the
ML models need to be updated centrally. This could be because, the model developers came
across a newer dataset previously not available, or the functionality of the model changed, or
for many other reasons. In such scenarios, it is critical to have an e�cient mechanism that
would allow these ML models trained on the cloud to be deployed on edge devices, where
they are invoked for inference.

CHAPTER 1. INTRODUCTION 2

Updating ML models on edge devices, especially microcontroller-based (MCU) applications
is challenging due to their limited capabilities. Traditional model updates through device
firmware updates (DFUs) are bandwidth-intensive and inflexible, often requiring a system-
reboot and thereby losing application state. To overcome these limitations, we propose
Minerva, an e�cient model update system for MCU-based edge devices. Minerva leverages
a novel system abstraction called capsules, enabling e�cient, state-preserving, and low-
bandwidth transparent updates for ML models. Capsules exploit the pure function nature
of ML models, allowing updates without the need for reboots. This system dramatically
reduces update times compared to standard DFUs and integrates seamlessly with existing
ML platforms.

Together, POET and Minerva present an exhaustive paradigm for dealing with the
challenges of deploying and maintaining ML models on edge devices. POET addresses
the need for e�cient on-device training, enabling large models to be trained on devices
with stringent memory and energy constraints. Minerva, on the other hand, focuses on the
deployment stage of the ML lifecycle, o↵ering a flexible and e�cient solution for updating
models on MCU-based devices. These systems mark a significant stride in making edge
computing more adaptable, robust, and e�cient.

3

Chapter 2

POET: Training Neural Networks on
Tiny Devices with Integrated
Rematerialization and Paging

2.1 Introduction

Deep learning models are widely deployed for inference on edge devices like smartphones
and embedded platforms. In contrast, training is still predominantly done on large cloud
servers with high-throughput accelerators such as GPUs. The centralized cloud training
model requires transmitting sensitive data from edge devices to the cloud such as photos and
keystrokes, thereby sacrificing user privacy and incurring additional data movement costs.

To enable users to personalize their models without relinquishing privacy, on-device
training methods such as federated learning [34] perform local training updates without
the need to consolidate data to the cloud. These methods have been widely deployed to
personalize keyboard suggestions in Google Gboard [19] and to improve Automatic Speech
Recognition (ASR) on iPhones [39].

At the same time, current on-device training methods cannot support training modern
architectures and large models. For example, Google Gboard fine-tunes a simple logistic
regression model. Training larger models on edge devices is infeasible primarily due to the
limited device memory which cannot store activations for backpropagation. A single training
iteration for ResNet-50 [20] requires 200⇥ more memory than inference.

Prior work has proposed strategies including paging to auxiliary memory [40] and rema-
terialization [8, 23, 26] to reduce the memory footprint of training in the cloud. However,
these methods result in a significant increase in total energy consumption. The data transfers
associated with paging methods often require more energy than recomputing the data. Alter-
natively, rematerialization increases energy consumption at a rate of O(n2) as the memory
budget shrinks.

In this work, we show that paging and rematerialization are highly complementary. By

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 4

1HXUDO�QHW�
PRGHO��

2SHUDWRU�FRVW
SURILOH�

32(7�VROYHU�

PLQ�WRWDO�HQHUJ\�XVDJH
V�W��PHPRU\�FRQVWUDLQW
V�W��UXQWLPH�FRQVWUDLQW

([HFXWH�RQ�HGJH�GHYLFH�
�
�
�
�

�����5HPDWHULDOL]H

�����3DJH�WR�IODVK

Figure 2.1: POET optimizes state-of-the-art ML models for training on Edge devices.
Operators of the ML model are profiled on target edge device to obtain fine-grained profiles.
POET adopts an integrated integrated rematerialization and paging to produce an energy-
optimal training schedule.

carefully rematerializing cheap operations while paging results of expensive operations to
auxiliary memory such as a flash or an SD card, we can scale e↵ective memory capacity
with minimal energy overhead. By combining these two methods, we demonstrate it is
possible to train models like BERT on mobile-class edge devices. By framing edge training
as an optimization problem, we discover optimal schedules with provably minimal energy
consumption at a given memory budget. While the focus of this paper is edge deployemnts,
the energy objective is increasingly becoming relevant even for cloud deployments [38].

We present POET (Private Optimal Energy Training), an algorithm for energy-optimal
training of modern neural networks on memory-constrained edge devices (Fig 2.1). Given
that it is prohibitively expensive to cache all activation tensors for backpropagation, POET
optimally pages and rematerializes activations, thereby reducing memory consumption by up
to 2x. We reformulate the edge training problem as an integer linear program (ILP) and find
it is solved to optimality in under ten minutes by commodity solvers.

For models deployed on real-world edge devices, training happens when the edge device
is relatively idle and spare compute cycles are available. For example, Google Gboard
schedules model updates when the phone is put to charge. Hence POET also incorporates
a hard training constraint. Given a memory constraint and the number of training epochs,
POET generates solutions that also satisfy the given training deadline. POET transparently
develops a comprehensive cost model by profiling the target hardware with the target
network’s operators. Finally, POET is mathematically value preserving (i.e, it makes no
approximations), and it works for existing architectures out-of-the-box.

The novel contributions of this work include:

1. A formulation of an integer linear program to find the energy-optimal schedule to
train modern deep neural networks with a) memory and b) runtime as hard
constraints.

2. A unified algorithm for hybrid activation recomputation and paging.

3. The first demonstration of how to train ResNet-18 and BERT on tiny Cortex M class
devices with memory and timing constraints.

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 5

2.2 Related Work

Scarcity of compute and memory is one of the largest constraint for machine learning on
edge devices. Large models with state-of-the-art performance have largely been exorbitantly
expensive for edge devices. The research community has predominantly focused on addressing
inference on edge devices via methods like e�cient DNN architecture [22, 46], quantization [14]
or pruning [4].

Instead, we aim to make training large neural networks feasible on tiny edge devices.
While compute is the limiting resource for inference on the edge, limited memory capacity
constraints prevent training large models on the edge. Training via vanilla backpropagation
requires caching the output of all intermediate layers (activations). We categorize methods
to reduce memory usage of training as activation (1) compression, (2) rematerialization, and
(3) paging. We then discuss prior work in energy-e�cient training.

Activation quantization: ActNN [7], Weighted-Entropy-Based Quantization [35],
and others have proposed techniques to quantize activations while performing full-precision
multiply-accumulates (MACs). However, these techniques compromise accuracy and cor-
rectness. Moreover, poor hardware support for quantized operations under 8 bits limits the
practical savings of these techniques. We do not consider methods for pruning during training
like The Lottery Ticket Hypothesis [15] as they do not reduce the size of activations.

Rematerialization: Rematerialization discards activations in the forward pass and
recomputes those values during gradient calculation. Chen et. al (2016) [8] proposed a
simple and widely used algorithm for rematerialization where every O(

p
n) layer is retained

for the backward pass. Griewank & Walther (2000) [17] propose an optimal algorithm
for rematerialization on unit-cost linear auto-di↵ graphs. However, they force the strong
assumption that models have uniform compute requirements across layers. Checkmate [23]
identifies the optimal rematerialization schedule for arbitrary static graphs. Monet [43] extends
Checkmate with operator implementation selection, but this is orthogonal to our work’s
scheduling problem. Dynamic Tensor Rematerialization (DTR) [26] finds an approximation
of Checkmate that is near-optimal for common computer-vision models. Our work addresses
the following limitations of Checkmate: (1) Checkmate does not consider energy nor latency
as a constraint and (2) Checkmate does not page activations to secondary memory. POET is
the first work that demonstrates provably optimal integrated paging and rematerialization.

Paging: SwapAdvisor [21] and DeepSpeed [42] page activations o↵ a memory-scarce
GPU to the CPU when out of memory. However, we find paging is very energy-intensive
and is often less e�cient than rematerialization. Capuchin [40] uses the Memory Saving Per
Second (MSPS) heuristic to decide what to page. Only if paging is insu�cient will Capuchin
rematerialize activations thereby making it sub-optimal as demonstrated in Sec 2.6. POFO
[2] formulates finding finding the optimal sequence combining rematerialization and paging
as a dynamic programming problem. POFO makes many assumptions that limit generality:
POFO only supports chain (linear) model graphs while we support arbitrary graphs such as
BERT (Fig 2.3). POFO limits layers to a single rematerialization or page operation while
POET can remat/page layers repeatedly. POFO forces all page-out operations to occur prior

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 6

Method
General
Graphs

Compute
Aware

Memory
Aware

Power
Aware

Checkpoint all (PyTorch)
p

⇥ ⇥ ⇥
Griewank & Walther (2000) [17] ⇥ ⇥ ⇥ ⇥
Chen et. al (2016)

p
n [8] ⇥ ⇥ ⇥ ⇥

Chen et. al (2016) greedy [8] ⇥ ⇥ ⇠ ⇥
Checkmate [23]

p p p
⇥

POFO [2] ⇥
p p

⇥
DTR [26]

p p p
⇥

POET (ours)
p p p p

Table 2.1: Comparison of baseline methods under power, compute, memory and generality
metrics. POET satisfies all criteria, enabling end-to-end training on the edge.

to calculating the loss while we have no such restriction. And finally, while POFO assumes
paging is asynchronous (e.g., CUDA) but this is not universally true for the edge devices we
evaluate. Notice that POET is not only optimizing a di↵erent metric (energy vis-a-vis time)
but a) adhere’s to strict timing guarantees and b) is provably optimal.

Energy-e�cient training: We are not the first to consider energy-optimal training.
Prior work on energy-optimal training for the edge either a) required the design of new
architectures [5, 46], or proposed b) new techniques of training by dropping activations,
updating only select layers of the network, or c) used a di↵erent optimizer [51]. Compared to
these techniques, POET is a) mathematically value preserving (makes no approximations, or
modifications), and b) works for existing and new architectures out-of-the-box.

2.3 Background

A growing demand exists for edge machine learning applications for greater autonomy. In
response, the community has developed systems to enable machine learning on edge devices.
EdgeML [12], CoreML [25] and TensorFlow Lite [29] from Google are all e↵orts to meet this
demand.

However, each of these e↵orts is application-specific and proposes new algorithms or
optimizations to address the computational and memory requirements for machine learning
inference on the edge [28]. While inference is already commonly deployed on edge devices,
training remains ad-hoc and infeasible for large models.

Training on the edge is critical for privacy, cost, and connectivity. First, due to privacy
concerns, many edge applications cannot transmit data to the cloud. Second, the energy

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 7

consumed by bulk data transmission can significantly reduce battery life [32].
Third, applications such as ocean sensing and communication [24], and those deployed in

farms [49] are designed for o✏ine operations – with no access to the internet.
Our objective of optimizing for energy is a non-trivial contribution. On edge devices, the

energy objective can oftentimes conflict with the objective of running to completion. For
example, on a given platform, rematerializing might consume lower energy, but paging might
be quicker. This is because, on edge devices, it is common practise to turn-o↵/duty-cycle
components that are not utilized (e.g., SD card, DMA, etc.) The energy profile may vary
depending on the size of the tensor, and if the PCIe/DMA/SPI/I2C memory bus needs to be
activated, etc. Exploiting this enables POET to find the most energy-e�cient schedule which
would not have been possible had we not optimized for energy.

While definitions di↵er on which devices are included in “the edge” (e.g., mobile phones,
routers, gateways, or even self-driving cars). In the context of this paper, the edge refers to
mobile phones and microcontrollers (Table 2.2). These devices are characterized by limited
memory (ranging from KBs to a few GBs) and are commonly battery-powered (⇠ few hundred
mAh) for real-world deployment. Further, in our research we found that it is quite common
for these edge devices to be augmented with an o↵-chip secondary storage such as a flash
or an SD card as seen in [49, 24, 37]. This presents us with an opportunity to exploit the
o↵-chip memory for paging.

2.4 Integrated paging and rematerialization

Rematerialization and paging are two techniques to lower the memory consumption of large,
state-of-the-art ML models. In rematerialization, an activation tensor is deleted as soon as
they are no longer needed, most often, during a forward pass. This frees up precious memory
that can be used to store the activations of the following layers. When the deleted tensor is
needed again, for example, to compute gradients during backpropagation, it is recomputed
from the other dependent activations as dictated by the lineage. Paging, also known as
o✏oading, is a complementary technique to reduce memory. In paging, an activation tensor
that is not immediately needed is paged-out from the primary memory to a secondary memory
such as a flash or an SD card. When the tensor is needed again, it is paged back in.

This is best understood with the representative neural-network training timeline from
Figure 2.2. Along the X-axis, each cell corresponds to a single layer of an eight-layered, linear,
neural-network. The Y-axis represents the logical timesteps over one epoch. An occupied
cell indicates that an operation (forward/backward pass computation, rematerialization,
or paging) is executed at the corresponding timestep. For example, we can see that the
activation for Layer 1 (L1) is computed at the first timestep (T1). At timestep T2 and T3,
the activations of L2 and L3 are computed respectively. Suppose layers L2 and L3 happen to
be memory-intensive but cheap-to-compute operators, such as non-linearities (tanH, ReLU,
etc,) then rematerialization becomes the optimal choice. We can delete the activations ({T3,

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 8

L2}, {T4, L3}) to free up memory, and when these activations are needed during backward
propagation we can rematerialize them ({T14, L3}, {T16, L2}).

Suppose layers L5 and L6 are compute-intensive operators such as convolutions, dense
matrix-multiplication, etc. For such operations, rematerializing the activations would lead
to an increase in run-time and energy and is sub-optimal. For these layers, it is optimal to
page-out the activation tensor to secondary storage ({T6,L5}, {T7, L6}), and page-in when
they are needed ({T10,L6}, {T11, L5}).

One major advantage of paging is that depending on how occupied the memory bus is, it
can be pipelined to hide latency. This is because modern systems have DMA (Direct Memory
Access) which can move the activation tensor from the secondary storage to the primary
memory while the compute engine is running in parallel. For example, at timestep T7, we
are both paging L6 out and computing L7. However, rematerialization is compute-intensive,
cannot be parallelized. This leads to an increase in run-time. For example, we have to
dedicate timestep T14 to recompute L3 thereby delaying the rest of the backward pass
execution.

2.5 POET: Private Optimal Energy Training

We introduce Private Optimal Energy Training (POET), a graph-level compiler for deep
neural networks that rewrites training DAGs for large models to fit within the memory
constraints of edge devices while remaining energy-e�cient. POET is hardware-aware and
first traces the execution of the forward and backward pass with associate memory allocation
requests, runtime, and per-operation memory and energy consumption. This fine-grained
profiling for each workload happens only once for a given hardware, is automated, cheap,
and provides the most accurate cost model for POET. POET then generates a Mixed Integer
Linear Programming (MILP) which can be e�ciently solved. The POET optimizer searches
for an e�cient rematerialization and paging schedule that minimizes end-to-end energy
consumption subject to memory constraints. The resulting schedule is then used to generate
a new DAG to execute on the edge device. While the MILP is solved on commodity hardware,
the generated schedule shipped to the edge device is only a few hundred bytes, making it
highly memory e�cient.

Rematerialization is most e�cient for operations that are cheap-to-compute yet memory-
intensive. These operations can be recalculated with low energy overhead. Paging, however,
is best suited to compute-intensive operations where rematerialization would otherwise incur
significant energy overhead. POET jointly considers both rematerialization and paging in an
integrated search space.

Without a minimum training throughput limit, it is possible that the energy optimal
strategy is also far too slow to train in practical applications. In reality, training needs to
run while the device is idle where spare compute cycles are available. For example, Google
Android schedules ML model updates when the phone is charging. To maintain high training

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 9

throughputs, the POET optimizer can maintain a minimum training throughput to ensure
that training completes during downtime.

Given a memory budget µRAM and a training time budget µdeadline, POET finds an
energy optimal schedule by choosing to either a) rematerialize or b) page the tensors to/from
secondary storage such as an SD card. Our method scales to complex, realistic architectures
and is hardware-aware through the use of microcontroller-specific, profile-based cost models.
We build upon the formulation proposed by Checkmate [23] and adapt it to jointly consider
integrated rematerialization and paging, to optimize for an energy objective rather than the
runtime, and to implement a minimum throughput constraint.

[t!]

arg min
X

T

[R�compute +Min�pagein +Mout�pageout]T

subject to Rt,i + S
RAM
t,i � Rt,j 8t 2 V 8(vi, vj) 2 E

Rt�1,i + S
RAM
t�1,i +M

in
t�1,i � S

RAM
t,i 8k 2 K 8t � 2 8i

S
AUX
t�1,i +M

out
t�1,i � S

AUX
t,i 8t � 2 8i

S
AUX
t,i � M

in
t,i 8k 2 K 8t � 2 8i

S
RAM
t,i � M

out
t,i 8k 2 K 8t � 2 8i

U
RAM
t,i µRAM 8t 2 V 8i 2 V

X

T

[R compute]T µdeadline

S1,i = 0 8i 2 V

Rv,v = 1 8v 2 V

R, SSD, SRAM ,Min,Mout 2 {0, 1}T⇥T

(2.1)

Assumptions: We assume operations execute sequentially on edge devices without
inter-operator parallelism. Moreover, we assume parameters and gradients are stored in a
contiguous memory region without paging. Unlike prior work in rematerialization [8, 26], we
do not limit rematerialization to occur once. We assume auxiliary storage (e.g., flash/ SD
card) is available. However, if auxiliary storage is not available, the POET optimizer will fall
back to only performing rematerialization.

Optimal Rematerialization

Following the design of Checkmate [23], we introduce the formulation of the rematerialization
problem. Given a directed acyclic dataflow graph G = (V,E) with n nodes, a topological
ordering {v1, . . . , vn} is computed which constrains execution to that order of instructions.
Two key decision variables are introduced: (1) R 2 {0, 1}n⇥n where rt,i represents the decision
to (re)materialize an operation vi at timestep t and (2) S 2 {0, 1}n⇥n where st,i represents
whether the result of an operation vi is resident in memory at timestep t.

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 10

From the rematerialzation matrix R, and the storage matrix S, we define a series of
constraints to maintain graph dependencies. All arguments for an operation j must be resident
in memory prior to running that operation, yielding constraint Rt,i + St,i � Rt,j 8(i, j) 2
E 8t 2 {1, . . . , n}. Similarly, the result of an operation is only resident in memory in one of
the two cases: a) if it was already resident in memory before, or b) if it was (re)materialized
(St,i St�1,i +Rt�1,i 8i 2 V 8t 2 {1, . . . , n}).

To adhere to the strict constraints on the peak memory used during training, an inter-
mediate variable U 2 Rn⇥n is defined. Ut,i is the total memory used by the system during
training at timestep t when evaluating operation i. By bounding the maximum value of
Ut,i 8i 2 V 8t 2 {1, . . . , n} to the user-specified memory limit µRAM , we limit the total
memory consumption during training.

Optimal integrated paging and rematerialization

While rematerialization can provide significant memory savings, it introduces significant
energy consumption overheads from duplicate recomputations. Similarly, paging if done
wrong will result in a wasteful shu✏ing of data between memories. Here, we formalize a joint
search space for rematerialization and paging to enable the discovery of the energy-optimal
hybrid schedule.

Like rematerialization, the discovery of the optimal paging schedule is a challenging
combinatorial search problem. However, we find that independently solving for paging first,
and then solving for rematerialization will not produce globally optimal solutions. As an
example, consider a graph where the output depends on the result of two operations v1 and
v2 where both nodes have equivalent memory costs but v2 is cheaper to evaluate. A paging
strategy may evict v2 which would force rematerialization to recompute the more expensive
v1 rather than v2.

We represent a schedule as a series of nodes that are either being saved S
RAM , (re)computed

R or paged from secondary storage S
AUX . To model when a node is copied from secondary

storage to RAM, we introduce a variable M
in 2 {0, 1}n⇥n where M

in
t,i represents paging a

tensor from secondary storage to RAM between timesteps t� 1 and t. Similarly, we model
page-out with M

out.
We now present the intuition behind adding the following constraints to the optimization

problem in order to search over optimal schedules for paging and rematerialization:

1c For SRAM
t,i to be in memory at time-step t, either compute Rt,i at timestep t, or retain

S
RAM
t,i in memory from the previous timestep t� 1, or page-in if SRAM

t�1,i is resident on
flash (at t� 1).

1d Each node i can reside on flash S
AUX
t,i , either if it resided on flash at timestep t � 1

(SAUX
t�1,i), or it was paged out at time-step t� 1 (M out

t�1,i).

1e To page-in M
in
t,i at time-step t, it has to be resident on flash S

AUX
t,i at timestep t.

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 11

1f Each node i can reside in memory S
RAM
t,i at timestep t, only if it was paged out of flash

(M out
t,i).

Algorithm 2.5 defines the complete optimization problem.

Expressing an energy consumption objective

If we only consider rematerialization, then minimizing runtime will generally correlate with
decreased energy usage. However, this is no longer true when considering paging; paging
can be more energy-e�cient than rematerializing a compute-intensive operation. To address
this, we introduce a new objective function to the optimization problem that minimizes the
combined energy consumption due to computation, page-in, and page-out.

When paging occurs on an edge device, the vast majority of energy consumed is due
to powering-on the flash/SD block device. As this power is in addition to any power the
CPU is consuming, the total power consumption is a linear combination of paging and CPU
energy. We precompute each of these values, generally as the integral of the power of active
components of the edge device integrated over the runtime of the operation. �compute, �pagein

and �pageout represent the energy consumed for each node for computing, paging in, and
paging out respectively.

Therefore, the new objective function combining paging and rematerialization energy
usage is: X

T

[R�compute +Min�pagein +Mout�pageout]T (2.2)

Ensuring minimum training throughput

If we attempt to find the minimum energy schedule subject to only a memory constraint, the
POET solver may select solutions with poor end-to-end training throughput. Ideally, training
should occur in the downtime between interactive workloads on an edge device. To ensure
this, we introduce a new constraint to the optimization problem that ensures schedules meet
a minimum training throughput threshold. This constraint e↵ectively trades o↵ between
energy consumption and training throughput.

To enforce a particular throughput, we compute a latency target. Via profiling, we capture
 compute denoting the runtime of each operation. We then constrain total runtime with the
constraint: X

T

[R compute]T µdeadline (2.3)

Paging latency hiding via transfer planner

POET outputs the DAG schedule in terms of which nodes of the graph (k) to rematerialize,
and which to page-in (M in

t,k) or page-out (M
out
t,k) at each time-step (t). Our Algorithm 2.5

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 12

Device Clock RAM FPU?

M0 (MKR1000) 48 MHz 32 KB ⇥
M4 (nrf52840) 64 MHz 256 KB

p

A72 (RPi-4B+). 1.5 GHz 2 GB
p

A57 (Jetson TX2) 2 GHz 8 GB
p

Table 2.2: We evaluate a wide variety of battery-powered edge devices. All devices have at
least 32GB of flash memory via an SD card or flash to enable paging of activations or tensors.
FPU is floating-point unit.

takes the ILP solves to generate and dictate the strategy that determines which tensors are
resident-in-memory (Saux

t,k) at a fine-grained (operator) level.
We factor in the latency introduced by paging. As described in Section 2.6, POET is

hardware-aware by profiling the latency per platform for paging activations to secondary
storage. Fine-grained profiling helps in fine-tuning when to start paging, such that the
activation tensors arrive just-in-time. We then modify the page-in (M in

t,k) and the page-out
(M out

t,k) schedule to ensure there is no contention for the memory bus as the tensors are
paged-in just-in-time. For example, if (M in

t,i) can contend with (M in
t,j), then we schedule one

of them to page-in at an earlier time (M in
t�1,i) and update the in-memory schedule (Saux

t�1,i) to
account for the earlier paging-in. While this ensures the activations are paged in just-in-time,
in parallel, (Rt0,j) informs the PyTorch DAG scheduler to deallocate the tensors that we have
chosen to rematerialize (Saux

t,k) at a future timestep (t0).
[t] Input: Graph G = (V,E), schedule R,Min,Mout

for t=1,..,|V | do
for k=1,..,|V | do

if M
in
t then

add %r = pagein vk to P

if Rt,k then
add %r = compute vk to P

if M
out
t,k then

add %r = pageout vk to P

for i 2 DEPS[k] [{k} do
if M

out
t,k _ FREEt,i,k then

add deallocate %r to P

Output: execution plan P = (v1, .., vn)

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 13

2.6 Evaluation

In our evaluation of POET we seek to answer three key questions. First, how much energy
consumption does POET reduce across di↵erent models and platforms? Second, how does
POET benefit from the hybrid paging and rematerialization strategy? Lastly, how does
POET adapt to di↵erent runtime budgets?

Experimental setup

We evaluate POET on four distinct hardware devices listed in Table 2.2: the ARM Cortex
M0 class MKR1000, ARM Cortex M4F class nrf52840, A72 class Raspberry Pi 4B+, and
Nvidia Jetson TX2.

POET is fully hardware-aware and relies on fine-grained profiling. For example, on the
Jetson-TX2 hardware we profile each operator along with its variations in dimensionality
(e.g., conv2d with varying kernel-sizes, strides, padding, etc.) These fine-grained time, energy,
and memory profiles then inform POET about the exact specifications. These devices test
a diverse set of memory, compute, and power configurations. As POET is hardware and
energy-aware, it takes device-specific characteristics into account.

We evaluate POET on VGG16 [44] and ResNet-18 [20] trained on the CIFAR-10 dataset
as well as BERT [13]. In all of our baselines, we limit all MILP solves to no more than 10
min on commodity CPUs. Our experiments are with a batch-size of 1. We compare POET
to work PyTorch’s default scheduler, Chen et. al[8], Griewank & Walther[17], DTR [26], and
Checkmate [23].

Hyperparameters: POET only decides on the optimal scheduling of nodes in the training
graph and does not change the training routine (learning rate, optimizer, etc.). Hence, our
system is robust to hyper-parameters.

Sensitivity to Batch-size: POET is mathematically preserving and can be easily scaled
to arbitrary batch sizes without loss of generality. Of course, this is conditioned on the
underlying device’s memory capacity. It is possible that as batch size varies, the underlying
operator implementation might change. POET, with its fine-grained profiling is robust to
these changes and transparently adapts to artifacts.

How much energy consumption does POET reduce across models
and platforms?

Figure 2.3 shows the energy consumed for a single epoch of training. Each column represents
a unique hardware platform as defined in Table 2. We notice that across all platforms, POET
generates the most energy-optimal (Y-axis) schedule all the while reducing the peak memory
consumed (X-axis) and adhering to the timing budget.

For the BERT model on the Cortex M4 and the TX2 platform, we noticed an interesting
behavior: our ILP solves time-out. This is because we limit all solves to no more than 10
min. With a longer ILP solve budget (<30 min), POET can predictably find more optimal

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 14

ResNet-18 Training
POET POFO (Beaumont et al. 2021)

Memory 285,873 kB 311,808 kB
Runtime 82.36 ms 94.79 ms

Table 2.3: POET’s MILP formulation lowers peak memory consumption by 8.3% and improves
throughput by 13% compared to POFO [2] on Nvidia’s Jetson TX2 edge device

solutions. Further, notice that a) POET has an additional timing budget which none of the
other baselines do, and b) all of our baselines are already mature. Checkmate [23] is provably
optimal for rematerialization, while DTR [26] closely approximated Checkmate. Furthermore,
POET tried to solve a much “harder” problem as its search space with rematerialization and
paging together is larger.

How does POET benefit from integrated rematerialization and
paging?

We compare our joint optimal paging and rematerialization schedule with Capuchin which
optimizes each with a heuristic. Capuchin will e↵ectively page until no longer feasible and only
then will it begin to rematerialize. Instead, POET begins rematerializing cheap operations
like ReLU much earlier which yields considerable energy savings (up to 141% lower overhead).

In Figure 2.5, we benchmark POET and Capuchin when training ResNet-18 on the A72.
As the RAM budget decreases (to the right), Capuchin consumes 73% to 141% more energy
than a baseline with full memory. In comparison, POET incurs less than a 1% energy
overhead. This trend holds for all architectures and platforms we tested.

In Table 2.3 we benchmark POET and POFO when training ResNet-18 on Nvidia’s Jetson
TX2. We find that POET finds an integrated rematerialization and paging schedule that
lowers peak memory consumption by 8.3% and improves throughput by 13%. This showcases
the benefit of POET’s Mixed-integer linear programming (MILP) solver, which is able to
optimize over a much larger search-space. While POFO only supports linear models, POET
generalizes to non-linear models as demonstrated in Fig 2.3.

How does POET adapt to varying runtimes?

Figure 2.4 highlights the benefit of the integrated strategies that POET adopts across di↵erent
timing constraints. The run-time budget refers to the total time available for one epoch of
training näıvely (without paging or rematerialization). For each of the runtimes, we plot the
total energy consumed if we were to restrict to either of a) paging or b) rematerialization
only, and the c) integrated solution.

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 15

We find that rematerialization is energy-optimal compared to paging at higher (looser)
timing budgets. This is reflected in the POET (paging+remat) green curve, closely tracking
the POET (remat only) yellow curve at runtime budgets of 0.6 - 0.9 ms. However, at lower
runtime budget (0.5 ms), paging is preferable as rematerialization strategies become infeasible.
This is because, rematerialization is a compute intensive serial operation, however, our
Algorithm 2.5 benefits from the ability to hide paging latencies by pipelining (see Section 2.6)
to realize the tighter deadline bounds. POET’s optimal, integrated solution consumes up to
40% lower energy compared to paging or rematerialization only solutions.

2.7 Conclusion

Enabling large models to be trained on edge devices is important due to privacy constraints
as well as o✏ine operation. Edge devices deployed in the real-world are powered by tiny
microcontrollers that are low-powered, and have limited memory (e.g. 32 KB). The low-power
and limited memory, coupled with tight timing constraints imposed by real-time systems
makes training on the edge challenging.

Our novel mixed-integer linear programming based Power Optimal Edge Training (POET)
algorithm enables training on tiny chips with memory as low as 32 KB. Given a memory
budget and a timing constraint, POET finds the most energy optimal schedule to train the
model by choosing to either rematerialize or page the tensors to secondary storage.

Across a diverse set of models and devices, we discover low-power training schedules
at less memory than baselines. POET enables new applications for privacy-preserving
personalization of large models like BERT on tiny devices at the edge for the first time.
Future directions include integrating activation compression as well as expanding POET’s
search space to paging parameters.

Acknowledgement

We thank Prateek Jain, Charles Packer, Daniel Rothchild, Alex Smola, Pete Warden, and
the anonymous reviewers whose insightful comments, and feedback helped improve the paper.
This research is supported by a NSF CISE Expeditions Award CCF-1730628, and gifts from
Amazon Web Services, Ant Group, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft,
Scotiabank, and VMware. This work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA.

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 16

�� �� �� �� �� �� �� �	

�

�

� �

� �

�

� �

� �

	

�� �

�� �

��

��

��

��

��

��

�	

��
��
��
�
��
��

	�

�
��
��
��
��

������� ����
	�
����� ����

� ��� �
��������
����� �
��������

� ������ ���
� ������ ��

Figure 2.2: Rematerialization and paging are complementary. This plot visualizes the
execution schedule for an eight layer neural network. We represent logical timesteps in
increasing order on the y-axis while di↵erent layers are represented by the x-axis. Layers
2 and 3 are cheap-to-compute operators and therefore can be rematerialized at low cost.
However, layers 5 and 6 are compute intensive so it is more energy-e�cient to page them to
secondary flash storage.

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 17

Figure 2.3: POET consumes less energy across diverse models and devices: We
profile the energy usage of each method relative to a full-memory configuration as the device’s
available memory capacity shrinks. For ResNet-18 (top row), VGG (middle row) and BERT
(bottom), POET outperforms competitive methods in most configurations. When training
ResNet-18 on the TX2, POET consumes up to 35% less energy than DTR while discovering
solutions at tighter memory budgets.

CHAPTER 2. POET: TRAINING NEURAL NETWORKS ON TINY DEVICES WITH
INTEGRATED REMATERIALIZATION AND PAGING 18

Figure 2.4: Both rematerialization and paging are necessary for low-energy sched-
ules with limited memory: We compare ablations of POET on VGG for CIFAR-10 and
find that both rematerialization and paging are required to achieve low-energy solutions at
limited memory budgets across all runtime constraint values.

Figure 2.5: Optimal integrated rematerialization and paging outperforms Capuchin
(log scale): POET incurs 73% to 140% less energy overhead relative to a full-memory
baseline by rematerializing earlier alongside paging. Capuchin strongly prefers paging before
falling-back on rematerializing activations which makes it sub-optimal.

19

Chapter 3

Minerva: E�cient ML Model Updates
for Deeply Embedded Microcontrollers

3.1 Introduction

Frequent updates of machine learning (ML) models are necessary to respond to changes in
the environment and data, the arrival of new datasets, user feedback, and rapid innovation in
model design [16, 47]. ML model updates include not only data (e.g., the weights of a neural
network) but also model architecture and the associated code of its operators, which may
change in an update. This cycle of feedback, re-training, and re-deployment continues for the
lifetime of a deployment.

At the same time, ML applications that have historically resided in the cloud are moving
closer to the edge. In this paper, we focus on the extreme edge, consisting of embedded
microcontrollers (MCUs) built around Cortex-M family of ARM CPUs. For example, Farm-
beats [49] has used microcontrollers in sensor boxes for precision agriculture. Recent e↵orts
have looked at designing models for the constraints of the edge [49, 37, 50]. However, updated
models that are trained centrally, e.g. in the cloud, must then be deployed on edge devices to
provide better predictions for the embedded applications they support. In this paper, we
focus on this critical deployment stage of the ML lifecycle for edge devices.

On server-class systems, the model is served from a separate process or microservice using
Remote Procedure Calls (RPCs) [meta˙microservices, deathstarbench]. This allows the
model executable to be updated independently of the rest of the application. Such decoupling
of the application from the model also provides flexibility—it is easy to test the new model on
samples of tra�c and roll back changes to earlier models if necessary, permitting AB testing
and acceptance testing.

Unfortunately, this multi-process approach does not work on MCU-based edge devices.
The reason is that MCUs lack MMUs and have only kilobytes of RAM, making them ill-suited
to running full-fledged operating systems like Linux [telos, hamilton, at86rf233, nrf52840].
On MCUs, the application and system share an address space and are typically linked into a

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 20

single logical program called the image. While possible, it is di�cult to update only part
of the image, because the layout of code and data (e.g., the lengths of functions, etc.) may
change with each update. This would break any jumps, branches, and function calls into
the updated part of the image. And, unless the device is rebooted, any data structures and
pointers in RAM must be transformed for use with the updated code and data.

Instead, ML model updates on MCU-based devices are typically carried out through device
firmware updates (DFUs), in which an entire new image is installed on the device. DFUs
are a natural solution for classical use cases, such as infrequent reprogramming of a sensor
network to a new application or patching a vulnerability [dfu-vulnerability]. But DFUs
have several downsides, exacerbated in the context of model updates. First, although only
the model is updated, DFUs download a full program image, which is bandwidth-intensive,
especially over low-rate links like NB-IoT, LoRA, or even satellites. Second, each DFU
requires a reboot, losing application and system state, which is costly because model updates
may be frequent and it may take time to recreate precious state. Third, DFUs are less flexible
than the process-based approach, increasing friction and overhead for local model testing
and rollback. Fourth, it restricts software to only half of the available memory, to have space
to download an update before switching to it. In practice, edge devices update models less
frequently or not at all due to these downsides [49, 6].

In this context, we study how to enable e�cient model updates for edge devices. We
propose a system, Minerva, that does so with minimal application changes, with no added
overhead in obtaining a model prediction, and while retaining much of the flexibility of the
multi-process approach.

A seemingly natural starting point for Minerva is to make DFUs more e�cient. For
example, one can reduce the bandwidth for DFUs using delta updates [ota˙compression,
mbedos˙delta, freertos˙delta], which are represented as a di↵ from the previous image
instead of as a fresh new image. Unfortunately, this still requires device reboots and lacks
the flexibility of the multi-process model.

Instead, our approach is to bring a service decomposition similar to the multi-process
model to MCUs, within a single address space. The key observation is that models are pure
functions. In particular, an model can be naturally abstracted as a single predict function
that (1) returns its output by value, and (2) maintains no state across invocations. Our key
insight is that this property allows us to build a carefully-structured, updatable memory
segment that we call a capsule, which contains the ML model.

To understand how capsules work, consider the challenges we described earlier in updating
only part of the image. Because ML models are pure functions, they never expose pointers
to their internal code or data or maintain state across invocations. Thus, there is no need
to update data structures and pointers throughout RAM when updating the capsule. By
leveraging this property of ML models, we sidestep a significant source of complexity in
performing live updates [mrpc, snap].

Another challenge is that updates may break branches, jumps, and function calls into the
capsule. To address this, we structure the capsule such that the predict function is always
at the same memory address after each update. Because the application and model only

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 21

Application

Edge Client

» trigger update
» testing

!"#$%&'()) +,'!,': 	/

!"#$()

Minerva

,!$0'#()

!"#$_&#$!'()()

'1
)*#ℎ()

,1

capsule

Figure 3.1: Minerva explores an user-space library design that interposes between ML models
and the rest of the application. The operators (code) and weights are stored in self-contained
and isolated capsules enabling rapid update of ML models transparent to the application
logic.

interact via the predict function, the application can use the updated model without having
to patch any code outside of the capsule. As predict is called just like a normal function,
capsules add no overhead in the critical path of ML inference. Importantly, capsules are
simple to integrate into an application. The programmer merely annotates functions and
data belonging to the capsule and uses a special linker script that structures the capsule
correctly at build time. To update the capsule, the device first downloads the update, and
then invokes a lightweight library to apply it to the capsule.

Certain systems for MCUs, like Maté [mate] and Tock [33], provide general dynamic
loading facilities that we could use instead of capsules. However, they are far more intrusive
than capsules, requiring applications to run in a software interpreter or be ported to a
particular runtime environment. Unlike these approaches, capsules do not require tight
integration with the underlying system and are largely platform-agnostic. This is critical for
wide applicability because MCU-based edge devices exhibit heterogeneity in hardware and
software.

To demonstrate the utility of capsules, we also design Minerva, an end-to-end capsule-

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 22

based ML model update system. Minerva coordinates updates using a pull-based model
and uses a simplified form of delta updates to e�ciently transmit updated capsules to edge
devices. Additionally, Minerva leverages the flexibility a↵orded by capsules to perform local
acceptance testing for model updates. Although devices may lack access to ground-truth
labels, we show that we can locally test the utility of model updates using an established
statistical technique called discounted cumulative gain (DCG).

We have implemented our system on four real-world applications and found that Minerva
enables model updates up to 89⇥ faster than a standard DFU and up to 73⇥ faster than
an application update in Tock (a widely-used embedded OS). Further, eliminating the need
to re-flash non-ML code or perform a reboot enables applications to maintain state without
checkpoints and restores. We designed Minerva to be easy to deploy and to integrate well
with existing ML platforms. Concretely, it requires four additional lines of code to interface
with TensorFlow/PyTorch, and two additional lines of code in the edge application—one to
include the library, and the other to apply a capsule update (swap capsule()).

With Minerva, (1) We introduce capsules, which enable state-preserving low-bandwidth
transparent updates for ML models. (2) We introduce a mathematical formulation for locally
testing the utility of the received model using discounted cumulative gain (DCG) and the
ability to perform acceptance testing for model updates. (3) We implement Minerva on MCUs
and evaluate it on four real-world embedded machine learning applications. We demonstrate
up to 89⇥ reduction in DFU time.

3.2 Background

Although the term edge can refer to a variety of devices and services, including mobile
phones, routers, gateways, and CDNs, this paper focuses on the extreme edge con-
sisting of deeply embedded devices. These include sensors for environmental monitor-
ing [habitat˙monitoring, 49], structural health monitoring [structural˙health˙monitoring,
golden˙gate˙bridge˙monitoring], and IoT [37].

It is increasingly common to deploy ML models on such devices. For example, Farm-
beats [49] is an end-to-end IoT platform for precision agriculture that processes data
collected from various sensors deployed in farms. To identify faulty sensors, Farmbeats
recently incorporated Fall-curves [6] to detect sensor faults using an ML-based predictor [18].
As the underlying soil condition changes, weather patterns change, and newer data is in-
gested, Farmbeats benefits from frequent model updates. Other examples of MCU-based
edge ML devices are GesturePod [37], Picovoice [41], Powerblade [11], Zanzibar [50] and
Permamote [permamote].

A model is composed of operators and weights. Operators are the building blocks of an ML
architecture, such as tanh, ReLU, convolutions, and max-pooling. Weights are the parameters
associated with these operators, such as convolution filter weights and biases. Model updates
could include updates to both the code and data associated with an model—that is, to both

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 23

the operators and weights. Additionally, as we shall explain in §3.2, models are often only a
small fraction of the overall image size.

MCU-Based Device Hardware

Deeply embedded devices must be cheap to produce, easy to embed in the physical world,
and operate for long periods of time (e.g., for years on a small, cheap, 100 mAh battery).
As such, they are typically built around microcontrollers (MCUs) that are cheap, small, and
energy-e�cient, such as the Nordic nRF52 series [nrf52] or Atmel SAM R21 series [samr21].

Such MCUs typically use ARM Cortex-M CPUs that lack MMUs and have only kilobytes
of RAM. Importantly, they have less RAM per unit of compute power than conventional
systems. The reason is that MCUs use only SRAM (instead of DRAM) to minimize energy
consumption, and even so, are limited in RAM size by SRAM leakage current. Whereas
non-MCU systems have ⇡ 1 MiB of RAM per MIPS of CPU (3M rule), the nRF52832 MCU,
used by Farmbeats, has ⇡ 100 DMIPS of CPU (ARM Cortex-M4F @ 64 MHz) but only 64
KiB of RAM. Thus, while embedded CPUs have grown more powerful over the years, making
algorithms like ML attractive, embedded RAM has not grown commensurately.

To deal with limited RAM size, these MCUs also include nonvolatile, flash-backed “read-
only memory,” or ROM. On these devices, ROM is more plentiful than RAM; the nRF52832,
for example, has 64 KiB of RAM but 512 KiB of ROM. As a result, RAM is only used for
data that may change at runtime, like stack, heap, and mutable globals. Any data that will
not change at runtime, like program text (code) and static data, are stored in ROM. This
is possible because ROM and RAM are in a unified physical address space, enabling the
program to execute code and access data directly out of ROM without first loading that data
into RAM.

Network bandwidth is also a constrained resource for devices at the extreme edge. Low-
power wireless network technologies, like LoRa and IEEE 802.15.4, provide only kilobits per
second of bandwidth. Even if network bandwidth is available, battery-powered devices must
use it sparingly, as network usage can dominate energy consumption [ipisdead, hamilton,
32].

MCU-Based Device Software

MCU-based devices do not run fully-fledged operating systems like Linux or Windows. Instead,
they typically run specialized embedded OSes, like TinyOS [31], Contiki OS [contiki], or RIOT
OS [hamilton], that are carefully designed to be lightweight. Embedded OSes generally
provide a scheduler, timers, device drivers, and an IP-based network stack. However, as MCUs
lack hardware support for address translation (i.e., MMUs), embedded OSes generally lack
memory virtualization, protection/isolation, and dynamic linking/loading. The application
and system are linked into a monolithic program, called an image, and execute together in
the same address space. Applications request system services via direct function calls and
can freely obtain and follow pointers to OS data structures. This design stems from the

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 24

classical view that, for maximum e�ciency, the system and application should be tightly
integrated and co-specialized [tinyos˙asplos].

A notable exception is Tock OS [33]. Tock uses hardware support for memory protection in
modern MCUs to provide multiprogramming with isolation. Still, it does not support virtual
memory or address translation, requiring apps to be compiled with position-independent code
(PIC) to support dynamic loading. Furthermore, Tock’s dynamic loading only applies to data
in RAM, not in ROM—all loadable apps must be part of the device’s ROM when the device
is initially programmed, and new apps cannot be downloaded over the network at runtime.
We use Tock as a starting point in designing capsules and compare Minvera’s performance to
Tock’s.

DFUs for MCU-Based Devices

Currently, the most accessible way to update an ML model on an MCU-based device is to
perform a device firmware update (DFU). In a DFU, an entirely new image, containing not
only the model but also the application and system, is built and deployed to a device. In this
section, we describe how DFUs work and explain why they are ine�cient for model updates.
Step 1: Obtaining the New Image. Embedded OS solutions often rely on a physical
connection (e.g., J-Tag) or close proximity (e.g., Bluetooth) to install or update an application.
Unfortunately, it is di�cult to physically access edge devices deployed in the field, particularly
for devices in remote locations like farmlands [49] or the deep sea [24]. As a result, it
is desirable to use over-the-air (OTA) updates, in which updates are transferred over the
network. Herein lies the first challenge of DFUs—while edge devices are constrained in
network bandwidth, OTA DFUs are bandwidth-intensive. As an extreme example, Farmbeats
uses LoRa with a bit rate of only ⇡ 100 bits per second, making it slow to download a ⇡ 100
KiB DFU. DFUs are particularly ine�cient in the context of model updates because, as
shown in Figure 3.2, the model is only a small fraction of the update size. Increase font size
in figure? Chart is not red/green colorblind friendly. Also notice the green bars highlighting
the “bloatware” introduced by embedded OSes. Even a compiled binary containing only ML
code and no other application logic is still considerably larger than the standalone size of the
ML model.
Step 2: Reflashing ROM with the New Image. The new image must be stored
in ROM. The process of updating data in ROM is called reflashing. ROM, as its name
(“read-only memory”) suggests, is optimized for reading; writing to ROM is far slower and
more energy-intensive than writing to RAM. As a result, reflashing ROM with the new
update is a significant source of overhead in the update process, as we will see in §3.5. The
large size of DFUs exacerbates this overhead.
Step 3: Verifying the New Image. Reliability for DFUs is accomplished via a two-bank
memory model. ROM is partitioned into two separate regions called banks, one of which
stores the active image. In a DFU, the new image is downloaded into the other bank and
checked for integrity. If the integrity check passes, then either the new image is copied into
the active bank, or the bank containing the new image is marked as active. If the update

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 25

Figure 3.2: Comparison of machine learning model size to full DFU size and TAB size (Tock
Application Binary, a compiled application to be loaded onto a board with Tock OS) for
several edge applications. ML model size (blue) includes ML operators and weights. TAB
Size includes the ML model size and Tock support modules. The full DFU size (red) includes
ML model size along with application logic, and networking modules. Unlike the cloud
setting, machine learning model sizes are only a fraction of the total edge application size.

fails, then the device can still boot the old image. While the two-bank model helps ensure
reliability, it e↵ectively halves the available ROM space.
Step 4: Booting the New Image. Every DFU requires a reboot, which causes the
application to lose the contents of RAM (application state). While this can be addressed by
checkpointing state in persistent memory and restoring it after the reboot, this is challenging
because state is often spread throughout the application (e.g., networking state, application
logic, etc.). Additionally, rebooting a device involves re-initializing and synchronizing sensors,
serial communication modules, and other peripherals, which takes time.

Rebooting also reduces flexibility. Concretely, ML deployments on server-class devices
benefit from acceptance testing. Acceptance testing is important for edge deployments
because not all edge devices observe the same data distribution. In the precision agriculture
example, a sensor in a farm in Alaska observes a di↵erent data distribution than a sensor
in a farm in Texas. Hence, even though the new model is better than the old one in most
cases (in expectation), it may not be universally better across all nodes of a deployed fleet.
One way to solve this is to build profiles of each deployed device and test the model in the
cloud. However, this is not always feasible as bandwidth constraints prevent streaming data

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 26

to the cloud. This calls for local acceptance testing. Having to reboot to switch models adds
friction to this process.

3.3 Capsules

In this section, we describe capsules, which allow ML model updates to be e�ciently and
flexibly deployed on MCU-based devices. We focus here only on the mechanisms of capsules—
how capsules are structured, how to generate them, and how to apply updates on a device.
Other details of an end-to-end model update system, like how to trigger updates and how to
transfer them over the air, are described in §3.4.

Motivation and Opportunities

As described in §3.2, DFUs are unnecessarily large in the context of model updates—they
contain not only the updated model, but also the entire application and system. A seemingly
natural approach for e�cient model updates is to only include the updated model in DFUs. An
existing approach in this direction is delta updates, in which the DFU is represented as a di↵
from the previous image. Delta updates have been studied in academia [ota˙compression]
and are adopted in certain embedded OSes [mbedos˙delta, freertos˙delta]. While delta
updates can significantly reduce the network bandwidth required to obtain the image, the
other issues with DFUs, such as the two-bank model, the need to reboot, and inflexibility,
remain.

Importantly, delta updates do not fully reduce reflash time. As a thought experiment,
consider an update that increases the length of a function, causing all code located after it in
the image to be shifted to a greater address. Delta updates can express this change e�ciently
when it is transferred over the network, but all code after the updated function must still be
shifted in ROM, which is expensive (§3.2). Our conclusion from this thought experiment is
that an e�cient model update solution must isolate model code and data in ROM so that
they can be updated independently of the rest of the device code and data. This is exactly
what capsules aim to do.

High-Level Capsule Design

We partition ROM to separate the ML model—both its operators and its weights—from the
rest of the application. This is achieved by building the image with a special linker script
that creates a fixed-size memory section in ROM large enough to store the ML model. This
memory section is called a capsule. Because the ML model code and data are in a fixed-size
section of ROM, any layout changes in a model update are limited to that section and do not
a↵ect the ROM layout of the rest of the image. Thus, capsules can be updated independently
from the rest of the image.

Say something here about the analogy to services?

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 27

While conceptually simple, this approach is challenging for general updates. When a
capsule is updated, any pointers to the capsule’s code and data—including branches, jumps,
and function calls—may be broken and must be patched. As a concrete example, consider
placing the system’s IP network stack in a capsule and updating it. Any downcalls from
the application to the network API, and any upcalls from the radio driver into the network
stack, must be identified in ROM and patched. Avoiding a reboot is particularly challenging
because any in-RAM state for the old capsule must be transformed to work with the new
one. In a network stack, for example, IP routing state and open TCP connections must work
with the new capsule, even if the new capsule uses di↵erent data structures. Solutions to this
problem are typically complex and intrusive—for example, mRPC [mrpc] requires an update
to transform the old state appropriately, and Snap [snap] requires state to be serialized to a
canonical format before an update.

Our key observation is that, for model updates, these problems do not arise. The reason
is that ML models are pure functions. Specifically, the model exposes only a single point
of invocation—a function for ML model inference, which we call predict—that (1) returns
its output by value, and (2) maintains no state across invocations. This captures a broad
range of ML algorithms, from simple signal processing like threshold detection to deep neural
networks. Even ML algorithms with an explicit notion of state, like reinforcement learning,
are typically implemented as pure functions that explicitly pass state as input arguments
and return values.

Because ML models are pure functions that maintain no state across invocations, they
exist entirely within ROM, with absolutely no data stored in RAM between invocations. This
obviates the need to update in-RAM state, sidestepping a core challenge in implementing live
updates. The only requirement is that capsule updates are atomic—that is, model updates
must not happen concurrently with model inference.

We must also address the fact that updates may break pointers into the capsule. Fortu-
nately, the ML model has a narrow interface to the rest of the device—the predict function.
The application only interacts with the ML model via the predict function, and the model
never exposes pointers to its internals. Thus, updating the capsule can only break calls to
predict. To address this, we simply keep predict at the same location within the capsule
each time it is updated. This ensures that calls to predict are not broken upon capsule
update.

Capsules naturally fit into the standard pattern of interpreted execution of neural networks
adopted by all major deep learning frameworks including TensorFlow Lite Micro [10].
Interpreted execution enables rapid updates of models to a wide range of heterogeneous
devices without the need to deploy new operator code. Conversely, improvements in a specific
device operator code does not require modification to the model or even application code.

Capsule Generation

We now discuss how to generate an image containing a properly structured capsule. This is
needed both to program a device, and to generate a new capsule for an OTA update.

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 28

A capsule is a fixed-size ROM segment at a fixed address in ROM with the following two
properties: (1) it contains the code and/or data for an ML model, and (2) it contains an
entrypoint function, called predict above, at a fixed address. Thus, in order to build an
image containing a capsule, the application source code must specify which functions and
data belong to the capsule (i.e., are part of an ML model), and which function is the capsule
entrypoint (i.e., predict).

Our solution assumes that the program is written in C, which is standard for MCU-based
devices, and relies on attribute annotations in gcc to specify the above. As a concrete
example, capsule functions (e.g., ML operators) are annotated with .capsule-code and
capsule data (e.g., ML weights) are annotated with .capsule-data. The capsule entrypoint
(e.g., the predict function) is annotated with .capsule-entry. These annotations place the
corresponding code or data into sections in the compiled object file called .capsule-code,
.capsule-data, and .capsule-entry. When generating the image, a special linker script
assembles these sections into a capsule.

Importantly, the ML model in the capsule is compiled in relation to the rest of the
application source in order to get absolute addressing at link-time correct, as well as preserve
any references from within the model code to variables which are in the general application
as a whole, rather than just the capsule. To program a device for the first time, the capsule-
containing image can be copied into the device’s ROM as usual. For an OTA update, the
capsule’s data is extracted from the compiled image and sent to the device.

How should the linker script structure the capsule? To minimize fragmentation within
the capsule, we place the .capsule-entry section at the start of the capsule, before the
.capsule-code or .capsule-data section. This not only keeps predict at a consistent
address across updates, but also keeps the rest of capsule memory remains contiguous,
providing maximum flexibility to fit the other capsule code and data within the fixed-size
capsule.

Capsule Update

Once an updated capsule is downloaded to a device and stored in an update bu↵er in RAM,
the update must be activated. We cannot simply activate the capsule while it is in RAM,
because (1) our system cannot (without modifications) execute code from RAM, and (2)
existing calls to predict reference the address of the old capsule in ROM. Thus, we must
overwrite the old capsule in ROM with the updated data.

However, directly overwriting the old capsule is inflexible; if a problem is detected with
the new model, it is impossible to roll back. Instead, we swap the contents of capsule memory
and the update bu↵er, allowing the client to swap back to the original capsule if necessary.
The swap is implemented with the help of a temporary bu↵er provided by the caller.

How might the application determine whether to swap back to the old capsule? Capsules
are agnostic to the particular techniques that applications use; one possibility is to check if
the predictions generated by the new model are adequate. We discuss how the application
might determine this in §3.4.

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 29

// Includes
#include "minerva.h"
...
int main(){

if (update_condition)
swap_capsule();

// Application Logic
...

}

Figure 3.3: Changes to source-code required on the Edge device. Only two lines are necessary
to support - one to include the library, and one to trigger the swap.

The update bu↵er can be viewed as a second bank, similar to the two-bank model for
DFUs (§3.2). However, unlike the case of DFUs, the update bu↵er only needs to be as large
as the capsule, not as large as the whole image. Additionally, while our implementation stores
the update bu↵er in RAM, it can, in principle, be stored in ROM, in case ROM is plentiful.

On the edge device, the user must make a few changes to the device’s application code.
As shown in Figure 3.3, the Minerva API exposes a function swap capsule which updates
the capsule based on a global pointer to a bu↵er which contains the updated capsule. The
application on the device is responsible for downloading the update and calling swap capsule.
What about the case where only a function is updated, not the whole capsule?

Crucially, capsule updates must be atomic—predict must not be called concurrently
with swap capsule. As synchronization mechanisms depends on the embedded OS scheduler,
we leave it to the application to synchronize calls to predict and swap capsule to ensure
atomicity. On a system with multithreading, the application can use a mutex. On an
event-based system, the application may post calls to predict and swap capsule to the
scheduler’s event loop.

3.4 Minerva

While capsules provide a mechanism to e�ciently and flexibly update ML models, there are
several aspects to the end-to-end model update process that they do not handle. Our system
Minerva fills in the missing pieces, such as generating the C code for the model, e�ciently
transferring model updates to devices over the air, and acceptance testing of the new model
to decide whether or not to accept the update.

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 30

Minerva Client

The Minerva Client resides on the edge application and communicates with the Minerva
Server to update its ML model. An important question that arises is: How is the update
triggered? Our answer is to use a pull model. In Minerva, the application running on the
edge device decides when to update the ML model; to do so, it invokes the Minerva API,
which pulls the new model from the server. We do this because the least disruptive time
to update the ML model depends on the application, making it natural for the edge node
to decide when to trigger the update. For example, devices in Farmbeats [49] rely on solar
power and may decide when to request an ML model when energy is plentiful.

Data Transfer and Integrity

With capsules, the model update can be sent to the device using TCP [tcplp], CoAP [coap],
a specialized protocol like Flush [flush], or any other bulk transfer protocol appropriate for
the network setup and application. In our Minerva implementation, we use the HTTP library
in Zephyr OS [zephyr] to pull updates.

Model updates could su↵er from data corruption in transit. As an end-to-end integrity
check, the Minerva Server includes a checksum with the update each time the client requests
a new model version. On the client, the swap capsule function validates the checksum before
applying the update. Our implementation uses SHA-256 for the checksum, though simpler
checksums could be used instead for better performance.

Our design only protects against non-adversarial data corruption. In principle, one could
protect against adversarial data corruption by using a secure channel, such as one provided
by TLS, to transfer the data.

Acceptance Testing

A new model update may improve performance for most nodes in a deployed fleet, but
this improvement may not be consistent across all nodes. To determine if a new update
is performs well on a specific edge device, we test the model before applying the update, a
process known as “acceptance testing”. Capsules provide the flexibility to perform acceptance
testing for edge devices (§3.3).

Unfortunately, applying acceptance testing in the edge setting is often complicated by the
lack of ground-truth labels needed to evaluate model accuracy. In this section, we show how
to perform acceptance testing in the absence of ground-truth labels by applying a modified
version of discounted cumulative gain (DCG), which is commonly used in recommendation
and ranking systems [3, 48]. The high-level idea is to keep track of the most confident
predictions made by the prior model and ensure that the new model largely agrees with the
old model on those examples.

To get an estimate of how the new model compares to the old model on the distribution of
observations made by the device, we maintain a sample of observations and their corresponding
predictions and confidence scores for the currently deployed model. For this paper we consider

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 31

a uniform sampling procedure implemented using reservoir sampling but other sampling
procedures (e.g., recency biased) could be used depending on the needs of the application.
This sample is automatically maintained by the Minerva client library.

To evaluate how the new model’s predictions perform relative to the old model, we then
run the new model on all the data in the sample generating new predictions and confidence
scores. Here we assume that the prediction task is multi-class classification which is common
to many edge applications [41, 37, 6, 45, 11, 50]. We compare these predictions and confidence
scores using the following metric:

DCGminerva =
nX

i=1

(�1)1{y
old
i !=ynewi } (cnewi)

log2 (�(i) + 1)
. (3.1)

Here, n is the size of the sample, 1{yoldi ! = y
new
i } indicates the agreement in the labels between

the two models, cnewi is the confidence of the new model in it’s prediction y
new
i , and �(i) is the

rank of example i in descending order of confidence c
old
i for the old model. The magnitude of

the scalar DCGminerva indicates the agreement between the models (higher is better).
Intuitively, this metric rewards agreement and penalizes disagreement on predictions

proportional to the confidence of the new model. Meanwhile, the denominator discounts the
examples that had low confidence under the old model. This ensures that the new model
doesn’t degrade performance in settings where the old model was confident. For example, if
we have a keyboard auto-correction model, the performance may change (hopefully improve)
on rare words, but not on common English words.

Minerva uses the DCGminerva metric to decide whether to accept the new model or revert
to the old model. On downloading the new model, we swap the new capsule in and compute
the DCGminerva using Equation 3.1. If DCGminerva < threshold then the new model update
is retained. Else, we swap back to the old ML model. The threshold is hyperparameter that
can be tuned to favor fresh models or stability.

The Minerva approach to acceptance testing has the following advantages: a) Unlike
metrics such as accuracy, precision, and recall, we do not need access to the entire data-set to
evaluate and compare the two models. This is relevant in our setting, where we have limited
memory. b) We also do not need ground-truth labels, which can be hard if not impossible
to obtain on the edge. c) The new and the old models are compared locally, preserving
bandwidth, and guaranteeing data-privacy. d) As we operate over the latest data on the
edge, the Minerva is robust to data-drift and concept-drift.

Minerva Server

The Minerva Server service takes the model programmed by the application developer and
generates a corresponding C implementation. It cross-compiles this implementation for
the edge devices and, upon request, transmits the updated capsule contents along with a
checksum to a Minerva Client.

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 32

Code for model training
...

Minerva interface
server = MinervaServer(model)
server.save()
server.export()
server.deploy(deviceList)

Figure 3.4: Changes to ML training source-code required to interface with Minerva. Only
the four additional lines are necessary to interface Minerva with Tensorflow/PyTorch, while
the rest of the source-code remains unchanged.

Compilation

Upon receiving the updated model from the application developer, the Minerva Server service
generates the corresponding machine code that will replace the edge device’s model. First, C
code is generated from the given model. In our implementation, we hand-wrote the translation
of models from Python to C, but this system is agnostic to how the C code is generated. In a
production environment, TFLite, PyTorch with ONNX and Ell, or a di↵erent method could
be used to generate the corresponding implementation from the Python source code.

Once the model has been converted to C code, the Minerva Server service includes
the new model into the overall application source-code and compiles using an ARM-gcc
compiler optimized for the target platform. The generated C code includes .capsule-code,
.capsule-data, and .capsule-entry annotations that allow the linker to properly assemble
the capsule, as described in §3.3. Finally, the Minerva Server extracts the contents of the
memory sections which contain the ML graph and model, thus producing the machine-code
required by the edge device. These extracted contents are what eventually get sent to the
edge device by the Minerva Server during a Minerva update.

Using the Minerva interface, changes to user code are minimal. Minerva can integrate
with most existing edge workloads utilizing TensorFlow models for prediction with just six
lines of code added to application code on the server. Figure 3.4 shows the changes required
to the user’s Python source code in order to upload the newly trained model onto a set of
edge devices. The user constructs an instance of MinervaServer, saves and exports their
new model, and then deploys it to a list of edge devices listed in the deviceList. The rest
of the code which comes above these final four lines remains completely untouched.

Determining Update Payload

After generating the new iamge, Minerva Server determines what to send to the device.
Capsules are e�cient because they only require the ML model to be sent to the device, but

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 33

DFUs also have some benefits. With delta updates, DFUs only include the di↵ from the
previous image, which could be even smaller than the model. Additionally, while capsules
require the new model to fit within the capsule memory segment allocated in the image,
DFUs allow any change to the image.

To get the best of both worlds, Minerva combines capsules with delta updates and DFUs
to generate an optimized update payload. First, our design is to apply delta updates to
capsules, only transferring the di↵ from the previous capsule instead of the full capsule. This
reduces the network bandwidth required to download a model update. Second, if the new
model code and weights do not fit in the capsule segment on the edge device, then we fall back
to a full DFU. In this case, the Minerva Server can increase the size of the capsule segment
to fit the new model (plus some additional slack, if desired). That way, future updates that
do not further increase the model size can be done e�ciently without falling back to a full
DFU. We expect large changes that require a full DFU to be rare because models are usually
updated incrementally.

While Minerva can use fully general delta updates in principle, our implementation uses a
simplified form of delta updates. Our approach is to store operators and weights in separate
capsules that can be updated independently. In the common case where an update only
changes the model weights, only the data capsule needs to be updated; the code capsule’s
contents need not be sent over the network. Similarly, if an update only changes the model
operators (e.g., for e�ciency optimizations), then only the code capsule must be updated.
Additionally, Minerva can update just a single function within the code capsule, as long as
it does not grow in length. This is accomplished by including a header with each update
indicating the update’s length and o↵set within the capsule. The swap capsule function
(§3.3) parses the header and updates the code and data capsules in device ROM accordingly.

3.5 Evaluation

We evaluate the memory, and latency improvements to ML model updates resulting from
using capsules. Our results indicate that capsules significantly reduce the size of the update.
This results in commensurate reductions in the time to download the update and re-flash
the device. §3.5 presents the microbenchmarks and §3.5-§3.5 present end-to-end experiments.
§3.5 evaluates Minerva’s DCG-based acceptance testing and §3.5 reports on our real-world
deployment of Minerva.

Experimental Methodology/Set-Up

To understand the performance of Minerva, we measures how long it takes to update ML
models on MCUs over a wireless network and compare it to two widely used baselines: a
full DFU and an application re-installation onto the Tock embedded OS using Tockloader.
We break each measurement down into two main parts. First, we measure how long it takes
to download the full DFU or Tock Application Binary (TAB) and contrast it with the time

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 34

taken to download just the ML model. Second, we compare the time it takes to re-flash the
new firmware image or TAB, versus the time it takes to re-flash just the ML model. For ML
model updates we evaluate all the three cases: a) when only the weights need to be updated,
b) when only the operators (executable code) need to be updated, and finally c) when the
entire ML model (both the operators and weights) need to be updated.

Full Device Firmware Update

We use an Amazon AWS S3 bucket to store the Device Firmware Update binaries, and a
Nordic nRF52840 as the client. The popular nRF52840 has an ARM Cortex-M4 CPU @ 64
MHz with 1 MB ROM and 256 KB RAM. The client requests the update from the server
(“pull” model) and downloads the update over cellular IoT on a nRF9160 module. We use a
two-bank model for reliability, as discussed in §3.2.

Updating Applications in Tock

We compare the performance of Minerva to that of Tock. For consistency we again use the
Nordic nRF52840 but this time with Tock OS installed. We use the Tockloader tool to re-flash
a compiled Tock Application Binary (TAB) file containing the updated ML model onto the
board, overwriting and updating an existing application containing the old model. Tockloader
uses J-Tag to communicate with the board and thus requires a physical connection; Tock
does not support OTA. For the sake of comparison, we give Tock the benefit of doubt and
use the nRF52840 network module. Does the TAB include the whole application or just the
ML model? Explain how you use the network module?

Minerva Capsule Update

We use an Amazon AWS EC2 instance for the Minerva server, to train, statically analyze,
compile, and generate the optimized update payload. Similar to the DFU update described
above, we store the update binaries in the same S3 object store, and use the same hardware for
the client—a Nordic nRF52840 which downloads the update over cellular IoT on a nRF9160
module. Computing the optimized update payload always took less than 10 seconds.

Applications

We perform our evaluations on four real-world applications. Farmbeats is described in §3.2,
and we describe the rest here. One undergraduate student was able to port the models from
all four applications to use Minerva in less than half a day.
GesturePod [37]: GesturePod is a real-time gesture recognition device attached to white
canes to help people with visual impairments easily access their phone. As more data is
generated by users, newer models are trained, and need to be updated on the user’s cane.
GesturePod is powered by the MKR1000 development board - an ARM Cortex-M0+ CPU @
48 MHz with 32 KB of RAM and 256 KB of ROM.

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 35

Powerblade Spektacom GesturePod Farmbeats

Capsule Size (KB) 20.32 31.87 7.23 6.00
SHA-256 Hash (ms) 31.49 48.96 11.20 9.28
memcpy (ms) 0.28 0.44 0.10 0.08

Table 3.1: Microbenchmarks for a capsule update (milliseconds). Hashing the capsule far
outweights the time taken to overwrite the capsule by two orders of magnitude. This suggests
that manipulation of the data to provide security and integrity guarantees dominate the time
taken to perform the capsule update.

Spektacom [45]: Spektacom is a plug-and-play device that boosts the engagement of the
audience and players during live sports at stadiums. It is a non-intrusive sticker that collects
high-quality sensor data to capture key parameters in real time as the game is played. Like
Farmbeats, Spektacom is powered by the nRF52832 MCU, and has a BLE module.
PowerBlade [11]: Powerblade is a small, low-power AC plug load meter. It measures
real, reactive, and apparent power, and reports this data over BLE radio. ML based local
detection saves network bandwidth by allowing Powerblade to transmit just the appliance-
class information instead of the complete current and voltage trace. As Powerblade is deployed
across homes, more data is ingested, and this is used to constantly train and deploy better
models. Powerblade is powered by the nRF51822 MCU with an ARM Cortex-M0 CPU @ 16
MHz, 256 KB of ROM and 32 KB of RAM.

Microbenchmarks

A Minerva capsule update consists of two parts, hashing the received capsule section to check
for data integrity, and using memcpy to overwrite the previous capsule contents with the
updated contents. As seen in Table ??, the hash and compare section of the capsule update
far outweighs the time it takes to overwrite the capsule contents by two orders of magnitude.
Using a lighter weight checksum than SHA-256 could improve performance.

Performing a full OTA DFU involves downloading the update from a server, erasing
the memory where the binary will be stored, copying the update into the correct location
in memory (re-flash), resetting and swapping the program counter to execute the updated
application, and finally rebooting. The time taken to perform the full DFU, as shown in
Table 3.2 is largely the download time and re-flash time. By using Minerva, we reduce the size
of the updates, and thus significantly reduce the amount of data that needs to be re-flashed
and downloaded by many orders of magnitude.

When performing an application update in Tock, we compile the application with the
updated ML model into a TAB file which the Tockloader tool can then install onto the board
to replace the existing application containing the old model. Table 3.3 shows the estimated

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 36

Powerblade GesturePod Farmbeats

Connect to Server (ms) 664 425 374
Download Update (ms) 85,154 69,288 78,220
Erase Flash (ms) 5,364 4,656 5,235
Re-flash (ms) 31,272 30,876 31,312
Reset (ms) & Swap Bank 84 62 35
Reboot (ms) 822 511 508

Table 3.2: Microbenchmarks for full DFU (milliseconds). Downloading the update and
reflashing the application occupy on average 94% of the time taken to perform the DFU.
This suggests that reducing the size of data needing to be downloaded and reflashed will
speed up model updates.

Powerblade GesturePod Farmbeats

Connect to Server (ms) 664 425 374
Download Update (ms) 84,981 43,589 39,946
Read Board & App Metadata (ms) 557 569 553
Re-flash and Verify (ms) 7,063 6,675 6,669
Erase post-userspace flash page (ms) 5,976 6,109 6,098

Table 3.3: Microbenchmarks for Tockloader application install (milliseconds). The time taken
to erase the post-user space flash page is comparable to the application re-flash time itself.

download times of these TABs. I think you should cut the rest of this paragraph! It just
describes Tock... Upon starting the re-flash process, Tockloader first establishes a J-Tag
connection to the board and reads relevant board metadata as well as the application headers
of any pre-existing Tock applications to determine what it needs to replace. It then re-flashes
the TAB onto the board and verifies that it was successfully installed at the requested memory
location. Finally, Tockloader erases a flash page at the end of the memory region containing
the installed application so that the kernel can successfully find the end of the memory region
containing user applications. Let’s discuss.

Memory Footprint

Table 3.4 shows that on average, capsules in Minerva (operators and weights) are 0.04⇥ the
size of a full DFU and 0.07⇥ the size of the corresponding TAB. This is because non-ML

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 37

Powerblade Spektacom GesturePod Farmbeats

Full DFU (KB) 266.74 550.53 214.91 264.53
TAB (KB) 266.2 266.2 135.2 135.2
Operators & Weights (KB) 20.32 31.88 7.23 6.00
Operators (KB) 1.39 0.39 0.52 0.53
Weights (KB) 18.93 31.48 6.72 5.47

Table 3.4: Memory footprint (KB). Full Device Firmware Updates are approximately 30⇥
machine learning model sizes.

code, including large portions of the code associated with handling the full DFU, are not
included in the Minerva capsule. While the TABs generally have a smaller footprint than
the full DFU, they still contain Tock standard library modules which make them larger than
Minerva capsules.

Download Time

Figure 3.5 compares the download times for a full DFU, TAB, and Minerva update over a
cellular network (LTE-M). Across the board, the time taken to download Minerva capsules
are on the order of thousands of milliseconds, while the time taken to download full DFU
payloads and TABs are on the order of tens of thousands. The main factor behind these
improvements is that Minerva sends less data over the network. Our device does not have
enough ROM to execute a full DFU for Spektacom in the two-bank model (i.e., it exceeds 500
KiB). Therefore, we can not gather benchmark data for a DFU of the Spektacom application.
However, Minerva adds negligible overhead to the application binary when compared with
a full DFU, and we are able to gather benchmark data for Spektacom on Minerva. For
applications using lower-rate networks (e.g., Farmbeats, deployed in fields on LoRaWAN
networks with ⇡ 200 bits per second), the di↵erence in download time may be even more
significant.

Re-Flash Time

Figure 3.6 compares the re-flash of an entire image, a Tock application update, and a Minerva
capsule update. The di↵erence between the time taken to re-flash the Minerva updates
compared to both the full DFU and the Tock application update is orders of magnitude in
size, showing that Minerva’s updates greatly improve upon the e�ciency of code updates for
this application-space. This is largely because the device does not need to be reset during
a Minerva update, and because the memory footprint which must be re-flashed is also far
reduced in this case. A Minerva update only updates the code in the capsule in memory
and the program can immediately continue execution. Moreover, Table 3.3 also highlights

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 38

Figure 3.5: Time taken to Download Update. Downloading the full DFU and TAB far
outweigh the time taken to download Minerva updates, shown in green {ops+weights}, red
{weights}, and purple {ops}. Due to the application size, a DFU is not even possible for
Spektacom!

how within a Tock application update a significant portion of time is taken to erase the flash
page at the end of user applications after the actual re-flashing of the updated application is
complete. This highlights how Minerva updates are not only faster than Tockloader but also
more e�cient.

Total Time

A significant portion of total time taken by both DFUs and Tock application updates
corresponds to re-flashing the binary. However when performing Minerva updates, the time
taken to re-flash almost disappears in comparison to the time taken to download the update
(re-flash times in purple are unobservable in the graph, compared to the download times
in red). These results clearly emphasize the end-to-end improvements obtained through a
Minerva update over a full DFU.

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 39

Figure 3.6: Time taken to re-flash update. Notice that this is a log-linear graph. Blue
represents reflashing the entire application binary as part of a DFU, orange represents
Tockloader re-installing the TAB, and green, red, and purple represent Minerva updates of
just the ML model {operators (ops) + weights}, {weights}, and {operators} respectively.

Acceptance Testing

Each Minerva client can uniquely determine if it should accept a new update or not based on
the DCGminerva framework. Evaluating DCGminerva is challenging; even if we track when
edge devices accept/reject updates, it is impossible to tell if it was the right decision without
ground-truth labels. Hence, we use the GesturePod dataset [37], which contains real raw
sensor data together with ground-truth labels, to simulate using DCGminerva to accept or
reject updates. We identified three users from the dataset, UID 01, UID 02, UID 03, to use
in our evaluation. These were the users who had common gestures in the both training data
and the test data. We trained a classification model to predict the gesture, simulated each
user running the model on their local data, and measured the local impact of an update to
the model. Because the GesturePod dataset contains ground-truth labels, we can compare
the decisions made on the basis of DCG to ground-truth changes in model performance. The
results are in Table 3.5. In this evaluation, threshold is set to zero (a hyperparameter) - if

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 40

Figure 3.7: Time taken for complete update. This graph combines download time with
reflash time. Full DFUs (leftmost bar of each cluster) and TAB re-installs (rightmost bar of
each cluster) split time between downloading the update and re-flashing the binary. Minerva
update times, on the other hand, are dominated by time taken to download the update.
Note that the re-flash time for Minerva updates, shown in blue, are on the order of tens of
milliseconds and thus not visible.

the score is positive accept the new model, else retain the original model. When we compare
Minerva’s predictions with the labels from the dataset, we can demonstrate the e�ciency in
using IDCGminerva to carry out acceptance testing especially when getting access to labeled
data is challenging.

Deployment Experiences

We plan to open-source Minerva upon publication. We deployed Minerva on two sensor
systems that are deployed on energised electric poles (utility poles). These sensors employ
a ML model to detect high risk, yet diverse anomaly events such as vegetation contacts,
conductor shorts, etc, to detect forest fires. While these sensor systems have been deployed

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 41

Accuracy w/o Acceptance Testing (%) w/ Acceptance Testing (%) DCGminerva score

UID 01 73 ! 76 73 ! 76 18.42
UID 02 76 ! 75 76 ! 76 -6.94
UID 03 63 ! 61 63 ! 63 -10.73

Table 3.5: Accuracy changes for three model updates, with and without acceptance testing,
based on ground-truth labels. DCG accurately predicts when model updates are helpful,
without ground-truth labels.

on electric poles for utilities across di↵erent states, for this deployment, we deployed Minerva
on these platforms in northern California, and rural India.
System set-up: The sensor systems are powered by an nRF52840 (ARM Cortex M4f)
microcontroller. These devices are solar-battery powered with a 30Wh battery, and a full
charge can take between 5-10 days depending on weather, season, and deployment conditions.
These devices consume about 20mA quiescent, 120mA when transmitting, and 50mA when
receiving. They are communicate over LTE-M and LoRa (RN2903 module) depending on
availability, at 30kbps and 0.4-1kbps respectively.
Minerva updates: With Minerva we updated the ML model on the system everyday, for a
month, and faced no challenges or errors even after a month. The performance impact of
Minerva was imperceptible during normal operation: the application triggered the update at
a fixed time at night everyday, and each model was tested with the DCG metric. In three
occasions, due to di↵erences in weather pattern, from data that was used to train the model,
the Minerva Edge client rejected the update on the basis of DCGminerva.
Ease of porting: Minerva has been ported to all four motivating applications in Figure 3.2—
Farmbeats [49, 6], GesturePod [37], Spektacom [45], and Powerblade [11]—in addition to the
sensor system for electric poles described above. It took an undergraduate student half a day
to apply Minerva to all four applications.

3.6 Related Work

Prior work most relevant to our system can be broadly classified into two categories—e�cient
ML on the edge, and e↵orts in developing an operating system for the edge.

E�cient ML for Edge: ML models which achieve state of the art results on classical
datasets have largely been exorbitantly expensive for edge devices. In this setting, prior works
have proposed techniques such as quantization, sparsification, neural architecture search, etc.,
to enable machine learning model inference on memory-compute limited edge devices [27, 18].
As described in Figure 3.2, our system benefits from all the above developments. As models
get smaller (in terms of memory footprint), Minerva provides greater improvements when
compared to performing a full DFU.

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 42

There has been recent interest [9, 30] in cloud based prediction serving frameworks that
support model updates. Clipper [9] adopted a blackbox view on models and leveraged
containers with simple predict APIs to both abstract and isolate individual model logic from
the the serving systems. This is similar to our machine learning model capsule though our
approach is focused more on separating application and model logic. Pretzel [30] adopted a
whitebox view on models and introduced a range of optimizations for prediction pipelines.
These optimizations are complementary to our work.

Operating Systems for Edge Devices: Prior works have looked at developing OS for
edge devices [sos, contiki, 33, 31, 1].

Among them, [1] do not support dynamic linking/loading, and we need to perform a full
device firmware update to modify modules. This is not relevant in our setting. Other operating
systems TinyOS [tinyos-dynamic], SOS [sos], Contiki [contiki], and Zephyr [zephyr] do
support incremental code updates but su↵er from the following. SOS’s design necessitates
the use of position independent code (PIC), which, due to compiler limitations, is not fully
supported on common platforms. Contiki uses protothreads as the underlying mechanism,
and this requires application modules to be re-written around the protothreads paradigm.
These have proven to be impediments for wide spread adoption of SOS and Contiki. TinyOS
is tightly coupled with the NesC language - which introduces challenges in porting to the new
language. Further, the Tiny Manager running on the edge introduces significant memory and
performance overheads (about 7.7% of RAM, and 32% of the program memory). Tockloader
makes it possible to update applications on Tock[33], however, it also relies on PIC, and
further requires a system re-boot. In fact, it is not possible to perform OTA using Tock,
which is a critical requirement in our setting. Lastly, the embedded systems landscape
is characterized by heterogeneity, and all the above mentioned operating systems require
significant e↵orts to be ported onto new platforms. Minerva, on the other hand, incurs no
performance overheads at runtime, and as a user-level library is easily ported across platforms.

3.7 Generalizability of Capsules

On server- and laptop-class devices, service decomposition abounds. For example, microser-
vices decompose applications into independent components, and microkernels do the same for
operating systems. Capsules, too, are a form of service decomposition—they decouple ML in-
ference from the rest of the application as an independently updateable service. Can capsules
generalize beyond ML inference, to bring a more wholesale form of service decomposition to
MCU software?

• Capsules directly generalize to pure functions other than ML inference. Any “pure”
algorithms for local data processing would benefit from capsules out-of-the-box, including
simple signal processing like threshold detection.

• To support multiple entrypoints, one can place each one in its own capsule, similar to how
Minerva separates operators from weights (§3.4). This may incur ROM fragmentation,

CHAPTER 3. MINERVA: EFFICIENT ML MODEL UPDATES FOR DEEPLY
EMBEDDED MICROCONTROLLERS 43

as capsules occupy fixed positions in ROM. Alternatively, one can have a single physical
capsule entrypoint that dispatches to each logical entrypoint, like a system call handler.

• Capsules do not cleanly generalize to functions that are stateful or expose internal
pointers. A reboot would be required on updates. We cautiously speculate that capsules
would still be preferable to DFUs due to lower reflash times.

We leave a full exploration of generalizability to future work.

3.8 Conclusion

This systems investigates the model deployment stage of the ML lifecycle for MCU-based IoT
devices. Our main insight is that ML inference is a pure function. This enables capsules, a
mechanism that allows ML model updates to be deployed to MCU-based edge devices more
e�ciently and flexibly than full DFUs. We use capsules to build Minerva, an end-to-end model
update system, and demonstrate that it is up to two orders of magnitude faster compared to
a full DFU and to an application update in a state-of-the-art embedded OS.

44

Chapter 4

Conclusion

The growing complexity and size of ML models pose significant challenges for deployment
on edge devices, which are often limited by their memory and compute capabilities. These
devices, including smartphones, wearables, and microcontroller-based systems, are integral to
our daily lives, yet their constrained resources make it di�cult to leverage the full potential
of advanced ML models.

The need for local training on these devices is underscored by its benefits: enhancing user
privacy, reducing energy consumption, and minimizing bandwidth usage. The Power Optimal
Edge Training (POET) algorithm addresses the challenge of training memory-intensive ML
models on edge devices with extremely limited memory, as low as 32 KB. By employing
a novel mixed-integer linear programming approach, POET optimizes the training process
under strict memory and timing constraints, focusing on energy e�ciency. This breakthrough
allows for the deployment of SotA models, such as BERT, directly on small, low-powered
devices. This paves the way for privacy-preserving personalization and real-world applications
that were previously unfeasible due to hardware limitations. Future advancements in this
field could include integrating activation compression techniques.

The Minerva project focuses on the e�cient deployment of cloud-updated ML models
in microcontroller-based IoT devices. The key innovation in Minerva is the use of capsules,
which exploit the state-less, self-contained nature of ML inference to streamline the model
update process. This approach significantly outperforms traditional full device firmware
updates (DFUs), achieving update speeds up to two orders of magnitude faster. The capsules
enable more frequent and less disruptive updates, a crucial factor in enabling wide spread
adoption of ML-based predictions.

Together, POET and Minerva help maintaining the relevance and e↵ectiveness of ML
models in rapidly evolving real-world scenarios. These systems take a step in which edge
devices are not just passive data collectors but active participants in data analysis, all while
maintaining a strong emphasis on user privacy and energy e�ciency. As these technologies
develop further, we can expect a new-breed of edge-intelligent-applications to emerge!

45

Bibliography

[1] Arm. Mbed OS, Arm. https://www.mbed.com/en/platform/mbed-os/. Accessed
2020. 2019.

[2] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. “E�cient Combination
of Rematerialization and O✏oading for Training DNNs”. In: Advances in Neural
Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates,
Inc., 2021, pp. 23844–23857. url: https://proceedings.neurips.cc/paper/2021/
file/c8461bf13fca8a2b9912ab2eb1668e4b-Paper.pdf.

[3] K. Bhatia et al. The extreme classification repository: Multi-label datasets and code.
2016. url: http://manikvarma.org/downloads/XC/XMLRepository.html.

[4] Davis Blalock et al. “What is the State of Neural Network Pruning?” In: Proceedings
of Machine Learning and Systems. Ed. by I. Dhillon, D. Papailiopoulos, and V. Sze.
Vol. 2. 2020, pp. 129–146. url: https://proceedings.mlsys.org/paper/2020/file/
d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

[5] Han Cai, Ligeng Zhu, and Song Han. “ProxylessNAS: Direct Neural Architecture
Search on Target Task and Hardware”. In: International Conference on Learning
Representations. 2019. url: https://arxiv.org/pdf/1812.00332.pdf.

[6] Tusher Chakraborty et al. “Fall-curve: A Novel Primitive for IoT Fault Detection and
Isolation”. In: Proceedings of the 16th ACM Conference on Embedded Networked Sensor
Systems. SenSys ’18. Shenzhen, China: ACM, 2018, pp. 95–107. isbn: 978-1-4503-5952-8.
doi: 10.1145/3274783.3274853. url: http://doi.acm.org/10.1145/3274783.
3274853.

[7] Jianfei Chen et al. “ActNN: Reducing Training Memory Footprint via 2-Bit Activation
Compressed Training”. In: International Conference on Machine Learning. 2021.

[8] Tianqi Chen et al. “Training Deep Nets with Sublinear Memory Cost”. In: CoRR
abs/1604.06174 (2016). arXiv: 1604.06174. url: http://arxiv.org/abs/1604.
06174.

https://www.mbed.com/en/platform/mbed-os/
https://proceedings.neurips.cc/paper/2021/file/c8461bf13fca8a2b9912ab2eb1668e4b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c8461bf13fca8a2b9912ab2eb1668e4b-Paper.pdf
http://manikvarma.org/downloads/XC/XMLRepository.html
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://arxiv.org/pdf/1812.00332.pdf
https://doi.org/10.1145/3274783.3274853
http://doi.acm.org/10.1145/3274783.3274853
http://doi.acm.org/10.1145/3274783.3274853
https://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174

BIBLIOGRAPHY 46

[9] Daniel Crankshaw et al. “Clipper: A Low-Latency Online Prediction Serving System”.
In: 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). Boston, MA: USENIX Association, Mar. 2017, pp. 613–627. isbn: 978-
1-931971-37-9. url: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/crankshaw.

[10] Robert David et al. “TensorFlow Lite Micro: Embedded Machine Learning for TinyML
Systems”. In: Proceedings of Machine Learning and Systems. Ed. by A. Smola, A.
Dimakis, and I. Stoica. Vol. 3. 2021, pp. 800–811. url: https://proceedings.mlsys.
org/paper/2021/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

[11] Samuel DeBruin et al. “PowerBlade: A Low-Profile, True-Power, Plug-Through Energy
Meter”. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. SenSys ’15. Seoul, South Korea: ACM, 2015, pp. 17–29. isbn: 978-1-4503-3631-
4. doi: 10.1145/2809695.2809716. url: http://doi.acm.org/10.1145/2809695.
2809716.

[12] Don Kurian Dennis et al. “EdgeML: Machine Learning for resource-constrained edge
devices”. In: http://github.com/Microsoft/EdgeML. 2019. url: https://github.
com/Microsoft/EdgeML.

[13] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. url:
http://arxiv.org/abs/1810.04805.

[14] Zhen Dong et al. “HAWQ: Hessian AWare Quantization of Neural Networks With
Mixed-Precision”. In: The IEEE International Conference on Computer Vision (ICCV).
Oct. 2019.

[15] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks”. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. url: https://openreview.net/forum?id=rJl-b3RcF7.

[16] João Gama et al. “A survey on concept drift adaptation”. In: vol. 46. 4. ACM New
York, NY, USA, 2014, pp. 1–37.

[17] Andreas Griewank and Andrea Walther. “Algorithm 799: Revolve: An Implementation
of Checkpointing for the Reverse or Adjoint Mode of Computational Di↵erentiation”.
In: ACM Trans. Math. Softw. 26.1 (Mar. 2000), pp. 19–45. issn: 0098-3500. doi:
10.1145/347837.347846. url: https://doi.org/10.1145/347837.347846.

[18] C. Gupta et al. “ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices”.
In: Proceedings of the International Conference on Machine Learning. Aug. 2017.

[19] Andrew Hard et al. “Federated learning for mobile keyboard prediction”. In: arXiv
preprint arXiv:1811.03604 (2018).

[20] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://proceedings.mlsys.org/paper/2021/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://doi.org/10.1145/2809695.2809716
http://doi.acm.org/10.1145/2809695.2809716
http://doi.acm.org/10.1145/2809695.2809716
http://github.com/Microsoft/EdgeML
https://github.com/Microsoft/EdgeML
https://github.com/Microsoft/EdgeML
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846

BIBLIOGRAPHY 47

[21] Chien-Chin Huang, Gu Jin, and Jinyang Li. “Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping”. In: Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 2020, pp. 1341–1355.

[22] Forrest N. Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and ¡0.5MB model size. 2016. arXiv: 1602.07360 [cs.CV].

[23] Paras Jain et al. “Checkmate: Breaking the Memory Wall with Optimal Tensor Rema-
terialization”. In: arXiv preprint arXiv:1910.02653 (2020).

[24] Junsu Jang and Fadel Adib. “Underwater Backscatter Networking”. In: Proceedings
of the ACM Special Interest Group on Data Communication. SIGCOMM ’19. Beijing,
China: Association for Computing Machinery, 2019, pp. 187–199. isbn: 9781450359566.
doi: 10 . 1145 / 3341302 . 3342091. url: https : / / doi . org / 10 . 1145 / 3341302 .
3342091.

[25] Gaurav et al. Kapoor. “CoreML, Apple”. In: 2019. url: https://developer.apple.
com/documentation/coreml.

[26] Marisa Kirisame et al. “Dynamic Tensor Rematerialization”. In: International Confer-
ence on Learning Representations. 2021. url: https://openreview.net/forum?id=
Vfs_2RnOD0H.

[27] A. Kumar and M. Goyal S. amd Varma. “Resource-e�cient Machine Learning in 2KB
RAM for the Internet of Things”. In: Proceedings of the International Conference on
Machine Learning. Aug. 2017.

[28] Nicholas D. Lane et al. “DeepX: A Software Accelerator for Low-Power Deep Learning
Inference on Mobile Devices”. In: Proceedings of the 15th International Conference on
Information Processing in Sensor Networks. IPSN ’16. Vienna, Austria: IEEE Press,
2016. isbn: 9781509008025.

[29] Juhyun Lee et al. “On-Device Neural Net Inference with Mobile GPUs”. In: CoRR
abs/1907.01989 (2019). arXiv: 1907.01989. url: http://arxiv.org/abs/1907.
01989.

[30] Yunseong Lee et al. “PRETZEL: Opening the Black Box of Machine Learning Prediction
Serving Systems”. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 611–
626. isbn: 978-1-939133-08-3. url: https://www.usenix.org/conference/osdi18/
presentation/lee.

[31] Philip Levis et al. “TinyOS: An operating system for sensor networks”. In: Ambient
intelligence. Springer, 2005, pp. 115–148.

[32] Philip Levis et al. “Trickle: A Self-Regulating Algorithm for Code Propagation and
Maintenance in Wireless Sensor Networks”. In: Proceedings of the 1st Conference on
Symposium on Networked Systems Design and Implementation - Volume 1. NSDI’04.
San Francisco, California: USENIX Association, 2004, p. 2.

https://arxiv.org/abs/1602.07360
https://doi.org/10.1145/3341302.3342091
https://doi.org/10.1145/3341302.3342091
https://doi.org/10.1145/3341302.3342091
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://openreview.net/forum?id=Vfs_2RnOD0H
https://openreview.net/forum?id=Vfs_2RnOD0H
https://arxiv.org/abs/1907.01989
http://arxiv.org/abs/1907.01989
http://arxiv.org/abs/1907.01989
https://www.usenix.org/conference/osdi18/presentation/lee
https://www.usenix.org/conference/osdi18/presentation/lee

BIBLIOGRAPHY 48

[33] Amit Levy et al. “Multiprogramming a 64 kB Computer Safely and E�ciently”. In:
Proceedings of the 26th Symposium on Operating Systems Principles. SOSP ’17. Shang-
hai, China: ACM, 2017, pp. 234–251. isbn: 978-1-4503-5085-3. doi: 10.1145/3132747.
3132786. url: http://doi.acm.org/10.1145/3132747.3132786.

[34] Tian Li et al. “Federated Learning: Challenges, Methods, and Future Directions”. In:
IEEE Signal Processing Magazine 37.3 (2020), pp. 50–60. doi: 10.1109/MSP.2020.
2975749.

[35] E. Park, J. Ahn, and S. Yoo. “Weighted-Entropy-Based Quantization for Deep Neural
Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017, pp. 7197–7205. doi: 10.1109/CVPR.2017.761.

[36] Shishir G Patil et al. “Poet: Training neural networks on tiny devices with integrated
rematerialization and paging”. In: International Conference on Machine Learning.
PMLR. 2022, pp. 17573–17583.

[37] Shishir G. Patil et al. “GesturePod: Enabling On-device Gesture-based Interaction
for White Cane Users”. In: Proceedings of the 32Nd Annual ACM Symposium on
User Interface Software and Technology. UIST ’19. New Orleans, LA, USA: ACM,
2019, pp. 403–415. isbn: 978-1-4503-6816-2. doi: 10.1145/3332165.3347881. url:
http://doi.acm.org/10.1145/3332165.3347881.

[38] David Patterson et al. “The Carbon Footprint of Machine Learning Training Will
Plateau, Then Shrink”. In: arXiv preprint arXiv:2204.05149 (2022).

[39] Matthias Paulik et al. “Federated Evaluation and Tuning for On-Device Personalization:
System Design & Applications”. In: CoRR abs/2102.08503 (2021). arXiv: 2102.08503.
url: https://arxiv.org/abs/2102.08503.

[40] Quan Peng et al. “Capuchin: Tensor-based GPU Memory Management for Deep
Learning”. In: ASPLOS. Mar. 2020. url: https://www.microsoft.com/en-us/
research/publication/capuchin-tensor-based-gpu-memory-%5C%20management-
for-deep-learning/.

[41] PicoVoice. Edge Voice AI Platform. https://picovoice.ai/. Accessed 2020. 2019.

[42] Jie Ren et al. “ZeRO-O✏oad: Democratizing Billion-Scale Model Training”. In: 2021
USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association,
July 2021, pp. 551–564. isbn: 978-1-939133-23-6. url: https://www.usenix.org/
conference/atc21/presentation/ren-jie.

[43] Aashaka Shah et al. “Memory Optimization for Deep Networks”. In: International
Conference on Learning Representations. 2021. url: https://openreview.net/forum?
id=bnY0jm4l59.

[44] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[45] Spektacom. “Spektacom Inc.” In: 2019. url: https://www.spektacom.com/.

https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
http://doi.acm.org/10.1145/3132747.3132786
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/CVPR.2017.761
https://doi.org/10.1145/3332165.3347881
http://doi.acm.org/10.1145/3332165.3347881
https://arxiv.org/abs/2102.08503
https://arxiv.org/abs/2102.08503
https://www.microsoft.com/en-us/research/publication/capuchin-tensor-based-gpu-memory-%5C%20management-for-deep-learning/
https://www.microsoft.com/en-us/research/publication/capuchin-tensor-based-gpu-memory-%5C%20management-for-deep-learning/
https://www.microsoft.com/en-us/research/publication/capuchin-tensor-based-gpu-memory-%5C%20management-for-deep-learning/
https://picovoice.ai/
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://openreview.net/forum?id=bnY0jm4l59
https://openreview.net/forum?id=bnY0jm4l59
https://www.spektacom.com/

BIBLIOGRAPHY 49

[46] Mingxing Tan and Quoc V. Le. “E�cientNetV2: Smaller Models and Faster Training”.
In: CoRR abs/2104.00298 (2021). arXiv: 2104.00298. url: https://arxiv.org/abs/
2104.00298.

[47] Alexey Tsymbal. “The Problem of Concept Drift: Definitions and Related Work”. In:
May 2004.

[48] Hamed Valizadegan et al. “Learning to Rank by Optimizing NDCG Measure”. In:
Advances in Neural Information Processing Systems 22. Ed. by Y. Bengio et al. Curran
Associates, Inc., 2009, pp. 1883–1891. url: http://papers.nips.cc/paper/3758-
learning-to-rank-by-optimizing-ndcg-measure.pdf.

[49] Deepak Vasisht et al. “Farmbeats: An iot platform for data-driven agriculture”. In: 14th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
17). 2017, pp. 515–529.

[50] Nicolas Villar et al. “Project Zanzibar: A Portable and Flexible Tangible Interaction
Platform”. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. CHI ’18. Montreal QC, Canada: Association for Computing Machinery, 2018.
isbn: 9781450356206. doi: 10.1145/3173574.3174089. url: https://doi.org/10.
1145/3173574.3174089.

[51] Yue Wang et al. “E2-Train: Training State-of-the-art CNNs with Over 80% Energy
Savings”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach
et al. Curran Associates, Inc., 2019, pp. 5138–5150. url: http://papers.nips.cc/
paper/8757-e2-train-training-state-of-the-%5C%20art-cnns-with-over-80-
energy-savings.pdf.

https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2104.00298
http://papers.nips.cc/paper/3758-learning-to-rank-by-optimizing-ndcg-measure.pdf
http://papers.nips.cc/paper/3758-learning-to-rank-by-optimizing-ndcg-measure.pdf
https://doi.org/10.1145/3173574.3174089
https://doi.org/10.1145/3173574.3174089
https://doi.org/10.1145/3173574.3174089
http://papers.nips.cc/paper/8757-e2-train-training-state-of-the-%5C%20art-cnns-with-over-80-energy-savings.pdf
http://papers.nips.cc/paper/8757-e2-train-training-state-of-the-%5C%20art-cnns-with-over-80-energy-savings.pdf
http://papers.nips.cc/paper/8757-e2-train-training-state-of-the-%5C%20art-cnns-with-over-80-energy-savings.pdf

	Contents
	List of Figures
	List of Tables
	Introduction
	POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging
	Introduction
	Related Work
	Background
	Integrated paging and rematerialization
	POET: Private Optimal Energy Training
	Evaluation
	Conclusion

	Minerva: Efficient ML Model Updates for Deeply Embedded Microcontrollers
	Introduction
	Background
	Capsules
	Minerva
	Evaluation
	Related Work
	Generalizability of Capsules
	Conclusion

	Conclusion
	Bibliography

