
Better Embedded Design Tools with Automated Reasoning

By

Rohit Ramesh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Prabal Dutta, Chair
Alice Agogino

Bjoern Hartmann
Sanjit Seshia

Fall 2023

Better Embedded Design Tools with Automated Reasoning

Copyright 2023
By

Rohit Ramesh

1

Abstract

Better Embedded Design Tools with Automated Reasoning

By

Rohit Ramesh

Doctor of Philosophy in Computer Science

University of California, Berkeley

Prabal Dutta, Chair

Contemporary tools for the design of embedded systems, task-specific electronic devices, are
built on a paradigm that has not fundamentally changed since the era of pen-and-paper
drafting despite new computational tools that enable new, better workflows for designers
and engineers. Embedded systems are the glue we use to connect the digital and physical
worlds, letting us leverage the connectivity and automation of computers to solve problems
from home automation to battlefield awareness. More user friendly tooling would reduce skill
requirements, speed up design cycles, and allow more people to solve their problems with
embedded systems. Contemporary Electronic Design Automation (EDA) tools are designed
around a single step in the design process, board layout, where an electrical schematic is
turned into a design for a printed circuit board, the copper and fiberglass base that connects
all the other components in a system. However, engineers go through a series of phases before
they reach board layout: exploring the problem they are trying to solve, sketching out a
high-level system architecture, and refining that into a well-defined electrical circuit. Better
EDA tools would fit more naturally into this workflow, existing to support users in earlier
phases, presenting them with information as it becomes relevant, and automating routine or
repetitive work.

This dissertation describes two such tools, both built by formulating the design process
in mathematical terms and using algorithms to reason about our formalisms, all while
wrapped in user-friendly interfaces. The first tool, Embedded Design Generation (EDG) is
a proof-of-concept system meant to push the limits of automation in the embedded design
process. Given a high-level specification for a device it uses satisfiability solvers to synthesize,
from whole cloth, a design meeting that spec. The second, Polymorphic Blocks, uses block
diagrams to represent designs in arbitrary stages of construction and propagator semantics
for error checking, predictive suggestions, and other features.

i

Contents

Contents i

1 Introduction 1
1.1 The Modern Embedded Development Process 3

1.1.1 Specification Finding . 4
1.1.2 System Architecture Development 5
1.1.3 Schematic Capture . 7
1.1.4 Board Layout . 10

1.2 Evaluating Embedded Development Tools 11
1.3 Using Automated Reasoning . 12
1.4 Summary . 13
1.5 Statement of Prior Publication . 13

2 Embedded Design Generation 15
2.1 Introduction . 15
2.2 Related Work . 17

2.2.1 General EDA . 17
2.2.2 PBD and Domain-Specific Tools . 18

2.3 Methodology . 19
2.4 EDG Prototype Architecture . 22

2.4.1 Blocks, Links, and Ports . 23
2.4.2 Type Signatures . 23
2.4.3 Design Space Model . 25
2.4.4 SMT encoding, solving, and decoding 26

2.5 Type System Design . 26
2.5.1 Software and Hardware Modeling . 26
2.5.2 Ports and Links . 27
2.5.3 Components . 28

2.6 Evaluation . 29
2.6.1 Basic Synthesis Tasks . 31
2.6.2 Inferring Missing Design Elements 32
2.6.3 Preservation of Function . 32

ii

2.6.4 Performance . 32
2.7 Discussion . 33

2.7.1 Performance and Optimization . 33
2.7.2 Type System Fidelity . 34
2.7.3 Usability . 35

2.8 Conclusion . 35

3 Polymorphic Blocks 37
3.1 Introduction . 37

3.1.1 Statement on Author Contributions 39
3.2 Related Work . 39

3.2.1 Electronics and HCI . 39
3.2.2 PCB Design Tools . 39
3.2.3 Chip Design and Hardware Description Languages 40

3.3 System Design . 41
3.3.1 Block Diagram Model . 42
3.3.2 Electronics Model and Libraries . 44
3.3.3 Hardware Description Language . 45
3.3.4 Visualization and Refinement Interface 48
3.3.5 Board Generation . 48

3.4 System Implementation . 48
3.4.1 Compiler Structure . 48
3.4.2 Block Diagram Layout . 49

3.5 Example Applications . 49
3.5.1 Simon . 49
3.5.2 Datalogger . 50

3.6 User Study: Methodology . 51
3.6.1 Participants . 51
3.6.2 Structure . 51

3.7 User Study: Results . 52
3.7.1 Project: Power Meter . 52
3.7.2 Project: Thermistor Reader . 52
3.7.3 Project: Multifunction Instrument 53
3.7.4 Advantages . 53
3.7.5 Limitations . 55
3.7.6 Part Building . 56
3.7.7 Graphical Interfaces . 56
3.7.8 Design Time . 56

3.8 Limitations and Future Work . 57
3.8.1 Library-Based Approach . 57
3.8.2 Electronics Model . 57
3.8.3 Users and User Study . 57

iii

3.8.4 Graphical Interfaces . 58
3.9 Conclusion . 58

4 Conclusion 60

Bibliography 62

iv

Acknowledgments

I would like to start by thanking Prabal Dutta, my advisor for the whole of my nine years
as a PhD student. His support and advice has been invaluable. I would not have made it
this far without his insight into research topics, engineering decisions, and making my work
presentable to an audience.

Professors Sanjit Seshia and Edward A. Lee also have my thanks for taking the time to
speak to me about the more formal, mathematical side of my work. Their efforts shaped my
approach to modeling messy, real-world problems in a rigorous, efficient way.

Of my fellow students, I would like start by singling out Richard Lin. He has focused on the
same problems as me but approached them from a very different, yet highly complementary,
direction. His dedication to usability and user testing has meant our joint work is more
approachable to a wider audience. Without his influence I would likely be building technically
interesting tools that nobody outside of a small circle would be able to use. Instead, I’ve
been able to contribute to a platform that has the potential to help a wide audience.

Lastly, I’d like to thank my fellow members of Lab11. The lab has helped keep me
grounded and pulled me out of my shell when I’ve needed it most. In particular Meghan
Clark, Pat Panutto, and Branden Ghena took it upon themselves to mentor and support me
whenever I was having a difficult time. I wouldn’t have made it here without them all and I
am immensely grateful.

This work was supported in part by STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA; the National Science Foundation under grant(s)
CPS-1239031; the NSF/Intel Partnership on Cyber-Physical System Security and Privacy
under award proposal title “Synergy: End-to-End Security for the Internet of Things: NSF
Proposal No. 1505684”; DARPA CRAFT; ExCAPE: Expeditions in Computer Augmented
Program Engineering (NSF grant CCF-1139138); NSF CNS 1505773, CNS 1822332, Synergy:
Collaborative: CPS-Security: End-to-End Security for the Internet of Things; the CONIX
Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA; and in part with funds from the Paul and Judy Gray Alumni
Presidential Chair in Engineering Excellence.

1

Chapter 1

Introduction

Embedded systems are a critical part of the modern world because they are the interface
between digital systems and the physical environment, appearing in a massive array of forms
and with many diverse uses. Programmatic observation and control of the real world is
now a near-ubiquitous fact of life. Even the simplest modern microwave is an embedded
system; it contains electronic components that sense and manipulate the environment, those
components are controlled by a processor, and the device as a whole exists to do a small set
of tasks. Unlike general purpose systems like computers and smartphones, which are built to
run arbitrary applications, embedded systems are built to perform a narrow range of tasks.
This focus means that an embedded system for home automation, while still interacting with
the environment and containing a processor, will look nothing like a drone or a robot.

Embedded development tools have to handle not just diversity in system design, but the
corresponding diversity in approaches to design. What matters to a developer can vary wildly
based on their project. Common metrics like system cost and time-to-market exist alongside
metrics that appear less frequently, like aesthetic beauty. Developers also choose to prioritize
different decisions; where one developer might start by dividing their design into high-level
building blocks, another may zoom in on one critical component and expand outwards from
there. Even critical elements like testing vary based on factors such as required turn-around
time, budget, or availability of simulation tools.

Modern embedded development tools are built around a single, easily-modeled phase in
the design process, ignoring the creative core of embedded development. Tools like KiCad
[29], Eagle [3], and Altium [1] exist to support the design of printed circuit boards (PCBs),
while most of the creative decision making happens as users design circuits. Contemporary
embedded tooling provides only bare-bones assistance with parts selection, error checking,
design organization, and other aspects of circuit design. This lack of meaningful support
means that users require more knowledge and skill to design embedded systems than is
otherwise neccesary.

Embedded development tools built using techniques from automated reasoning can better
serve designers by intelligently presenting useful information, and automating rote work while
preserving their freedom in how to approach the design process. We propose a methodology

2

that accomplishes this by modeling system designs mathematically, such that an incomplete
or in-progress design simply corresponds to an unfinished model. Automated reasoning, built
to analyze general mathematical models, can be incorporated into a backend that sees no
difference between designs in any state of completion and produces inferences regardless.
Embedded development tools can then manage the correspondence between an easy-to-use,
user-facing frontend and the underlying mathematical model. This allows us to present
inferences from the backend in the form of auto-completion suggestions, context-aware search,
robust error checking, and other desirable features without artificially limiting how users
interact with our tools or forcing them into a narrow workflow.

We evaluate our methodology along three core axes: automation, salience and ergonomics.
Automation is the degree to which the user has to do unnecessary or repetitive work, with
more wasted effort meaning a less automated tool. Salience considers what information is
presented to the user and how useful it is. Tools with good salience proactively show the
user information as it is needed, without polluting their environment with noise. Ergonomics
looks at how well the tool fits a user’s workflow and mental models, specifically whether they
have to divert from a “natural” process in order to accommodate a tool’s idiosyncrasies.

Our methodology can improve on contemporary practice because automated reasoning
tools can work with a design flexibly, without introducing artificial constraints that would be
reflected onto users. The field of automated reasoning broadly covers algorithms that can
perform mathematical reasoning tasks without human intervention. This runs the gamut
from tools that evaluate and simplify systems of equations to more complex algorithms that
can search for proofs or solve constraint satisfaction problems. Our work relies on the fact
that, if a complete design can be expressed as a set of mathematical statements, incomplete
designs can be seen as sets missing some of those statements. Automation comes from tools
that can look at a set of statements and generate new statements, pushing an incomplete
design closer to completion. Certain inferences, like the existence of an error, are produced
only when salient because the very fact that you can derive an error is evidence that the error
is relevant. Different approaches to the design process present as different ways to assemble a
set of statements; ergonomic tools are then a byproduct of how any set is a valid target for
automated reasoning. Automated reasoning is a fundamental part of how our methodology
produces usable design tools.

This dissertation covers two tools built with this philosophy. The first, Embedded Design
Generation (EDG), is a proof-of-concept tool meant to push the boundaries of automation
by translating high-level requirements and a space of possible designs into a constraint
satisfaction problem that a satisfiability solver can solve. The second, Polymorphic Blocks
(PolyBlocks), builds a design support tool around block diagrams, translating those diagrams
into equational relationships that a propagator network can evaluate in order to provide
features like auto-complete and robust error checking.

3

Figure 1.1: The contemporary embedded development process consists of
four major steps. Specification Finding explores an initial problem statement,
making the project goals more explicit and evaluating possible implementation
strategies. System Architecture is the meat of the design process where a high-level
sketch of a design is refined into a concrete circuit schematic. Schematic Capture
has designers performing data-entry, digitizing the schematic for later use. Finally,
Board Layout is when the schematic is turned into a design for a Printed Circuit
Board (PCB), suitable for manufacture. In practice there is some flexibility in the
process, with backtracking being common and board layout sometimes dropped
entirely when no PCB is needed.

1.1 The Modern Embedded Development Process
The existing paradigm for circuit design follows the same flow as any other design process,
moving from a highly-abstract initial conception of a device through ever more concrete
steps until the device is sufficiently well defined that it can be fabricated. The process, as
shown in figure fig. 1.1, flows from an initial problem statement or specification, usually
rendered in non-formal, human-readable language, that defines what the designer is trying
to achieve. This problem statement usually is not sufficiently well defined to serve as a
specification for the rest of the work. During specification finding designers gather information
and explore possible solutions, producing requirements that define a high-level strategy for
future engineering efforts. Commonly this leads to a system architecture design phase where
a high-level, abstract sketch of the target system, usually in the form of a block diagram,
is refined into a circuit diagram that explicitly defines all the components used and how
they are electrically connected. This is where much of the creative and skilled work in the
embedded design process lies; engineers draw on information from datasheets, component
libraries, and other sources, as well as their own skill and experience, to ensure they produce
a functioning design that satisfies their requirements. Schematic capture is where Electronic
Design Automation (EDA) tool suites like Eagle and KiCad enter the development process.
These initial tools act an entry point, allowing designers to digitize their circuits for future
steps in the process. Such suites provide tools to design Printed Circuit Boards (PCBs):
fiberglass panels which components can be soldered into, with copper traces connecting those

4

components as specified by the schematic. PCB designs (also called board layouts) can then
be manufactured, providing the physical medium to which components are soldered, creating
a finished embedded system.

Our model of the design process is based on Lin et al. [35], where we interviewed 15
participants in a semi-structured manner. Starting with background information, including
motivations, designs, and views on the EDA process, we questioned them on their process as
they moved from idea to final device. Based on those responses, we then went into depth on
each step of that process, examining tools used, pain points, references used, and general
suggestions or comments. Interviews averaged 90 minutes with a standard deviation of 29
minutes, and were conducted either in-person at the participant’s workplace or through
videoconference. Utilizing the principles of contextual inquiry [6], we asked for an example
design to ground discussions when possible. A majority of participants were able to do so, but
some could not because of confidentiality or lost files; we asked them to either visualize their
designs or consider stock schematic and board layout images. Interviews were conducted by
one interviewer and audiotaped with the participant’s consent. One researcher, experienced
with board design and familiar with most of the tools discussed, then conducted an open
coding phase over the transcriptions, and further grouped codes into related topics [58]. From
these, we looked for themes that both had design implications for EDA tools and either had
support among multiple participants or were notable outliers, distilling them into the model
in fig. 1.1.

1.1.1 Specification Finding
A project’s initial problem statement will rarely be well-defined enough for implementation
work to begin. Instead designers start by gathering preliminary information in a process
we call Specification Finding. The goal is to go from a broad idea—for example, wanting
to measure crop growth in a farm—to a more concrete set of requirements—say, measuring
stalk height and water retention at least once every day. Better defined requirements guide
future steps in the development process and shape the implementation of the target device.

Projects go about choosing requirements and specifications in myriad ways, as no one
technique or class of techniques, is universally appropriate. Someone designing a cash register
may build cardboard mockups and test how comfortable they are to use. Someone else,
designing industrial automation systems, might spend time taking measurements in a factory
to know what extremes of temperature and vibration their device has to survive. The
requirements important to a project vary wildly, leading to a diversity of techniques for
discovering them.

No one tool or descriptive format can capture a useful range of high-level specifications
while also connecting to lower-level tools that are more aware of the electronic domain.
Instead, we find that participants use a wide variety of representations that don’t directly
connect to lower level tools, like lists, whiteboard drawings, and slide decks. Participants often
used multiple representations, spanning multiple abstraction levels, in concert; one project’s

5

specifications included, for instance, checklists in shared documents alongside datasheets for
parts that needed to be in the final design.

Importantly, specification finding is not a static process and the requirements themselves
change over time. Participants noted that specifications should be treated as living documents
that are updated as the design process unearths new complications. Some changes, like those
triggered when designers discover a requirement is impractical, can result in backtracking
that touches every part of a project. In other situations, participants described realizing
that a requirement they chose didn’t actually solve their ultimate problem, forcing them to
rethink what needed to be in their specification.

Our participants were skeptical of domain specific tools for specification finding because
of its fluid nature and how it touches every other step in the design process. Such a tool
would have to be able to encode broad requirements for a system, reason about how an
implementation affects those requirements, and deal with a constant process of back-and-forth
as user observations, the current system’s design, and a living specification influence each
other. While this might be possible for a carefully chosen subset of requirements, it is not
possible for the general case. This becomes obvious when you consider some of the more
novel requirements our participants discussed, like aesthetic beauty and ease-of-use. Allowing
designers to handle these concerns themselves is better than trying to force specification
finding into the more rigid framework a support tool would require.

1.1.2 System Architecture Development
System architecture is the meat of the embedded development process; going from a sketch of
a system to a finalized circuit requires repeatedly evaluating design alternatives, incorporating
external information, ensuring system correctness, and making creative choices. Engineers
start this phase with a vague idea of how to implement their device. Most of the details
are left undefined and what is known can vary wildly based on the designer and project.
System architecture starts a process of gradual refinement where details of implementation
are incrementally filled in: splitting a design into separate regions, choosing components,
connecting interfaces, and so on. By the end, they will have a complete, unambiguous circuit
design, which serves as a bottleneck for the rest of the embedded design process. During
system architecture, designers are constrained by their specification, available resources, the
results of testing, and a wide variety of other concerns they must balance. After the system
architecture step, designers are constrained by their circuit design, with other factors playing
comparatively small roles.

Despite the multifaceted balancing act that designers must perform, they represented
designs in the same way across projects with system architecture diagrams. Architecture
diagrams are, fundamentally, block diagrams. Blocks themselves can range from capturing a
single component, such as a resistor or LED, to representing large portions of a design, like
the power circuitry or all of the sensors in a system. Links between blocks represent connected
interfaces, flows of some resource between the connected blocks, like power through some

6

wires or data on a bus. As with blocks, links can be precise, capturing single wires in the
circuit, or more general, as with an interface for some “data” that has been left unspecified.

Architecture diagrams, and the elements within them, exist on a spectrum from abstract
and ambiguous, with critical information missing, to complete and concrete, unambiguous,
with all the information needed for future steps. At their most abstract one finds blocks for
“power” and links carrying “signals”. This is common during the early system architecture
phase, where ambiguous parts of a diagram serve as placeholders for later work. Over the
course of the design process, architecture diagrams become more concrete. Abstract blocks are
replaced with better defined versions, until they represent individual electronic components.
The same applies for links, which become individual wires connecting pins. A finished design
contains a schematic within it, like the one in fig. 1.2a, that can be extracted for use elsewhere.

For many of our participants, the process of designing a circuit is the process of changing
and refining the architecture diagram. Each of the creative choices made by a designer
are captured in incremental changes to the diagram. Designing a power architecture is the
same as going into the corresponding block and populating it with sub-blocks for battery
management, voltage regulation, or anything else needed to handle the parent power block’s
responsibilities. Choosing a communications bus is the same as annotating a connection for
“sensor data” with a specific protocol, possibly even splitting it into the individual wires that
protocol uses. Picking parts is the same as changing a block’s name from something more
abstract, like “microcontroller” or “camera”, to the part number for a specific component.
Over time, an architecture diagram will slowly change from a gross overview of a design to a
fully-specified representation of the final circuit with all the information needed for board
layout.

As with specification finding, participants worked with the system architecture using
unspecialized tools like whiteboards, graphics software, PowerPoint, or Vizio. Even those
participants who used schematic capture tools here mentioned that they did so in a non-
functional capacity, as block diagram drawing tools, rather than tools that could assist in
any domain specific way.

However, unlike specification finding, which requires generic tools because of the diver-
sity of forms a specification can take, participants near-universally represented the system
architecture as a block diagram. The example diagrams provided by our study participants
tended to be very similar both structurally and representationally. Participants tended to
divide designs into similar functional components; blocks for power supplies, processing,
sensors, and actuators were extremely common. Likewise, participants chose to capture
similar information in their diagrams; the data moving over a bus was usually preserved,
while details like the bus’ full protocol and connections to ground were often dropped. Given
this relative homogeneity, at least when compared to a project’s specifications, it is surprising
that assistive tools for system architecture are not in common use.

7

(a) Circuit Schematic (b) Board Layout

Figure 1.2: A blinking LED circuit [50]. The schematic (a) is depicted with
standard symbols for the components (red, blue labels); their interfaces, here called
pads (red); and the connections between them, here wires (green). The corresponding
board (b) also has components (blue, grey labels); interfaces, here pads (gold); and
connections, here traces (red and green).

1.1.3 Schematic Capture
Once a circuit has been designed in the system architecture phase, it needs to be digitized
for later steps with schematic capture software. Schematic editors are usually the first EDA
specific tool a designer encounters in any project. During schematic capture developers extract
the electrical circuit from their architecture diagram, retaining only basic part choice and
connectivity information devoid of higher order structure, as in fig. 1.2a. Our participants
considered it a “neccesary evil”, an unavoidable step stopping further progress until completed.

This focus on the lowest layer of abstraction is a product of the historical development
of EDA tools. In the 1950s, most PCBs were drafted by hand, as in fig. 1.3a. By the ’60s
electrical engineers were moving away from pen-and-paper drafting for electrical circuits and
printed circuit boards, adopting a workflow that used partially transparent photomasks in
the board lithography process. These photomasks were created in photoplotters that printed
images onto trasparent sheets of plastic. These images, the board layout, were specified as a
series of commands: draw a line of X thickness from coordinate Y to coordinate Z, expose an
annulus centered at A with inner radius B and outer radius C, and so on. Added together,
these commands allowed engineers to define the structure of circuit boards in a repeatable,

8

(a) Hand Drawn Board Layout
(b) Gerber Interface Ad

Figure 1.3: Early techniques for board layout. Before photoplotters and
computer aided design tools most printed circuit boards (PCBs) were drawn by
hand, as seen in subfigure (a) [55]. Photoplotters gave engineers a less error-
prone, more repeatable way to create layouts, one amenable to computer control.
Subfigure (b) shows an advertisment from the Gerber Scientific Company showcasing
a photoplotter designed for PCB manufacturing along with an interface for computer
control [56].

modifiable way, one amenable to computer automation and tooling.
Figure 1.3b shows an advertisement for a series of products that connect a computer to

a photoplotter, something that was becoming more common by the 1970s. Modern board
layout tools have their start in the software of this time, but circuit design, and schematic
drafting, were largely still pen-and-paper tasks. Schematic capture tools were designed as an
entry point to the digital design process, where one would take their hand drawn circuits and,
in a largely data-entry task, convert them to a digital form for use in board layout. Modern
schematic capture tools like Eagle, Altium, and KiCad fill the same role, allowing the design
work that has happened elsewhere to be imported into the board layout process. They have
incorporated new features, like copy-and-paste, but the fundamental paradigm has remained
the same, shunning interaction with the conceptually richer system architecture phase of
design.

Schematic capture tools, being contrained to a thin slice of the development process, have
other problems. A major one is enabling reuse of previous designer work in new projects
without introducing significant manual effort or necessitating error prone integration of old
subsystems into new designs. When a net of electrical connections is copied into a project it
often needs to be tweaked to ensure compatibility with a different set of sibling systems or
design requirements. It is easy to miss a neccesary change or incorrectly integrate components
because this process is largely manual, with the designer having to keep track of all relevant

9

concerns themselves. Modern tools can only provide limited assistance when most of the
relevant context from the system architecture phase was never digitized in order to minimize
data-entry effort. This means that parametric designs, which have internal logic to change
the underlying circuit based on the environment in which they’re used, can’t meaningfully
exist because there’s insufficient knowledge about the environment. A better approach would
need to capture this missing information without disrupting designers’ workflow so more
advanced features, like parametric design elements, can exist.

Figure 1.4: An electrical rules checking (ERC) pin compatibility matrix.
Schematic capture tools try to provide error checking by assigning schematic pins to
a small set of classes and using a matrix, like the one shown, to determine whether
each connection is valid. Schematic editors lack the information needed for more
substantive checks. This simplified model creates many false positives and false
negatives.

One place where modern EDA tools do try to move beyond the pen-and-paper model is
with their implementations of Electrical Rules Checking (ERC). ERC attempts to provide
a series of automated checks that catch design mistakes early, before they cause problems
in prototypes or finished devices. Sadly, a large proportion of our respondents simply turn
ERC off or enable it only intermittently. Electrical rules checks, as they exist in major EDA
suites, produce too many false positive and false negative alerts to keep active during the
majority of schematic capture. Figure 1.4 shows why, ERC is usually defined by a matrix of

10

pin types that only check the compatibility of point-to-point connections based on a small
list of possible classes. With only an electrical connectivity network it is hard to do more.
The higher-order context that would be required to validate voltage compatibility, power
consumption, bus protocols, and other properties spanning one or more wires isn’t available
to modern EDA tools.

In the current design paradigm, schematic capture is a thin data-entry layer only meant
to get information into a format suitable for board layout and physical design. To make this
feasible, it strips away the rich context of the system architecture phase, leaving designers
to encode only the much smaller electrical connectivity of their design. This focus on the
electrical net, while reasonable given its historical origins, leaves schematic capture software
with too little information for more transformative changes to the embedded design process.

1.1.4 Board Layout

(a) Etched (b) Assembled

Figure 1.5: Printed Circuit Boards (PCBs) before and after assembly
[17]. Processes for manufacturing PCBs use board layouts, like the one in fig. 1.2b,
to specify where copper should remain on the final product. Traces on the PCB,
visible in subfig. (a), are electrical connections that correspond to wires in the
circuit diagram. When populated with components, as in subfig. (b), the device is
complete.

During board layout engineers convert their schematics into designs for printed circuit
boards (PCBs), which physically and electrically connect components in the final device.
Engineers begin by importing a schematic into board layout tools. They assign each schematic
symbol a footprint, the copper designs on the final PCB that components can be soldered to.
Footprints are annotated with pads, the specific locations on the footprint that correspond to

11

pins so the layout tool will know how to map parts of the schematic to locations on the board.
Each pad is an electrical interface. When the device is manufactured, it will be soldered to a
component, connecting that component to the rest of the system. Because they have access
to the schematic, board layout tools can keep track of which pads need to be connected.
Engineers draw traces between pads, matching them to wires in the schematic. When every
component and wire is represented by a footprint or trace, the layout is complete and can
be used to manufacture a PCB. Figure 1.5 shows the end result, both after immediately
manufacturing and once the PCB is populated with components.

Board layout is well suited for computerization. Both bookkeeping and error checking
are computationally simple but tedious to perform manually. Ensuring that each part of the
schematic has a corresponding element in the board layout amounts to checking items off
a list. Error checking mostly focuses on the physical properties of the board; for example,
ensuring traces don’t intersect and pads have sufficient empty space surrounding them. These
measurements are easy for a layout tools to perform when they are built to keep track of
shapes and locations.

The effect of Computer Aided Design on board layout is immediately visible when
comparing old boards with new. Old, manually-drafted designs, like the one in fig. 1.3a,
tend to have traces with wide sweeping curves. This is because traces were drawn with tape,
to ensure a consistent width, and sharp turns would make the tape bunch up, keeping the
sheet from lying flat. The modern style, visible in figs. 1.2b and 1.5a is markedly different.
Instead of smooth curves, traces are drawn with straight lines and a distinct preference for 45
degree angles, a byproduct of how early layout tools snapped traces to a grid, trading artistic
freedom for computational simplicity.

We do not focus on board layout in this dissertation, taking the existing tools as given
and targeting them directly. Instead of rewriting them for marginal gains, our work produces
netlists, stripped schematics that layout tools can use as inputs. The relative robustness of
existing software means that we can focus on underserved portions of the embedded design
process.

1.2 Evaluating Embedded Development Tools
Evaluating our methodology requires judging how our tools affect the development process,
something we do by looking at the different types of costs designers pay to design something.
We can see the design process as one of sequential decision making; the user makes one
choice, then another, then another, until they have a complete design. This framing gives
us a way of looking at the costs inherent in the design process, three of which we use to
evaluate design tools: time, attention, and momentum. Tools shape which decisions a user
has to make and each decision takes some time, so a good tool allows a user to accomplish a
task with fewer, quicker decisions. Likewise, users need information in order to make each
decision. This information can be managed by either the user, spending their attention, or by
their tools, minimizing their burden. Finally, users will want to make these decisions in some

12

order that feels natural to them. A bad tool won’t accommodate this and forces the user
to make decisions in some other order, sapping their momentum. These costs correspond
directly to the three criteria we use to judge design tools, respectively: automation, salience,
and ergonomics.

Automation compares the decisions users have to make when using a tool. Less automated
tools forces more decision points, especially ones which are more complex or redundant.
More automated tools minimize redundancy, complexity, and wasted work. Automation
saves users time, which is usually directly valuable. An extreme example of automation is
design synthesis, where all of the decisions needed to move from a specification to a design
are made by the tool without human intervention. Less extreme cases include features like
parameterized designs which allow the user to perform a task once and reuse that work
elsewhere.

Salience assesses the information presented to the user. Tools with worse salience require
the user to dig for necessary information. Tools with better salience are proactive, presenting
the user with information that is immediately relevant without overwhelming their attention.
Features which notify the user can make or break salience. For instance, a tool’s error alerts
and auto-complete suggestions can be timely and useful or they could be noise the user has
to filter out.

Ergonomics looks at how flexible the tool is and whether it requires change in how users
think. Less ergonomic tools force their users to make decisions in a certain order. They have
a significant gap between the user’s mental model and the tool’s model of the problem. More
ergonomic tools present abstractions in the ways that a user naturally reaches for, and are
not tied to any one order of operations. A very ergonomic tool ‘disappears’ in the user’s
experience. It just does what the user wants it to; without needing them to spend time or
effort on figuring out how to wrestle it into a useful shape.

1.3 Using Automated Reasoning
Our methodology relies on how automated reasoning tools can make inferences about math-
ematical models in a generic and flexible way, independent of the domain being modeled.
Automated reasoning covers a variety of different algorithms from logic programming, theorem
proving, and constraint solving. These algorithms work on sets of mathematical statements,
examining them to produce inferences, new statements that are consistent with the input
set. Depending on choice of logic, the axioms a tool understands. Different tools can be used
to reason about different logics: boolean logic, linear algebra, predicate logic, and others.
Different tools also produce different types of inferences; one might produce proofs that some
statement is true, while another might rewrite statements into more elegant forms. This
dissertation focuses on two such tools, satisfiability-modulo-theory solvers [5] (SMT solvers)
and propagators, along with a logic of real numbers and boolean variables.

Our work builds on this framework by translating architecture diagrams into sets of
statements within a chosen logic. Every property a design has, from the clock speed of a

13

microcontroller to the color of an LED, is translated into a variable in our model. Constraints
within a block or relationships represented by links become statements relating those variables
to each other. These systems of equations are models of the design that tools can reason
over. Much of our methodology’s power comes from how automated reasoning tools simply
see a bag of statements. It does not matter if some statements are missing—for instance due
to an abstract or incomplete design—the reasoning tools will produce inferences regardless.

SMT Solvers, used in EDG, try to solve systems of constraints, i.e. find assignments
to every variable such that every constraint is satisfied. They do not support multi-step
interactions; transactions are all or nothing. If you can encode a complex problem in a system
of constraints, then an SMT solver can find a solution in a single step. As they search for a
solution, SMT solvers will, internally, speculate. They will try making choices one way, and
if that does not work, try another. EDG leans on this decision making capacity, using the
solver for choices that would normally fall to the user.

Propagators, used in PolyBlocks, view a system of equations as a network and push values
around as they’re discovered. When a variable is given a fixed value, all the equations it
appears in are updated and, where applicable, simplified. When equations are simplified
enough to be solvable, they are and the answers substituted into other equations. So, when a
new piece of information is added it can trigger waves of updates that propagate through
the model. If there is a conflict, then the propagation engine can detect that and raise an
error. This allows for easy automation to ensure a design stays consistent as the user makes
changes, and inconsistencies caught just as they appear. While not as powerful as a SAT
solver, propagators are sufficient for implementing many designer support features.

1.4 Summary
We seek to show that automated reasoning tools working with mathematical models of em-
bedded systems can be used to build development tools that better support users. Embedded
Design Generation (EDG) is a proof-of-concept meant to show that our methodology is
powerful enough to cover the entire embedded design process and can make every decision
needed to go from specification to final design. Polymorphic Blocks takes lessons learned
from EDG and builds a development tool that, while less algorithmically powerful, has been
evaluated with actual users and fits into real-world workflows. Together they serve as evidence
for our thesis and as a foundation for future design tools.

1.5 Statement of Prior Publication
This thesis is based on, and incorporates material from, these prior published works:

• Turning Coders into Makers: The Promise of Embedded Design Generation [46] (SCF
’17), co-authored with Richard Lin, Antonio Iannopollo, Alberto Sangiovanni Vincentelli,
Prabal Dutta, and Björn Hartmann

14

• Polymorphic Blocks: Unifying High-level Specification and Low-level Control for Circuit
Board Design [34] (UIST ’20), primarily authored by Richard Lin with other co-authors
Connie Chi, Nikhil Jain, Ryan Nuqui, Prabal Dutta, and Björn Hartmann. Also used
in Richard Lin’s PhD thesis [33].

None of this work would have been possible without the effort of all the co-authors,
including my advisor Prabal Dutta, graduate student colleagues Richard Lin and Antonio
Iannopollo, and all the undergraduates who have worked with us over the years.

15

Chapter 2

Embedded Design Generation

2.1 Introduction

Part Selection

Idea

Verification

void loop {
 led = 1;

Deploy and
Debug

#pragma edg
 led(red)

Describe
Hardware

Manual Design and Schematic Entry

Parse

Control
Logic

LED
Button

Synthesis

SMT
Encode Graph

Decode

SMT
Solve

Control
Logic

LED

Button
MCU

High-level
Circuit Netlist

Block
Instantiation

Automatic Step
Manual Step

Design

+3.3v

D0
D1

GND

Arduino

... Placement,
Routing, and
Fabrication

Vf=1.2V

Ith≤20mA

EDG
Design
Flow

Traditiona
Design
Flow

Netlist-level
Schematic

Completed
Board

?

This PaperAnnotated
Code

Control
Firmware

(possibly automated)

MCU

ButtonLED

Libraries
Datasheets

Reading

Library
Creation

Figure 2.1: The Embedded Design Generation (EDG) Methodology. In
contrast with traditional embedded development methods, which rely on significant
user skill, EDG only requires a high-level specification to generate an electrically
correct circuit that satisfies user requirements. Whole-cloth synthesis serves as a test
of this dissertation’s thesis that an approach centered around automated reasoning is
capable of building powerful and usable embedded development tools. By completely
automating the design process, with no human in the loop, we show that automated
reasoning tools are capable of capturing and reasoning about the design process
in all its complexity. As a proof-of-concept our prototype only implements those
portions of the system that directly interact with the synthesis step. We both
manually generate the specification needed, instead of extracting it from existing
code, and manually create a circuit netlist from the output block diagram.

Embedded design is a process of sequential decision making that requires skill, knowledge,
and judgment. At each step, the designer is weighing their specification against the current
state of the project, gathered information, and the options in front of them. These judgment
calls slowly add up until they have a finished schematic.

16

A good support tool has to understand and assist with these decisions in whole or in
part. To know whether an error is salient the tool must know about the parts involved,
have an understanding of how “complete” the design is, and be aware of other factors
that feed into whether a user should be shown some error. An ergonomic work surface
requires understanding how well defined the design is at any point in time. Knowing when to
trigger automation requires differentiating between decisions requiring user input and those
completely implied by other decisions.

Synthesis, the process of going from a specification to a finished design without user
interaction, is an extreme test of understanding. A tool capable of synthesis must have a
powerful enough model and powerful enough reasoning to handle the smaller choices. A
model that can determine whether a full design works can also be used to detect smaller
errors. A synthesis tool that can use minimal or partial designs as a specification can reason
about designs no matter how the user approaches them. Synthesis is an example of the
maximum possible automation, with most other automation operations existing within.

Synthesis is also a valuable feature in its own right, especially for novices lacking in
background knowledge or skills. This is shown by the widespread interest in small-scale
fabrication of embedded devices by non-professionals. We see a proliferation in other tools
designed to make embedded development more approachable by using encapsulated hardware
modules. Arduino, Raspberry Pi, Gumstix and others provide off-the-shelf modules that
trade flexibility of design for ease of use. A synthesis tool would allow novices to subvert that
trade-off by making it easier for them to develop systems optimized for their exact goals.

To that end, we propose a novel methodology, Embedded Design Generation (EDG), which
exploits advances in constraint solvers to allow the automated generation of functionally
correct-by-construction1 board-level designs from a high level specification. EDG serves as
a test of the applicability of automated reasoning tools to embedded design, as successful
synthesis implies EDA tools can perform any of its sub-tasks with the same approach.

Tools based on EDG would only require that the user annotate their embedded software
with simple requirements and, from that specification, synthesize the final circuit diagram,
bill of materials, and firmware. Software APIs, electrical properties of circuits (e.g. Kirchhoff’s
current and voltage laws), and other low level details are combined with the user input into a
system of constraints.

Existing constraint solvers can then generate designs which are functionally correct,
electrically sound, and satisfy the user specification. To show that this both works and is
computationally feasible, we build a prototype tool and test it with a variety of examples
from different domains.

Figure 2.1 provides an overview of our proposed design flow and compares it to current
embedded design practices. EDG abstracts away, through automation, much of the electronics
expertise needed for tasks like parts selection, circuit design, and verification. In addition,
figs. 2.2 to 2.6, 2.9 and 2.10 are all a part of a running example where we describe the

1We do not consider timing or other performance constraints in this paper as the focus is to empower
designers who do not have to produce industrial strength boards.

17

construction of a simple device with a single LED and button.

2.2 Related Work
EDG builds on prior work in “electronic design automation” (EDA) by specializing the
Platform-Based Design (PBD) methodology [48] for maker-scale embedded development.
PBD is a methodology which has been successfully used to create synthesis tools in a number
of domains, including integrated circuit (IC) development and automotive engineering. EDA
community has incrementally raised the abstraction level of many embedded development
tasks and by using insights from PBD and synthesis tools in other domains, we contribute to
that progress.

2.2.1 General EDA
General-purpose board-level circuit design tools have largely not moved beyond graphical
schematic capture, where users place electronic components and connect their pins together.
In mainstream tools, hierarchical blocks allow some degree of abstraction by grouping low-
level components together, but their lack of parameterization limits re-use. Additionally,
while electronic design automation (EDA) tools feature electrical verification checks, these
are of limited utility to makers. Matrix-based connection legality checks (for example,
checking input-output directionality), though ubiquitous in design suites, are rarely used, non-
extensible, catch only small classes of bugs, and have a high false-positive rate. Higher-end
design suites often feature technologically advanced checks, like electromagnetic compatibility
(EMC) or radio frequency interference (RFI), but these generally require significant skill to
operate.

There has been some work towards building board design tools better suited for makers.
For instance, PHDL [44] is a Verilog-like language for describing netlists that allows some
parameterization of blocks and better designentry. However, like Verilog, it is only a static
description of a circuit.

JITPCB [4] takes the concept further and embeds a hardware construction language
in a general purpose programming language, allowing circuit generators instead of simple
parameterized blocks. However, like PHDL, it does not have a model of the underlying design
space, preventing it from catching many errors. JITPCB also does not reason over voltage,
current, bandwidth, or other properties needed to perform useful verification of a design,
something our tool does.

EDASolver [15] aims to be a synthesis tool for microcontroller based embedded systems.
When given a tree that describes the basic structure of an embedded device, EDASolver can
choose specific components to generate a circuit fitting that broad structure. Unlike JITPCB,
it does have some understanding of the electrical properties of an embedded system, and
can use that to choose valid components from a pool of parts. As EDASolver has neither
published source code nor a technical paper, we are unable to fully characterize its capabilities

18

and limitations, but its modeling of electronics does not appear to be extensible beyond
voltage and current limits.

While both JITPCB and EDASolver have some ability to choose specific components
from vague specifications and automate the assignment of individual pins, these features are
constrained by their inability to reason over the topology of a circuit. Our tool, and likely
any tool that follows the EDG methodology, is capable of not only choosing components
as needed but also adding elements to the topology of a circuit. This means our tool can
create new power domains, insert amplifiers and buffers, and infer the need for IO expanders
whenever required to create a valid design. Fundamentally, we reason over the space of
possible designs and the requirements without the need to tightly constrain the topology of
possible solutions. As a result, even our rudimentary tool can compensate for limitations in
parts or complexities in a specification in much the same way that an engineer might.

2.2.2 PBD and Domain-Specific Tools
In Platform-Based Design’s (PBD) terminology, our methodology maps user input to a set of
library components according to well-defined composition rules that can be verified statically.
PBD-based tools solve the synthesis problem by opportunistically composing elements from
a library to generate systems of constraints which can be solved by external solvers. For
instance, METRO II [12] allows for general model integration and architecture exploration,
where the mapping process between specification and platform is validated through simulation.
Likewise, PYCO [23] synthesizes a complete specification for a system from a partial set of
Linear Temporal Logic (LTL) constraints and a library of components with LTL contracts.
Although reminiscent of these techniques, the approach taken for EDG does not require the
use of LTL or other logic languages.

Some techniques related to our approach have been also used in program synthesis.
Brahma [26, 18] synthesizes loop-free programs over bitvectors out of a library of simpler
functions. This allows Brahma to generate software from a sparse specification of boolean
logic constraints. [20] propose the use of types in a program to synthesize valid expressions
which are then suggested to the programmer.

Robotics-oriented design tools like EMLab [7] and ROSLab [37, 38] solve similar problems
to EDG in that domain. EMLab is a block-level development tool for robotic electronics that
uses an SMT based verification mechanism similar to our own, however it does not extend
that to provide synthesis. ROSLab provides a similar pathway from code to circuitry, however
unlike our tool, it is limited to custom-made hardware elements that support their custom
chaining protocol. In contrast, EDG works with off-the-shelf electronics in order to reduce
the cost of creating a library of parts and enable the fast integration of new components.

Finally, tools aiding interactive device design largely also follow the pattern of automati-
cally figuring out details from a high-level design, albeit in more constrained domains. For
instance Midas [49] automatically designs capacitive touch layouts given user-specified sensor
type, shape, and position. Likewise, PaperPulse [45] adds interactive electronics elements to
paper crafts from a library of widgets.

19

2.3 Methodology
The goal of Embedded Design Generation is to create better abstractions for developing
embedded devices and tools that can perform robust verification of device designs. However,
better verification requires our tool to reason about the relationship between hardware
and software. Verifying the electrical properties of a thermometer does no good if that
thermometer has no way to send its data to the designer’s software. Our key insight is that
many of the design’s hardware requirements are reflected in the code, for example in required
libraries and pin assignments. Yet the fundamental logic of the device, how it functions
at runtime, is rarely reflected in the hardware. This asymmetry suggests that higher level
abstractions for embedded development should be similar to embedded code.

MCU

LED
LED

driver

Control
Logic

SW
modules

HW
modules

 #include "edg.h"

//EDG preamble
edgModule myLed = Led("red")
edgModule myButton = Button()

void loop() {
 myLed = 0;
 if (myButton == 1) {
 myLed = 1;
 ...

Button
Button
driver

Vin

Figure 2.2: Code can be a specification for a device. The code to the left,
the control logic, specifies a device in which a light blinks when a button is pressed.
It is also the software that is eventually run on that device, the annotations in
the EDGPreamble specify the hardware infrastructure needed to make the software
function as intended. The block diagram to the right describes one possible device
that matches that specification, by meeting all the hardware requirements in and
being able to run the control logic. Due to our focus on the synthesis process, the
code shown here is a mockup that shows one possible structure for a specification.

If we want to be able to describe the device at a higher level, we can capture the most
important parts of its function and construction in its code. We can specify how the device
acts at runtime, as well as the hardware infrastructure needed for the device to function.
Figure 2.2 shows a stylized example of this, where many of the implicit hardware requirements
that are expressed in user code are rendered as explicit declarations for a design generation
tool to use. The software in fig. 2.2 is a specification for the hardware and the runtime
operation of the device.

To make this kind of high-level abstraction useful, we must be able to compile it into
the firmware and circuitry needed to construct an embedded device. However, firmware and
circuit diagrams are too low-level for efficient synthesis. Instead we represent the result as a
block diagram, like the one in fig. 2.2, which can be easily turned into a final design. Likewise,
we need to be able to tell if those block diagrams actually describe correct devices, so that

20

Library of Typed Blocks
w/ Implementations

User-Provided
Control Logic

SMT solver
execution

Completed
Block Diagram

SMT Encode

SMT Encode

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

Design Space
Model

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

SMT Decode

SMT Solution MCU

LED
LED

driver

Control
Logic

SW
modules

HW
modules

Button
Button
driver

Vin

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

s1+s2=s3
s4<s3
s5-s7-s2...
s9<3*s1
....

Figure 2.3: Design Generation at a High Level. EDG tools use existing
constraint solvers to perform synthesis. The tools convert knowledge about the
design space and control logic specification into constraint satisfaction problems
whose solutions are block diagrams describing valid device designs. These block
diagrams completely specify the design of an embedded device and can be easily
converted to more useful formats.

we do not generate broken or invalid designs. A type system gives us a way to construct the
blocks for real-world parts and an algorithm to decide whether any given block diagram is
correct. Finally, we need to choose a single valid device from the space of possible devices.
We do this by constructing a design space model, which captures a wide range of possible
designs in ways that existing constraint solvers can reason about.

The Embedded Design Generation methodology is built around these three core concepts:

Block Diagrams capture the conceptual structure of a device across both hardware and
software boundaries, by taking elements of the final design and representing them as blocks
with connectivity information. These diagrams are an intuitive yet powerful model for working
with systems, and can capture device structure, resources, and many of the other relationships
found between elements of a design.
The Type System defines rules for how we transcribe the real world properties of circuits
and software into blocks and their type signatures. It also gives us type checking, a process
that determines whether any block diagram describes a valid device.
The Design Space Model is a system of constraints suitable for general-purpose solvers,
built from a library of blocks and their type signatures. This model can then be used to
generate a complete, working, block diagram for a device from a specification.

Figure 2.3 shows our methodology for design generation, which exploits the growing speed
and increasing expressive power of constraint satisfaction problem (CSP) solvers. We convert
a library of blocks, with corresponding type signatures, into a monolithic set of constraints
that model the space of potential designs made up of those blocks. These constraints are
then composed with constraints derived from the control logic to produce a CSP whose space
of valid solutions is the space of valid block diagrams that meet our specification. We then
pass this CSP to the solver and decode the result into a block diagram that will successfully
typecheck.

21

5v USB

3.3v
Out

GPIO1
GPIO2

...

...

Arduino
Pro MicroButton

LED

Vin

Out

In

Figure 2.4: Convert a block diagram into circuitry by linking implemen-
tations together. Instantiating the block diagram from fig. 2.2 requires taking
implementation details associated with each block, in this case a relevant sub-circuit,
and connecting them together based on the links between their blocks.

#include "edg.h"

//EDG Preamble
edgModule myLed = Led("red")
edgModule myButton = Button()

void loop() {
myLed = 1;

...
}

(a) Original Control Logic

#include "led.h"
#include "button.h"

//EDG Preamble
var myLed = initLED(GPIO2);
var myButton = initButton(GPIO1);

void loop() {
myLed = 1;

...
}

(b) Instantiated Firmware
Figure 2.5: Convert a block diagram to firmware by filling in templates.
Instantiating software is a simple template replacement operation. Figure 2.5a is a
mockup of user-provided control logic for the device. Figure 2.5b is the code after
we replace the EDG-provided template elements with the concrete implementations
provided by other blocks. Note that the code outside of these templates is unmodified.

Block diagrams are ideal representations because they are easy to convert into the design
files needed to fabricate a device. Figure 2.4 shows how the final circuit can be created by
connecting individual block implementations along the links between them. Similarly, fig. 2.5
shows how the firmware can be instantiated with template replacement operations that pull
from code snippets provided by connected blocks.

Block diagrams also work at many levels of fidelity. In general, blocks can be composed
of smaller blocks until one recurses down to single instructions or individual circuit elements.
Our current tool works with relatively large blocks made up of entire libraries or breakout
boards. This allows us to abstract away questions of timing delay, electromagnetic interference,
and many other phenomena that become evident at smaller scales. Large blocks also mean
there is a smaller space of possible configurations for solvers to reason over, making their

22

immediate use more feasible. As solvers grow faster and more expressive, EDG tools can
move to using finer granularity models with smaller blocks.

We structure each block diagram around the notions of blocks, ports, and links. As we
have seen, blocks represent realizable elements of our final design and each has a number
of ports which represent specific capabilities, relationships, or resources a block may have.
Links are then the connections between ports that represent the transfer of resources, usage
of capabilities, or other relationships between blocks. For instance, the connection of a serial
line or the use of a software API.

A block diagram must have all the information needed to instantiate a device but many
parts have properties and settings that are not solely defined by their connections. Consider
the LED in fig. 2.4, which could be annotated with information about its color. To allow
the block diagram to represent this information, blocks, ports, and links all have concrete
types, which are structures made up of named primitives—like integers, boolean values, and
strings—or nested substructures. Concrete types allow each block to specify the information
needed to instantiate it as well as additional properties useful in other phases of design
generation.

The block diagram alone is not enough for synthesis, since we require a way to determine
whether any given block diagram will result in a valid device. The type system gives us a
way to generate blocks and their type signatures, constraints over those blocks, so that we
can check the correctness of an entire block diagram. As in fig. 2.6, type signatures annotate
blocks, ports and links with constraints that limit the concrete types they may have within
in a block diagram. Then, type checking ensures that each element of the design satisfies
its type signature. In section 2.4.2 we explore how we constructed a type system for our
prototype tool that accurately detects and rejects invalid designs with this procedure.

Finally, Embedded Design Generation requires that we are able to turn a library of blocks
and type signatures into a design space model that our tools can reason over. In practice,
we expect this to take the form of a monolithic constraint satisfaction problem to which we
can add the specifications, usually in the form of a control logic block, for any particular
synthesis task. This single model can then be optimized or added to, as new parts become
available or new limitations in the design space are found. We build the Design Space Model
by generating a CSP for each block that might be included in an output design, and then
adding variables that determine whether any pair of ports is connected. The solver can then
choose which connections exist and give us the final block diagram, with valid concrete types
for each block, link, and port. While optimizations can be layered over this, we believe that
any design space model will have this core structure.

2.4 EDG Prototype Architecture
Our prototype tool implements the EDG methodology described in the previous section, with
a focus on synthesizing devices from relatively large blocks at a level high above individual

23

powerSink
 voltage: [?V, ?V]
 current: [1mA, 2mA]
 limitVoltage: [0V, 12V]

digitalSource
 voltage: [0V, ?V]
 current: [0A, 0A]
 limitCurrent: [0A, 0A]
 ...

vin outButton

out.voltage.max = vin.voltage.max

PORTS
CONSTRAINTS

Figure 2.6: Type signatures are constraints on their elements. While elements
of a design are given concrete types, the blocks on their own are usable in a variety
of settings. Type signatures are simply the conditions under which a block will
work as intended, presented as constraints over the concrete type of a block. A type
system is the set of rules for how to map real-world properties into types and type
signatures, such that a block diagram which typechecks can be instantiated into a
working device. In this case we constrain the expected input and output voltages of
a button to be equal, a limitation on the possible concrete types that button may
have.

resistors and ICs. We implemented our tool in Haskell and used Z3 [13] as the underlying
constraint solver.2

2.4.1 Blocks, Links, and Ports
As in the general methodology, our prototype uses blocks, links, and ports to represent
possible designs for embedded devices. Figures 2.7 and 2.8 illustrate the principal data
structures used in our tool. The user provides their input in the form of control logic which
we manually encode as a block that must appear in the final design.

2.4.2 Type Signatures
Each block, link, and port in our library contains a type signature, i.e. a set of bounds on the
concrete type an element may have in a valid block diagram. In a block diagram concrete
types are data structures composed of named fields, each linked to a value. These values can
be boolean, integers, floats, strings, UIDs or another nested set of field-value pairs.

Our tool’s internal representation for type signatures is shown in figs. 2.7 and 2.8. These
structures capture all the pieces of information needed to generate the SMT representation
of a design element, with the majority of the constraints simply being stored as expressions
that translate directly into SMT constraints. As in fig. 2.6 each constraint provides a way

2Our code and the results of our experiments are available at https://lab11.github.io/edg-sat-
prototype/appendix/scf2017.

https://lab11.github.io/edg-sat-prototype/appendix/scf2017
https://lab11.github.io/edg-sat-prototype/appendix/scf2017

24

PORT p:

 used :: Bool: Indicates whether the port is used in the final design

 connected :: Bool: Indicates whether the port is connected to another port

 class :: String: Identifier used to constrain which ports can connect to each other

 type :: [fields]: List of fields to be translated to SMT variables

 constraints::[expr]: List of formulas over the type of the port.
 Must be true for system to typecheck
IMPLICIT CONSTRAINTS:
 connected => used:
 Ensures that a port is part of the design if connected to any other port
 forall c in constraints, used => c:
 Only requires the solver to satisfy the constraints if the port is being used

Figure 2.7: Ports use implicit constraints to capture connectivity. The
implicit constraints in each port allow us to relax the constraints on the SMT solver.
The first constraint says that if the port is connected to another then the port must
be used in the output block diagram. Along with the corresponding constraints
from fig. 2.8, this ensures that every element has a flag to show whether it is used
in the final design. The second implicit constraint tells the SMT solver that none
of the type signature’s constraints need to be satisfied if the element is not used ,
minimizing its work.

BLOCK/LINK b:
 UID :: String: Unique identifier for the block
 used :: Bool: Indicates whether the block is in the final design
 ports :: [port]: List of ports attached to this block
 type :: [fields]: List of fields to be translated as SMT variables
 constraints::[expr]: List of formulas over the type of the block and its ports.
 Must be true for system to typecheck
IMPLICIT CONSTRAINTS:
 forall p in Ports, p.used => used:
 Ensures that a block is part of the design if any of its ports are part of the design.
 forall c in constraints, used => c:
 Only requires the solver to satisfy the constraints if the block is being used

Figure 2.8: Blocks and links have identical representations in our tool.
Despite their stylistic differences, both blocks and links capture relationships between
ports, along with some internal data and constraints. This allows us to turn
connections between modules via links into one-to-one relationships between ports
on modules and ports on links, simplifying the process of constructing an SMT
problem.

25

to express the ambiguity in a type signature, since each block has many valid concrete
types and can therefore work in a variety of different designs. The constraints are arbitrary
expressions consisting of boolean expressions, ordering operators, linear arithmetic operators,
and references to values found in the concrete type of that element.

In other cases the constraints can be used to specify that a value falls in some range, that
there exists an equality which must be preserved, or any other condition that is representable
as an expression in our solver. These expressions can capture many complex behaviors, like
the assignment of pins to functions on a microcontroller, ranges of voltages and currents, and
even the nesting of interfaces where our tool has to infer additional parts.

We choose to limit constraints on numerical values to linear arithmetic because non-linear
relationships that cannot be conservatively approximated by linear ones are relatively rare
given the fidelity of our tool. Since Z3 and other SMT solvers are much slower when working
with non-linear constraints, we choose to limit ourselves to the faster option.

LED
API

Button
APIControl

Logic

Button
API

LED
API

GPIO
API

GPIO
API

Button
Driver

LED
Driver

Arduino
HAL

GPIO1
API

GPIO2
API

Control
Registers

5v USB

3.3v
Out

GPIO1
GPIO2

...

...

Arduino
Pro Micro

...

Firmware

Hardware

Button

LED In

Out
Vin

Figure 2.9: There are symmetries between the hardware and firmware
elements of a design. Many of the hardware elements of a design are paired
with corresponding firmware elements, as in the case of an LED and its driver code.
These pairs tend to have identical structure in both domains, even if there are other
components that only exist in one domain.

2.4.3 Design Space Model
Our prototype naively constructs a design space model from its library of blocks and links.
We rely on the fact that constraints in type signatures are almost identical to the equivalent
SMT expression.

26

All the type signature fields in figs. 2.7 and 2.8 are transformed into sets of constraints.
Each flag in the element and value in the type becomes a variable the SMT solver is capable
of assigning. Then we add constraints between those variables to match those in the type
signatures. From this state, we generate a large adjacency matrix where each cell is an
unassigned boolean value that determines whether a particular pair of ports is linked. If
ports are linked, their types are set equal and they are marked as being connected. This lets
us simulate a one-to-one connection between ports on a block and ports on a link. We then
extract this adjacency matrix from the SMT solver’s solution and use it to construct the
block diagram by walking the resulting graph and recovering each block’s concrete type.

2.4.4 SMT encoding, solving, and decoding
Working from the control logic and the design space model, our tool encodes the complete
synthesis problem as a system of boolean and linear arithmetic constraints which are then
solved by an SMT solver. Blocks, links and ports are all translated to equivalent SMT
constraints as described in the previous subsection. The control logic is treated like any other
block and added to the CSP, though with the additional requirement that it be used in the
final design.
Once the encoding is complete, our tool generates an SMT-LIB v2.0 compatible file which
is then passed to the SMT solver. If the solver is able to find a solution to the system of
constraints, it is decoded into data structures where all the type signatures have been resolved
to concrete types. Finally, the resulting network of blocks is presented to the user as a block
diagram describing a device that can run the control logic.

2.5 Type System Design
As connection legality essentially drives circuit synthesis, the properties and constraints
captured in the type signatures are especially important. In our prototype, we attempt to
model the parameters needed to ensure that the circuit is electrically valid, programatically
valid, and meets user requirements.

2.5.1 Software and Hardware Modeling
As a complete embedded design tool, our prototype must model both the hardware (circuits)
and software (user code and drivers). While it is common to think of them as completely
separate domains, as in fig. 2.9, they are usually heavily intertwined in practice.

Most peripherals ultimately expose a firmware API and most electrical components are
controlled to some degree by the firmware. As in fig. 2.10, our representation combines the
hardware and firmware domains in ports and blocks when appropriate.

Compared to separate representations, this reduces the number of ports and blocks that
the solver needs to search through, improving performance. This combined model accurately

27

Figure 2.10: Our representation with an integrated view of hardware and
firmware. This combines the circuit design and firmware drivers of each peripheral
from fig. 2.9 into a single block. In this case the firmware and hardware blocks for
the Arduino, button, and LED are combined into a single block representing each
component. Note that pure hardware and firmware elements still do exist.

represents how many APIs control electrical connections and drivers are usually associated
with a device, without additional complicated constraints to tie domains together.

2.5.2 Ports and Links
As synthesis is interface driven, components are almost completely defined by their ports.
Our type system models common electrical ports, including several digital communications
networks, as well as arbitrary firmware APIs.

2.5.2.1 Firmware Ports

Firmware ports define pure firmware interfaces, APIs. They are modeled as either producers
or consumers with a type, like LEDs or temperature sensors, and optional data, like sensor
resolution. Ports on the control logic are the starting point for generating a design. Additional
constraints prevent hardware referenced by one piece of code from being split between different
controllers.

2.5.2.2 Electrical Ports

Electrical ports define a pure electrical interface, which does not interact with the firmware
domain. Our type system only has power ports, which define either an always-on voltage
source or device power input.

Power ports capture voltage levels and current flows through a port. Both are modeled
as ranges to capture device tolerances, as in the output of a wall wart, and runtime variation,
like when an LED is on or off. These represent the full spectrum of expected circuit states
during operation.

28

We also specify voltage and current limits as ranges, where the expected operating range
must be contained within the tolerable range. While upper limits are useful for absolute
maximum ratings, ranges capture lower limits, like minimum operating voltage or minimum
current draws. Despite being a highly conservative model, this encodes the most important
information needed for power compatibility checking.

Our current type system gives all components a common ground, so that power ports
are single-ended voltage sources referenced to an implicit universal ground. This limitation
is mostly for simplicity, but captures most beginner and intermediate designs. Advanced
features like isolation domains require additions to our type system.

2.5.2.3 Controlled Ports

Controlled ports define an electrical port controlled with a firmware API. The simplest
example is the microcontroller-driven GPIO, which is described as a digital signal.

Digital ports have all the properties of power ports including the ability to supply power.
This models the common usage of microcontroller GPIOs to switch small loads, like LEDs,
while generalizing to any controlled load. We also capture voltage thresholds that check both
signal level compatibility and thresholds on switched loads.

2.5.2.4 Digital Communications Ports

Digital communications ports are a variant of the bidirectional digital port for common
communications protocols. Many digital communications protocols require multiple wires,
which we bundle as a single port. This is for efficiency reasons: all the wires travel together, and
modeling each pin as a separate port creates extra connections that increase the search space
and hurt synthesis performance. Our type system models ports for several communications
buses including I2C, SPI, and UART. Each bus checks for signal level compatibility as well
as bus-specific properties like I2C address uniqueness.

2.5.3 Components
2.5.3.1 Peripherals

Most components representing peripheral devices are structured as adapters that provide one
interface and require another in order to function correctly.

One such example is the controlled LED, whose hardware is just the standard LED circuit
with a ballasting resistor. We model this as a two-port element: an LED API producer port,
and a GPIO consumer port. The GPIO port also models important electrical characteristics
like current and voltage limits.

As an adapter-style component, ports on both sides are required to be connected. While a
LED without an electrical input is useless, the requirement for an API port prevents synthesis
from placing extraneous, unrequested LEDs. Most other peripheral components, like buttons,
temperature sensors, or LCD displays, are similar.

29

True adapter components also exist. The GPIO expander requires a I2C slave connection
and provides extra GPIOs. Likewise, a digital amplifier requires a power supply and low-power
digital output and produces a new digital output at power supply voltages.

2.5.3.2 Firmware

Our type system also models pure firmware blocks in the same way. For example, a FAT32
library provides a file system API and consumes a low-level nonvolatile memory API.

2.5.3.3 Microcontrollers

Microcontrollers are structured differently because they serve as the control source for devices
they provide interfaces but do not have requirements aside from power. Otherwise, they are
modeled like every other component and are largely defined by their ports.

2.6 Evaluation
We create a number of embedded devices by manually generating the control logic block’s
type signature, using our prototype tool to synthesize a design, and manually instantiating
each design to test its correctness. Each device was synthesized with three separate libraries
of varying size.

Our full library is used for all examples, except where noted, and consists of these
components:

• Microcontrollers: Arduino Pro Micro 3.3,V, Arduino Trinket 3.3,V
• Basic peripherals: tactile switch with pull-up, LED with resist-or, 12V lit dome switch

with pull-up, 12V fan
• Device peripherals: Sparkfun 16x2 serial LCDs (3.3,V and 5,V versions), SD card with

SPI interface, Sparkfun OpenLog
• Sensors: TMP102 I2C temperature sensor, QRE1113 reflectance sensor with output

resistor
• Interfaces: I2C GPIO expander, high-side digital amplifier, TB6612-FNG dual motor

driver, L7805 voltage regulator
• Software: FAT32 filesystem driver

The library contains a total of 73 blocks and links. This is a highly constrained set that
is likely not very representative of the libraries any production system would use. However,
it should suffice to gain a broad idea of the performance characteristics of our tool and
accurately capture how our tool responds to limitations in the library of available blocks.

We first examine a number of simple test cases. Then we look at how our tool responds
to restrictions on available parts, both in terms of small changes and instances where the
device is radically changed. Finally, we look at the performance of our tool as it synthesized
all the designs described.

30

5v USB

3.3v
Out

GPIO
GPIO

... Arduino
Pro Micro

LED
API

Button
API

LED In

Out
Vin

Button

LED
API

Button
API

class Button;

class Led;

LitButton
API
class Splitter
 : LitButton;

......

GPIO
GPIO

Control
Logic

LitButton
API

LitButton
API

LitButton
API

LitButton
API

LED
API

Button
API

LED In

Out
Vin

Button

LED
API

Button
API

class Button;

class Led;

LitButton
API
class Splitter
 : LitButton;

(a) Interface Converters

Vin

GPIO

...

I2C GPIO
Expander

LED
API

Button
API

LED In

Out
Vin

Button

LED
API

Button
API

class Button;

class Led;

LitButton
API
class Splitter
 : LitButton;

...

Control
Logic

LitButton
API

LitButton
API

LitButton
API

LitButton
API

...

GPIO

GPIO

5v USB

3.3v
Out

GPIO

Arduino
Trinket

I2C
Slave

I2C
Master

LED
API

Button
API

LED In

Out
Vin

Button

LED
API

Button
API

class Button;

class Led;

LitButton
API
class Splitter
 : LitButton;

(b) Interface Converters and
GPIO Expander

LitButton
API

LED

SW
VswDome

Switch

class DomeSwitch
 : LitButton;

...

LitButton
API

LED

SW
VswDome

Switch

class DomeSwitch
: LitButton;

Out
Ctrl

class Amplifier
 : Digital;Vin

Out
Ctrl

class Amplifier
 : Digital;Vin

+12v

...

Vin

GPIO

...

I2C GPIO
Expander

GPIO

GPIO

I2C
Slave

5v USB

3.3v
Out

GPIO

Arduino
Trinket

I2C
Master

Control
Logic

LitButton
API

LitButton
API

LitButton
API

LitButton
API

(c) GPIO Expander and Dome
Switches

Figure 2.11: Three Versions of Simon. These three designs are generated from
identical control logic blocks. Each design could be generated from code similar to
the EDG preamble found in fig. 2.2, where each required module is turned into a
port connecting to that peripheral. Despite their radically different construction
these designs are functionally identical, differing in only the size of the buttons and
minor timing variations.

(a) Simon Matching Game (b) Line-Following Robot

Figure 2.12: Physical realization of Simon and line-following robot. Fig-
ure 2.12a shows the three Simon variants on a large breadboard. The left section is
the initial synthesis result (2.11a), using a microcontroller and discrete LEDs and
switches. The center section is the second result (2.11b), where the system is forced
to use a pin-constrained microcontroller and must infer a GPIO expander. The right
section is the final result (2.11c), using inferred digital amplifiers to drive external
dome switches. Figure 2.12b shows the line-following robot, which successfully
generates a circuit that correctly integrates the pre-selected chassis and motors.

31

2.6.1 Basic Synthesis Tasks
We synthesize a number of simple devices to show the range of domains EDG may be useful
for and to analyze the results.

2.6.1.1 Blinking LED

We synthesize the simple light and button combination that we have been using as a running
example. This device has a single LED and a single button that blinks the LED when pressed.
The blinking light has long been the “Hello, World” of embedded hardware design and seemed
a fitting place to start.

We use this design as an initial test case as we developed our tool and type system because
it captures many of the most common constraints in embedded development. Any synthesized
design has to keep a coherent chain of control from the control logic to each peripheral, a chain
that captures software relationships, hardware relationships, and relationships that jump
between those domains. This example also captures basic power management as the tool
has to ensure that voltage levels are correct and that current limits are met. Our tools have
synthesized many working versions of this device, and those that we constructed functioned
correctly.

2.6.1.2 Temperature Controller

This device is a basic control system where a thermometer reads the local temperature,
displays it on a small LCD screen, and runs a fan when it is too hot. Here we capture bus
topologies like I2C, as well as a more complex power system that could supply the 12,V fan,
3.3,V microcontroller, and 3.3,V sensor. Our tools are able to synthesize this device while
avoiding pitfalls like mismatched power sources.

2.6.1.3 Line Following Robot

Our final basic design is a line-following robot designed to stand on a specific chassis with
pre-mounted motors. Here we verify that we synthesize a device from a more complete partial
design. In this case, we knew both the code we wished to run and the motors we wanted
to use, so we specified that all three components must be included in the design. Our tool
managed to correctly connect the motors to the microcontroller, including adding motor
drivers and the split-level power system needed to use them.

Our tool does not distinguish between being asked to design a device with just the control
logic as a specification, three separate blocks that must all be in the design, or some manually-
designed critical portion of a device that needs non-critical surrounding infrastructure. This
versatility means that in addition to the design process we focus on in this paper, EDG-based
tools can support many other forms of interaction.

32

2.6.2 Inferring Missing Design Elements
One of the most useful features of the EDG methodology is that it can infer additions to the
topology of a device when the available set of parts is limited.

To test this we design a simple datalogger that reads a temperature sensor and writes
the result to an SD card. Our first synthesis of this device produced a design that used the
OpenLog breakout board, a combination of SD card socket and preprogrammed chip with a
simple serial interface for SD card filesystem access

Then we run the synthesis process again after removing the OpenLog from the library of
available parts. This time, our tool adds an SD card holder to the device and used a software
FAT32 driver to provide a filesystem, showing that our tool can adapt to accommodate
constraints in the available pool of parts or non-obvious interactions between interfaces.

2.6.3 Preservation of Function
The final design we synthesize is our own version of the Simon electronic game. This device
flashes four lights in a random order and asks the player to press the corresponding buttons
in that same order. Our library supports two major options for synthesizing this design:
large buttons with built in LEDs or smaller discrete LEDs and buttons in matching pairs.

Our initial attempt to synthesize this design resulted in a mix of these two options, likely
not what a designer would want. We had to add a constraint to ensure that all the buttons
used by device had a similar type. The resulting design, shown in fig. 2.11a, consists of four
pairs of similar buttons and LEDs and a microcontroller with sufficient IO pins to directly
connect all peripherals.

After removing the large microcontroller from the library and leaving only a pin-limited
microcontroller, our tool created the design in fig. 2.11b. This design adds a GPIO expander
to provide enough pins to control all the peripherals.

Our final change is removing the driver that allowed us to use a discrete LED and button
pair as a single lit button. Figure 2.11c shows the result, and we note that this device shares
no parts in common with our original version of Simon—instead accomplishing the same task
with a completely different implementation.

We constructed all three versions (see fig. 2.12a) and they functioned identically barring
the difference in parts and some drift in the timing. Our synthesis process preserves the key
details of our control logic, no matter the components used.

2.6.4 Performance
We provide synthesis runtime data for our designs to show both the feasibility of our
methodology and the scaling behavior.

Experiments were run on a server with dual-socket Intel E5-2667 CPUs (3.3 GHz, 8
physical cores per socket) and 192 GB of RAM. Note that the computational time was
dominated by Z3 which is single-threaded. All experiments used under 2 GB of RAM.

33

Blinky	
(10)

Feedback	
Fan	(20)

Robot	
(24)

Datalogger	
(14)

w/	FAT*	
(18)

Simon	
(39)

w/	
Trinket*	

(45)

w/	Dome*	
(41)

Minimal	 Lib 4.79 4.69 6.99 3.75 3.07 5.53 13.61 10.48
Intermediate	Lib 7.38 26.08 13.42 6.81 5.70 72.33 54.59 14.16
Full	Lib 56.30 57.10 99.95 61.58 42.40 184.62 187.88 67.65

0.00

60.00

120.00

180.00
Sy
nt
he

sis
	Ti
m
e	
(m

in
ut
es
)

Figure 2.13: EDG synthesis time for the discussed examples. Each minimal
library contains only the blocks necessary to synthesize the design. The full libraries
include all 73 of the encoded blocks, except for Datalogger FAT*, Simon Trinket*,
and Simon Dome* for which the full library was constrained to make simpler designs
impossible. Each intermediate library is approximately half the size of the full
library. Times are expressed in minutes and the parentheses next to each name
contain the number of blocks and links in each design.

Figure 2.13 shows the synthesis time for all the experiments. Every design was synthesized
using three libraries with different sizes. As expected, our tool performance depends both on
the size of the library and the complexity of the solution, represented by the number of blocks
used for each design. Larger libraries or solutions usually resulted in longer runtimes. The
biggest designs required several tens of components and a runtime up to three hours which is
reasonable compared to the time required to perform the same tasks manually. However, we
believe that our tool’s performance can be drastically improved, as we discuss in the next
section.

2.7 Discussion
We believe that future work will further support our hypothesis that the EDG methodology
is a powerful and feasible way to improve embedded development tools.

2.7.1 Performance and Optimization
Ultimately, the tool we implemented is just a prototype to demonstrate that the EDG
methodology is fundamentally feasible. While runtimes for even our limited library of
components are not as fast as we would like, there are many possible optimizations.

34

Performance of existing solvers has improved over the years through advancements in the
basic boolean SAT techniques [22], and SMT solver theories [10]. Recent years have also
shown major improvements in the expressive power of constraint solvers, including techniques
like counterexample-guided inductive synthesis [27] which allow solvers to incorporate new
domains of reasoning through a feedback process. Communities in these fields are active and
we do not believe this trend will stop anytime soon.

Additionally, we believe we can greatly improve our tool’s performance by exploiting a
more efficient SMT encoding of the design space model. Currently the design space model
is naively translated to an SMT equivalent, without leveraging symmetries, pre-computed
solutions, or user insight. in addition to the type system we introduced here. Among other
solutions, we plan to do this by including the ability to reason over circuit equations, satisfy
temporal requirements, and support distributed computation.–>

Even if, ultimately, full synthesis against a large library is infeasible we believe the EDG
methodology still holds promise. The integrated representation of electronic components
with firmware drivers eliminates the often-manual step of mapping pins to firmware, while
the rich type system allows automated electrical verification to a greater degree than existing
matrix-based connectivity checks. Synthesis at a smaller scale is still important, whether for
ensuring the thoroughness of the type system, or for automating design within a constrained
environment.

2.7.2 Type System Fidelity
The type system determines connection legality and its thoroughness determines the correct-
ness of EDG’s output. While the model for our prototype is largely based on our experiences
as embedded designers, a more formal treatment of which properties are relevant is desirable.
In particular we would like to develop a formal composable ontology for elements of an
embedded system that integrates well with EDG.

Additionally, information from datasheets is insufficient for synthesis, occasionally even
contradictory. Strict compatibility checks using datasheet-provided specifications often
produces false positive errors. For instance, logic voltage thresholds are usually given as a
single value under arbitrary test conditions. Using that value directly would make many
reasonable designs unsynthesizable, as the specification conditions are excessive for the digital
signaling methods our tool models. Instead, we use less conservative bounds that are accurate
given the low frequency conditions our model assumes. However, higher accuracy models
would be possible with more precise datasheets, especially if specifications were given as
simple mathematical functions.

Our limited library also obviates the need to encode the physical details of components.
For example, both a weak indicator LED and a lighting-grade power LED would satisfy a
user requirement for a LED. Additional constraints like brightness, power draw, or form
factor are necessary to fully capture user intent.

35

2.7.3 Usability
EDG proposes an input very different from the traditional electronics and embedded design
flow. While it requires less electronics expertise to build a functional device, a larger question
is where best to draw the line between automated processes and user input. Alternatively,
hybrid interactive approaches may be desirable. For example, an EDG based assistive tool
might ask a designer, “I see your parts are not voltage-level compatible, would you like me to
insert a regulator?” Future user studies can illuminate the trade-offs between these different
strategies in the electronics design domain.

Embedded hardware development also does not end with board fabrication, and debugging
poses significant challenges [39]. EDG’s richer data model, containing information like
peripheral topology and expected voltages, can support novel assistive debugging strategies.
Approaches include automatically generated self-test routines for peripherals or interactive
guided debugging.

Finally, a comprehensive, complete set of libraries ultimately forms the basis for EDG.
Building such libraries is far from painless, currently involving the manual, time-consuming
translation of datasheet specifications to part constraints. Better languages for encoding part
data could increase accessibility, while formalisms (like better type systems) can reduce the
likelihood of mistakes.

2.8 Conclusion
EDG is a proof of concept tool that automates much of the embedded design process. It is
fundamentally different from the standard EDA pipeline, replacing the system architecture
and schematic capture phases of development with a hands-free, fully-automatic process.
Instead, the user provides a high-level specification in the form of control logic and skips
directly to a finished schematic.

EDG was designed to test how effective automated reasoning could be. It successfully
minimizes user effort by making all the decisions needed in the embedded development
process. It shows that it is possible to encode all the necessary information mathematically
and practicably reason with it. That robustness will be exploited in Polymorphic Blocks,
EDG’s successor, to build a development tool suitable for the general public.

EDG is extremely flexible in terms of both suitable input and potential output because of
its use of automated reasoning. It can handle inputs that range between minimal specifications
for synthesis, partial designs for completion, and complete designs for validation. Its outputs
are robust to changes in available parts while accurately preserving function. Both of these
are possible because automated reasoning tools see the constraint satisfaction problems
(CSPs) as a context-less pile of constraints, with no limitations on evaluation or reasoning
not implied by the structure of the problem. This means that a user can invoke EDG at any
point in the design process in order to short circuit to the finish.

This tool, despite its proof of concept status, serves as a starting point for other tools

36

because it proves how powerful our methodology is. Polymorphic Blocks chooses to make
the electronics model more robust, simplify the use of automated reasoning, and act as a
support tool that exists alongside the standard embedded workflow. Extensions to EDG
could use the same synthesis capability to generate a space of satisfying designs, bringing
automation to specification finding by letting a user traverse the trade-off space for their
project from the start. Alternately, the model is open to extension with other reasoning logics
including temporal logic and analog signals. Finally, the integration of software in the control
logic could allow for simulation and modeling of devices even without synthesis, allowing
for designers to gain salient information about device function before any implementation
considerations.

EDG exists to show how powerful automated reasoning is when used as part of the
embedded design process, proving that an incredibly high degree of automation is possible
while remaining ergonomic. It serves as a foundation for future tools by allowing us to infer
what level of modeling is needed for user interactions and what can be accomplished with
other automated reasoning tools.

37

Chapter 3

Polymorphic Blocks

3.1 Introduction

User HDL

Intera
cti

ve

Refi
nement

Netlist PCB
U1 magicmcu
R1 res0603
D1 led0603
net R1.1, D1.2
...

So
lve v=3.3V

i=20mA

Chip
Resistor

Export

U1

R
1

D
1

Elaborate

Layout

class Blinky:
 mcu = Block(MagicMcu)
 led = Block(Led)
 connect(mcu.io0,
 led.io)
 connect(mcu.gnd,
 led.gnd)

Subcircuit Library
class MagicMcu:
class Led:
class Resistor:
class ChipResistor
 extends Resistor:
 footprint(res0603)
 ...

This WorkIdea

Write
HDL

Draw

System Architecture

Datasheets

Mainstream Circuit Design Flow

Draw
Schematic

Export

Manual Process

Automated Process

ChipCorp
Magic
MCU

Schematic

MCU LEDsignal

USB Power

Mainstream Layout Flow

U1

MagicMcu

D1

R1 1k

Model

Draw
Subcircuits

MagicMcu

Part Libraries

Write
HDL

(community supplied)

Draw

Reference
throughout flow

Reference
throughout flow

Figure 3.1: In the Polymorphic Blocks approach (purple box), circuit designers start
by writing their system architecture in a hardware description language (HDL),
which is then elaborated into a hierarchy block graph model and expanded using
community libraries. That graph is then refined through interactive choices in a GUI
and automatically propagated parameters are checked to ensure system correctness.
The result can be exported to a netlist file, which can then be imported into a board
design tool for layout. In contrast, mainstream tools (gray box) generally do not
support system architecture level design, so such diagrams are often done with pen
and paper. Furthermore, direct re-use of sub-circuit files is difficult and uncommon
outside limited contexts, and schematics are typically manually entered from the
bottom-up using reference circuit diagrams from datasheets.

With Embedded Design Generation (EDG) serving as a proof-of-concept, we next distill

38

the lessons learned into a user-facing tool. While synthesis is powerful, it is not how most
engineers want to work. Synthesis is too slow for on-line use, instead only being useful as
a batch process. The user has little control over the output. Generally, it disempowers
designers and ignores subtle factors that are not representable within its model.

An ideal tool would act in partnership with the designer, sharing control over the process,
while still having a model as powerful as EDG. This is possible with a propagation engine, an
automated reasoning tool which cannot find solutions out of whole cloth but can make smaller
inferences based on known information. Determining salience for auto-complete and error
checking, automating basic bookkeeping, and ensuring design consistency are all possible
without a powerful solver. With less work being done, such a tool would be more responsive
and less disruptive to designer workflows.

In this work, we strive to build tools that can support board-level design, from the first
high-level system diagram sketch all the way to a layout-ready circuit. In particular, we
note that hierarchy block diagrams naturally span multiple abstraction levels while being
familiar to users due to their support in mainstream tools. We hypothesize that extending
EDG’s model with the software concepts of polymorphism and generators can raise the level
of design and increase tool automation without sacrificing low-level control. In addition,
we use a simpler form of automated reasoning within our system’s compiler to allow useful
real-time interactions with users.

Much like interfaces, classes, and inheritance in object-oriented programming, constructing
electronics from blocks allows a division of labor: system designers can focus on high-level
architecture while experienced engineers can build reusable libraries of blocks. Writing
these blocks as generators – executable code to translate high-level specifications into an
implementation, e.g. an LED-resistor subcircuit that calculates resistance from input voltage –
separates interface from implementation and enables relative novices to leverage the knowledge
of experts. Furthermore, block-level polymorphism – refining blocks with compatible subtypes,
e.g., substituting a specific buck converter in place of an abstract voltage converter – balances
high-level design with fine-grained control.

We foresee an open-source community of engineers and designers, similar to that in the
software world, where open collaboration and communication lowers the threshold of entry
into electronics design even further, while preserving a high ceiling of complex designs, and
offering wide walls of rapid exploration of design alternatives [47].

We implement this new model of circuit design in Polymorphic Blocks, an end-to-end
system for authoring block diagrams. As summarized in fig. 3.1, users write designs in a
hardware description language (HDL) with the aid of subcircuit generator libraries, then
interactively explore refinements to obtain a layout-ready circuit. An underlying electronics
model checks designs using constraints such as operating voltages and currents. Supporting
tooling in the form of a graphical visualization and refinement interface enables users to
view their designs as block diagrams and specify refinements. This combination of HDL,
electronics model, and user interface distinguishes our work from related work on purely
textual PCB HDL efforts [4, 44] and high-level design tools that don’t also allow lower-level
control [2].

39

Overall, we contribute a novel generator HDL for board-level circuit design, supporting
tooling, and an accompanying evaluation. In the rest of this paper, we expand on our hierarchy
block diagram model, its expression in our HDL, the visualization and refinement interface,
and important implementation choices. We then demonstrate our system’s capabilities by
building and testing two example embedded devices, and report on a remote study with three
electrical engineers who designed PCBs of their own choice with our system.

3.1.1 Statement on Author Contributions
This chapter is taken from the paper “Polymorphic Blocks: Unifying High-level Specification
and Low-level Control for Circuit Board Design” [34] and was primarily written by Richard
Lin. The contents also appear as a primary component of the thesis “Human-Centered Circuit
Board Design With Flexible Levels of Abstraction and Ambiguity” [33].

Rohit Ramesh, this dissertation’s author, primarily contributed to the internal model
and electronics model used by PolyBlocks (sections 3.3.1 and 3.3.2) with lesser contributions
to the HDL (3.3.3) and the compiler design (3.4.1). These sections comprise the core uses
of automated reasoning and formal methods within the PolyBlocks tool and serve as a case
study for their applicability within the context of embedded development.

3.2 Related Work
Our work relates to recent HCI research in supporting the broader electronics design lifecycle,
and to specific projects that reimagine PCB and chip design tools.

3.2.1 Electronics and HCI
The HCI research community has recently seen a growth of interest in tools for electron-
ics that cover all phases of project conceptualization, design, debugging, fabrication, and
mass production. A number of projects have worked on augmented breadboards that help
with physical circuit construction [14, 60, 59]. Other tools focus on introducing software
programmable components, e.g. for designing analog circuits [52] or using augmented reality
[30]. Other projects support constructing circuits through step-by-step tutorials~ [57] or
debugging fabricated PCBs [53]. While many tools focus on enabling novices, some projects
also consider how to enable scaling from electronic prototypes to mass production [28]. Our
research fits into this larger landscape but focuses specifically on the task of translating ideas
from system architecture diagrams into printed circuit boards.

3.2.2 PCB Design Tools
Our recent study on PCB design practices [35] revealed that while the interesting hardware
design tends to happen across levels of abstraction, mainstream PCB suites such as KiCad

40

[29] and higher-end commercial suites like Altium [1] and Xpedition [42] operate mainly
at the level of individual components. Much of the development of these tools seems to
have focused on board layout, with features like interactive and sketch auto-routing, and
signal integrity and power analysis. Circuit verification is typically limited to Electrical Rules
Check (ERC) in the form of pin-type compatibility checks, but the coarse types (e.g., passive,
input, output, power) limit usefulness. Although the circuit entry side has seen advances like
hierarchical support, these are still first and foremost schematic drawing tools, not circuit
design tools.

While part libraries [32] are used in mainstream tools, these are less capable than subcircuit
generator libraries. Organizations may also re-use internal schematic files [41], but re-use of
community schematic files is difficult and uncommon [35].

Current schematic verification revolves primarily around peer review [40], but recent
commercial tools like Valydate [43] automate some schematic checks with a static model of
parts. While aspects of their electrical model appear similar to ours, these are still verification,
not design, tools.

Some recent academic work on PCB design tools has focused on novices. Fritzing [31]
provides a breadboard view of a circuit as a conceptual bridge to the schematic view, but
is still fundamentally a schematic drawing tool. AutoFritz [36] extends this with circuit
autocomplete suggestions, but does not change the fundamental design abstraction. While
its connection-oriented data-driven approach allows it to leverage a large corpus of existing
designs, the resulting correctness guarantees are weaker than a model-based approach.

Recent work has also examined tools operating at a higher level of design. These include
Trigger-Action-Circuits [2], where designs are specified at a behavioral level; Geppetto [19],
where designs are specified at a block-diagram level; and circuito.io [9] and EDASolver [15],
where designs are a collection of parts attached to a central microcontroller. However, lack of
support for user-defined parts limits designs to a single level of abstraction, fixed by the tool.
Furthermore, while these systems model electronics to some degree to synthesize working
circuits, those details have not been published.

Our prior work on EDG [46] focused on the underlying blocks and links problem structure,
electronics model, and synthesis algorithms, but fell short of a complete design system. This
work extends EDG’s model with hierarchy blocks, and combines it with an user-facing HDL
and tooling to produce an end-to-end tool with an accompanying user study and analysis.

3.2.3 Chip Design and Hardware Description Languages
HDLs like Verilog and VHDL are common in the chip design space for defining digital logic.
Generally, digital logic HDLs combine a structural component, which specifies hardware in
terms of modules and connections, and a behavioral component, which specifies arithmetic
and logic flows. PCB HDLs like PHDL [44] are structural, as it is unclear what behavioral
abstractions can suit the wide space of PCB electronics. However, an HDL interface to the
same schematic abstractions provides little more design automation than a graphical editor.

41

Verilog-AMS [24] and VHDL-AMS [8] provide analog and mixed-signal extensions on top
of their base digital languages. Though they allow for modeling and simulation of circuit
behavior, they are neither design nor synthesis languages.

Generators are an evolution on the basic HDL, encoding the rules to generate a family of
similar modules instead of describing a single instance. Chip-level generators include Chisel
[25] for digital hardware, and OASYS [21] and BAG [11] for analog hardware. JITPCB
[4] brings generators to the PCB space by embedding circuit construction primitives in a
general purpose programming language. Our system also uses subcircuit generators as a key
component, but augments it with electronics modeling to enable design support features like
parts selection and correctness checks.

MagicMcu
mcu led

IndicatorLed

...
digital[1]
digital[0]

gnd gnd

sig

(a) User-Facing Model

MagicMcu
mcu led

IndicatorLed

...

src
sinks

digital[1]
digital[0]

gnd gnd

sigsrc
sinks

(b) Internal Model

Figure 3.2: An example of a simple blinky led circuit in our user-facing
model (a) and internal model (b). The simplified user-facing model is presented
at a single level of hierarchy, and contains just blocks (rectangles) with ports (circles)
that can be connected. This largely follows representations in system architecture
diagrams. The more detailed internal model spans multiple levels of abstraction by
including internal hierarchy, and connections are described through links (diamonds).

3.3 System Design
In the Polymorphic Blocks workflow, as summarized in fig. 3.1, users start with an idea
and a high-level system architecture in mind. They then translate that architecture into
code written in our HDL, which is fundamentally organized around hierarchy block diagrams
extended with generators, a type system, and an electronics model. Block level polymorphism
and a class hierarchy allows the use of abstract blocks which can be refined later – for example,
an abstract step-down converter that can be refined into buck converter subcircuits based
on particular controller chips. Our visualization and refinement interface allows the user to
inspect their design and review these refinement choices. Finally, the user can export a netlist
which can then be used to complete the layout of a PCB.

In the following sections, we will use a running example of a simple blinking LED circuit,
shown in fig. 3.2, to introduce our model and the design workflow. However, it is important

42

to emphasize that the system is designed to handle and produce more complex designs such
as the data logger in fig. 3.3.

Figure 3.3: A more complex example: the datalogger PCB produced with our
system, further explained in section 3.5.2.

3.3.1 Block Diagram Model
Figure 3.2 shows our model’s basic structure, extending the basic block diagram and consisting
of blocks, ports, and links.

Blocks, shown as rectangles in figures, are elements of the circuit and the main construct
users will interact with. They represent structures from single components like resistors and
chips, to subcircuits like buck converters, to abstract functional blocks like voltage converters.
Internally, they can have a set of parameters that define operating conditions along with
constraints on those parameters.

Ports, shown as small circles in figures, represent the interface of blocks like power pins,
GPIO pins, and signal busses. They can also contain parameters that describe properties of
the interface, like maximum voltage ratings.

Links, shown as diamonds in figures, represent connections between ports, defining how
ports connect and how parameters can propagate. They are structured much like blocks,
containing ports, parameters, and constraints, however, block ports can only connect to link
ports (and vice versa). As shown in fig. 3.2, links are simplified in the user-facing model as a
connection between ports, and inferred into explicit objects in the internal model based on
the types of connected ports.

This model improves on mainstream schematics by enabling electronics modeling and
additional automated checks. However, more advanced automation and design support
requires two notions of hierarchy: a structural hierarchy for encapsulation and a class
hierarchy for’ abstraction.

3.3.1.1 Structural Hierarchy

Modern schematic editors already support a form of structural hierarchy via hierarchy blocks,
which can be placed on the schematic like ordinary components but represent a sub-‘sheet’ or

43

sub-circuit instead of a single component. This serves two purposes: as an organizational tool
to make large schematics comprehensible, and as a re-use tool for replicating the same circuit
block. We support the same concept, as shown in fig. 3.2 right where the IndicatorLed
nests internal LED and resistor sub-blocks. Generators, discussed later, further increase the
encapsulation power of these hierarchy blocks.

Hierarchy support requires cross-hierarchy additions to the block model. In the simplest
case, a sub-block port can be directly exported to a containing block port, as shown with
the IndicatorLed’s ports in fig. 3.2b. In the more complex case, where multiple sub-block
ports connect to a containing block port, a bridge is necessary. For example, a block might
have a single power input feeding two sub-blocks, but a connection of only power inputs is
nonsensical. A bridge would take the external facing port, a power input, and present a
flipped internal version, a power source, to feed the sub-blocks. Bridges are structured as
two-ported blocks, with one port being directly exported, and the other connecting to the
internal link. We note that this structure preserves parameters and constraints of the internal
blocks, allowing automatic management of lower-level invariants.

This hierarchy also extends to ports, which can be bundles of sub-ports, and links, which
can be composed from sub-links. For example, the UART port is comprised of two digital
ports TX and RX, and the UART link contains two digital links.

3.3.1.2 Class Hierarchy

StepDown
out

gnd
in

LinearReg SyncBuck Buck

Superclass

Subclasses

Figure 3.4: Class hierarchy example with step-down voltage converters. The
abstract step-down converter has three subclasses, a linear regulator, a synchronous
buck converter, and a buck converter. All these fulfill the step-down converter
interface and functionality, and can be used in its place. This mechanism provides
support for abstraction in our model.

The main differentiator from mainstream schematic tools is the notion of a class hierarchy
for blocks. While modern schematic tools require blocks to be specific parts, we would
like designers to be able to, for example, instantiate and connect a “generic” LED at that
(ambiguous) level of specificity. Prior work [35] found that embedded designers tend to start
with high-level and weakly specified versions of designs, using general modules like power,
sensing, and processing.

Our class hierarchy, borrowing inheritance concepts from object-oriented programming,
defines how parts are functionally similar and can be used in place of one another. Superclasses
provide higher-level interfaces, while a subclass has a is-a relationship with its superclass but

44

can be more specific and concrete. For example, in fig. 3.4, a buck converter is a type of (and
can be used in place of a) generic step down converter. This allows using blocks that are
abstract – generic and without implementation – and delaying the precise specification until
later. These abstract parts also enable more generalizable library blocks, by allowing system
designers control over elements nested within the structural hierarchy.

We note that, differently from object-oriented programming, replacing a block with a
subclass is not always safe. For example, a generic and abstract buck converter would not
have current limits, but a concrete one made of physical components would. Block constraints
enable automated checks to catch compatibility issues with selected refinements, but designer
expertise is generally helpful in making high-level trade-offs.

3.3.2 Electronics Model and Libraries

Power Source
voltage_out = 3.3 V
current_limit = 2 A voltage_limit = 3.0-3.6 V

current_draw = 1 A

voltage ⇐ src.voltage_out = 3.3 V
current ⇐ sum(sinks.current_draw) = 1 A

voltage ⊆ intersection(sinks.voltage_limit) = 3.0-3.6 V
current ≤ src.current_limit = 2 A

src sinks

Power Sink
Power
Link

Assignments

Assertions

Figure 3.5: An example of parameter propagation and checking in our
model, with a simplified constant-voltage link. Ports are defined with their
physical properties: voltage output and current limits for sources, and current draw
and voltage limits for sinks. These parameters “flow” through connected ports
to links, which create aggregate parameters of connected ports such as the total
current drawn and acceptable voltage range. Links also define assertions to check
correctness properties.

We built an electronics layer on top of this basic structure that models common pin types
and part ratings. This consists of common links and their associated ports, such as a power
link representing a constant-voltage power net, and power source and sink ports encoding
output voltages, input currents, and their limits. We also define signal types, including digital
ports modeling high and low voltage thresholds and analog ports modeling input and output
impedances. Multi-wire protocols like SPI, USB, and CAN are modeled as bundles composed
of the above single-wire primitives. As shown in fig. 3.5, we structured the model so that
parameters on ports define properties of the device (e.g., voltage limits and current draw for
a power sink), while links define properties of the net as derived from connected devices (e.g.,
voltage on a wire).

45

With this electronics model, we built a library of common blocks. Primitives include a
resistor generator using the E24 series of preferred numbers, and inductor, capacitor, diode,
and transistor generators created from parts tables. These primitives are defined with untyped
passive ports, and are wrapped in higher-level library blocks (e.g., pull-up resistors for digital
lines and decoupling capacitors for power lines) that translate port parameters to component
parameters (e.g., pin voltage to rated voltage on a decoupling capacitor).

These library blocks provide significant design automation and integration. For example,
a low-pass resistor-capacitor (RC) filter block would calculate the resistance and capacitance
based on a cutoff frequency and impedance specification, while a resistive divider block
would find a pair of resistor values in the E24 series meeting the target ratio and output
impedance. The library also includes application circuits of more specialized devices like
microcontrollers, displays, and protocol converters, all of which can be directly dropped into
the system architecture level HDL.

Top-level System Expertise
Required

Design
Abstraction

System
Design

Library
Building

Model
Building

Novices

Proficient

Experts

H
ig

he
r

Le
ve

l

W
id

er
 A

ud
ie

nc
e

MagicMcu IndicatorLed

...

Figure 3.6: The scalable levels of design is intended to be accessible and useful to
novices who can compose system-level designs using libraries, while the relatively
fewer but more experienced electronics experts build those libraries of blocks and
underlying port and link models.

Our overall vision of the layers of our system and how different users interact with it is
summarized in fig. 3.6.

3.3.3 Hardware Description Language
Taking inspiration from recent work on chip generators [25], we provide a generator HDL
interface for authoring blocks. This programmatic construction of blocks captures the design
methodology to construct a family of subcircuits, and separates interface from implementation
by translating high-level inputs into internal parameters. For example, the LED-resistor
generator calculates the resistor value given the input voltage.

As shown by the Blinky code example in fig. 3.7 (which describes the diagram in fig. 3.2a,
the HDL is a Python-embedded domain specific language, making use of its object-oriented
features. Classes represent a re-usable block template, while objects represent individual
instances. Generators defining a block’s contents are written as a member function which
can instantiate and connect sub-blocks, ports, and parameters.

46

class Blinky(Block):
def contents(self):

super().contents()
self.mcu = self.Block(Nucleo_F303k8())
self.led = self.Block(IndicatorLed())
self.connect(self.mcu.gnd, self.led.gnd)
self.connect(self.mcu.digital[0], self.led.io)

Figure 3.7: Example code defining the Blinky circuit Block. Within the block’s
contents, lines 4 and 5 instantiate the sub-blocks for the Nucleo microcontroller
board and a discrete LED. Lines 6 and 7 then make the signal and ground connec-
tions.

with self.implicit_connect(
ImplicitConnect(self.mcu.gnd, [Common]),

) as imp:
(self.led,), _ = self.chain(self.mcu.digital[0],

imp.Block(IndicatorLed()))

Figure 3.8: Example of an alternative structure for instantiating the Blinky circuit
using implicit connect and chain. Line 2 defines the ports (microcontroller ground)
that hierarchy blocks in the code block should connect to, and the tags to match.
The IndicatorLed instantiated on line 5 defines a ground port tagged with Common,
so it is automatically to the microcontroller’s ground. The chain statement on line
4 then connects the microcontroller’s digital pin to the LED’s Input-tagged signal
pin.

We also provide syntactic sugar constructs for frequent use cases as shown in fig. 3.8. The
first, implicit connect, is motivated by the large number of common connections like power and
ground. This is structured as a code block, in which internal sub-blocks will have connections
made by tag matching. The second, chain, is motivated by the frequent appearance of
connections through blocks: in one port and out another. Syntactically, this allows block
declaration and connection to happen on one line, and also makes linear connection topologies
more obvious in HDL. These constructs can be mixed with each other, as also shown in
fig. 3.8, where the implicit connect provides the ground and the chain provides the signal.

Subcircuits and generators are defined in the same way, as shown in fig. 3.9. The same
also mostly holds true for links, given their block-like structure.

47

class IndicatorLed(GeneratorBlock):
def __init__(self) -> None:

super().__init__()
self.io = self.Port(DigitalSink())
self.gnd = self.Port(Ground())

def generate(self):
super().generate()
voltage = self.get(self.io.output_high_voltage)
self.led = self.Block(Led())
self.res = self.Block(Resistor(

resistance=(voltage / 0.010, # max current, 10 mAmp
voltage / 0.001))) # min current, 1 mAmp

Figure 3.9: Simplified code for the indicator LED subcircuit. Lines 4 and 5 define the
external ports by their types, while lines 10-13 define the internal blocks. Notably,
as on line 9, generators can access solved values like digital logic thresholds, and use
those to automatically size internal blocks like the resistor. We omit the internal
connections for brevity.

Figure 3.10: Visualization and refinement GUI with the Blinky example from fig. 3.2
open. An automatically laid out block diagram is on the left side, while tree view of
the design is immediately to the right. In the design tree, abstract blocks (needing
refinement) would be shown in yellow, refined blocks in green, and error blocks in
red. The top of the vertically split pane shows the available refinements for the
currently selected block, and users can apply block-specific or type-wide refinements
through a context menu. The bottom pane shows all the chosen refinements. The
rightmost pane displays details of the selected block, including parameters and
connected ports.

48

3.3.4 Visualization and Refinement Interface
As prior work [35] has highlighted the need to balance control and transparency with
automation, we also provide a visualization and refinement GUI. This user interface, shown
in fig. 3.10, visualizes the HDL with an automatically laid out block diagram and provides
insight into the system’s reasoning though inspection of solved values.

Furthermore, users can select block subclass refinements in the interface, allowing the HDL
to remain high-level while specifics can be dealt with interactively. The resulting subcircuit
is then automatically generated, and model checks catch mistakes. For example, a user could
refine an abstract resistor into a concrete surface-mount chip resistor, and its modeled power
rating allow automated compatibility checks.

3.3.5 Board Generation
As subcircuits are fully defined at lowest level of the hierarchy block diagram, the overall
design is equivalent to a schematic. Our system can export this as a netlist file describing
components and their connectivity, which can then be imported into KiCad’s [29] board
layout tool. Otherwise, we currently do not address board layout.

As the overall hardware design flow involves a back-and-forth between schematic and
layout, we enable netlist updates to a work-in-progress layout by generating deterministic
component names using HDL variable names. However, this does require those names to be
stable, so additional techniques will be needed to support user HDL refactoring.

3.4 System Implementation
The user-facing HDL is implemented as a library of base classes in Python, with mypy static
type annotations allowing the user HDL to be type checked. The HDL compiler, netlister,
and visualization interface were also written in Python with the TkInter GUI toolkit.

The user HDL code invokes hardware construction methods (like Block and Port) which
builds up the hierarchy block model as a tree data structure.

3.4.1 Compiler Structure
The hardware compiler takes the “high-level” model, as in fig. 3.2a, and incrementally “lowers”
the model by adding detail and expanding sub-elements until getting to the lowest form, as
in fig. 3.2b. This is structured as a tree walk, from blocks to its internal ports, sub-blocks,
and links, recursively. Each visited block is transformed as follows:

Refinement: if there is a refinement selected for the type or particular block, the block is
replaced with the refinement.

Generation: if the block is a generator, the generator is provided with the concrete values
of any accessible parameters, then invoked to define the block’s internal elements.

49

Generators run once and not in any specific order, so all referenced parameters must
have at least worst-case bounds, and the generator must be written to produce a working
implementation for that entire range. Similarly, generators must specify pre-execution
worst-case bounds for parameter values. For example, voltage converter generators define
a worst-case current draw before a tighter one is available post-generation. This is an
implementation limitation, and future work could explore better approaches like inferring an
order from the constraint graph and allowing interactive updates.

Constraint graph update: constraints between parameters are parsed into a directed graph.
Constraints of the form “a == something” are recorded as assignments to a, and constraints
of the form “a subset-of something” are recorded as bounds to a. Parameter values are
evaluated by walking the constraint graph, and only when needed (lazily). A value may have
any number of subset bounds, but only one assigned value (as long as it satisfies all subset
bounds). Constraints not matching either form do not affect evaluation, and are instead
recorded as assertions that are checked at the end.

Netlisting is handled as a compiler phase after the design has been fully lowered, and is
also a tree walk that builds up and writes out the index of footprints, pins, and connections.

3.4.2 Block Diagram Layout
We use ELK [16] (through py4j) as the block diagram layout engine, specifically its “layered”
algorithm which supports hierarchy blocks and ports. As this algorithm relies on directed
edges to provide a reasonable layout, we infer directionality primarily from the link port.
For example, a voltage source would be the tail, and a voltage sink would be the head.
Bidirectional ports are treated as sinks, except for when the link has no sources, the first
bidirectional port is treated as a source.

We run a series of simplification transforms to hide internal details like bridge and adapter
pseudo-blocks by collapsing them and merging their input and output edges. High-fanout
links (containing over 3 sinks) have their edges replaced with stubs for simplicity, analogous
to power rail and ground symbols in schematics. Overall, while these approximations are not
perfect, they appear to produce usable block diagrams.

3.5 Example Applications
We demonstrate the capabilities of our system by designing, physically building, and testing
two example systems.

3.5.1 Simon
We extend the Blinky example into the Simon memory game, shown in fig. 3.11 and consisting
of four colored light-up buttons and an accompanying audio tone for each color.

50

Figure 3.11: The Simon PCB (with detail view) and connected buttons.

We use a socketed Nucleo board as both a power source and microcontroller. Since the
lights in the dome buttons require 12 volts while the Nucleo only supplies 5 volts, we use a
boost converter to generate the necessary voltage and a MOSFET circuit to drive the lights
from a 3.3 volt pin. We further added a speaker driver, speaker connector, and debugging
tricolor LED. In terms of structure, each of these is a library sub-block.

Overall, the top-level HDL for Simon is 58 lines. Of note is that the boost converter
instantiation requires only one line of code including the desired output voltage, minimizing
design effort for an element where we do not care about the specific implementation. The
boost converter generator library encapsulates the details and process of component sizing.

3.5.2 Datalogger
A more complex design is the datalogger, shown in fig. 3.3, which records data from a
Controller Area Network (CAN) interface onto an SD card. In contrast to Simon’s socketed
microcontroller board, this drops a microcontroller chip and its supporting components
directly on the board.

In addition to the necessary CAN interface, SD card socket, microcontroller, and power
conditioning blocks, this design also includes a supercapacitor-based backup power supply.
Similar to the boost converter generator, this block generates a current-limited charger and
automatically sizes internal elements like the transistor and reference voltage divider.

51

3.6 User Study: Methodology
While the preceding examples demonstrate that our system can produce working boards,
usability is also an important practical consideration. We ran a small user study, in which
participants designed an electronics project of their choice.

Overall, our study design prioritizes ecological validity (realism) with open-ended tasks
and participants’ choice of projects, important aspects for creativity support tools [51].
Furthermore, we focused on qualitative feedback: as a concept significantly different from
current practice, we felt that answers to “where and why does it work” which could drive
future work were more interesting than a binary “does it work”.

3.6.1 Participants
We recruited 3 local participants through personal referrals, including two professional engi-
neers and one electrical engineering undergraduate. All participants had at least intermediate
familiarity with PCB design and Python.

Participants were compensated with gift cards at $50 an hour for the data collection
interviews, and given a budget of up to $300 for parts and boards to build their projects.

3.6.2 Structure
We set up a fresh virtual machine (VM) for each participant, which they would remote-
desktop into using X2go. Each VM ran Ubuntu 18.04 with XFCE and IntelliJ Community
Edition (which all participants used) pre-configured to work with our system. Participants
did not have issues navigating the remote desktop interface, and everything was reasonably
responsive.

We asked participants to share their VM window over video conference so we could watch
their progress and provide help. We did not record these sessions, but took field notes. As
documentation and error messages were specifically not under evaluation, we would answer
any questions participants had, including giving pointers to example code where appropriate.

The study started with a tutorial session, in which participants worked through a tutorial
document which involved building the blinky design from fig. 3.2, then extending it with a
switch, LED array, discrete microcontroller, and temperature sensor. This tutorial introduced
all the HDL constructs, from basic model and abstractions to the implicit-connect and
chain syntactic sugar constructs, and ended with a simple part definition exercise for the
temperature sensor.

Afterwards, we worked with participants to define a project of appropriate complexity
and scope. In particular, we wanted a system architecture which neatly decomposes into
blocks and could re-use common library elements, but also involved building a generator and
modeling a few parts. We felt that building a single generator would help in understanding
how automation features (like low-pass RC generators) work, while remaining considerate
of participants’ time. Furthermore, as the effectiveness of our tool depends on extensive

52

libraries which normally would be provided by a community in mature projects, we also built
library parts needed for participants’ projects for parts we deemed common. This phase was
conducted with a mix of video conference and instant messaging, as a back-and-forth process
which spanned several days. We then scheduled time for participants to actually write HDL.

Once participants were satisfied with their HDL, we conducted a semi-structured interview.
Topics included their overall thoughts about working in the system and comparisons with
mainstream flows, as well as specific thoughts on the HDL, abstractions, electronics model, and
supporting tooling. We attempted to reduce the effects of acquiescence bias by encouraging
participants to be frank and by framing the interview as constructive feedback rather than
evaluation. Interviews were audio recorded (with participants’ consent), and lasted an average
of 2 hours and 19 minutes.

Afterwards, participants had the option of continuing to a board layout, which was
primarily independent and on their own computer, unless they needed to make netlist
changes. Because of COVID-19, we were unable to physically fabricate, assemble, and test
the final devices.

3.7 User Study: Results
Overall, participants spent an average of 1 hour 5 minutes completing the tutorial, and 5
hours 15 minutes working on their HDL, including 2 hours building subcircuit and part
libraries, and including untracked time understanding the circuits being built and becoming
familiar with the system. By the end, participants were able to work effectively with the
system, got designs to a point they were satisfied with, and continued to layout. All three
projects are detailed below, with P02’s project shown in fig. 3.12 and HDL in fig. 3.13.
Further figures for all projects, including block diagram visualizations, are included in the
supplemental materials.

3.7.1 Project: Power Meter
P01’s project was an inline power meter that measures the voltage and current passing
through it. P01 started by modeling the INA190 current sense amplifier chip, then building
the top-level system with stub sub-blocks for the current and voltage sense chains, and finally
implementing those sub-blocks including writing the differential RC filter generator. The
initial design idea came as a sketch of the analog signal chain in KiCad, while the rest of the
system came together during HDL writing and based on available library parts.

P01 wrote 112 lines of system-level HDL (including signal chain sub-blocks), 20 lines of
generator libraries, and 95 lines of part definitions. The layout had 66 individual components.

3.7.2 Project: Thermistor Reader

53

(a) System Diagram
(b) Board Render

Figure 3.12: P02’s initial system diagram for the thermistor reader, and the resulting
PCB (rendering) they produced using our system.

P02’s project was a thermistor reader that displays readings from a bank of 8 thermistors
and plays an audio alert if bounds are exceeded. P02 chose to start by writing the thermistor
and RC filter combination generator, which would calculate the series resistor and parallel
capacitor values given the nominal thermistor resistance. Of note is the use of a for loop to
generate the repeated thermistors and signal chains. This was also the only case requiring a
model override: the OLED and speaker worst-case current draw exceeded capabilities of the
USB port, so an inline pseudo-block (using 3 lines of code) was used to lower the modeled
current, effectively telling the system that these parts would not be run at full power.

P02 wrote 52 lines of system-level HDL, 40 lines of generator libraries, and 15 lines of
part definitions. The layout had 90 individual components.

3.7.3 Project: Multifunction Instrument
P03’s project was an USB oscilloscope, function generator, logic analyzer, and power supply
combination device, all driven from a microcontroller. P03 chose to start by writing the
variable-output buck converter generator, modifying the existing feedback controller chip based
buck converter by adding a PWM input, MOSFET switch, and diode. This process turned
out to be tricky, requiring deeper circuits knowledge to size switches and diodes compared to
the typical process of choosing an off-the-shelf chip and using reference schematics and part
selections. However, once completed, the top-level system architecture, including hooking up
the converter, signal buffers, LCD, and USB, progressed smoothly.

P03 wrote 48 lines of system-level HDL, 24 lines of generator libraries, and 90 lines of
part definitions. The layout had 53 individual components.

3.7.4 Advantages
Overall, participants were happy with the system architecture and level of design, with P01
noting that it matched the ideal.

54

self.usb = self.Block(UsbDeviceCReceptacle())
with self.implicit_connect(ImplicitConnect(self.usb.pwr, [Power]),

ImplicitConnect(self.usb.gnd, [Common])) as imp:
self.usb_reg = imp.Block(BuckConverter(output_voltage=(3.0, 3.3)))

with self.implicit_connect(ImplicitConnect(self.usb_reg.pwr_out, [Power]),
ImplicitConnect(self.usb.gnd, [Common])) as imp:

self.mcu = imp.Block(Lpc1549_48())
(self.swd,), _ = self.chain(imp.Block(SwdCortexTargetHeader()), self.mcu.swd)
(self.crystal,), _ = self.chain(self.mcu.xtal, imp.Block(

OscillatorCrystal(frequency=12 * MHertz(tol=0.005))))
(self.usb_esd,), _ = self.chain(self.usb.usb, imp.Block(UsbEsdDiode()), self.mcu.usb_0)

self.thermistors = ElementDict[ThermistorLowPassRc]() # Thermistor array and buffers
self.buffers = ElementDict[OpampFollower]()
for i in range(8):

(self.thermistors[i], self.buffers[i]), _ = self.chain(
imp.Block(ThermistorLowPassRc(47*kOhm(tol=0.05), 0.5*kHertz(tol=0.2), True)),
imp.Block(OpampFollower()), self.mcu.new_io(AnalogSink))

self.screen = imp.Block(Nhd_312_25664uc()) # Screen
self.connect(self.mcu.new_io(DigitalBidir), self.screen.cs)
self.connect(self.mcu.new_io(DigitalBidir), self.screen.reset)
self.connect(self.mcu.new_io(DigitalBidir), self.screen.dc)
self.connect(self.mcu.new_io(SpiMaster), self.screen.spi)

self.sw1 = imp.Block(DigitalSwitch()) # Switches
self.connect(self.sw1.out, self.mcu.new_io(DigitalBidir))
self.sw2 = imp.Block(DigitalSwitch())
self.connect(self.sw2.out, self.mcu.new_io(DigitalBidir))
self.rgb_led = imp.Block(IndicatorSinkRgbLed()) # Indicator light
self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.red)
self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.green)
self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.blue)

self.forced_current = self.Block(ForcedCurrentDraw((0, 0.1*Amp)))
self.speaker_amp = self.Block(Lm4871())
self.speaker = self.Block(Speaker())
self.connect(self.forced_current.pwr_in, self.usb_reg.pwr_out)
self.connect(self.forced_current.pwr_out, self.speaker_amp.pwr)
self.connect(self.speaker_amp.spk, self.speaker.input)
self.connect(self.speaker_amp.gnd, self.usb.gnd)
self.connect(self.speaker_amp.sig, self.mcu.new_io(AnalogSource))

Figure 3.13: The system-level HDL for P02’s thermistor board, simplified for brevity.

55

Participants also liked the pre-built blocks and the encapsulation they provide. P02 noted
that library blocks could reduce the need to read through datasheets and make it more
difficult to miss non-obvious elements like the pull-down resistors on the Type-C receptacle.
P03 also compared the cleaner and integrated generator library approach of our system with
their painful existing flow of building buck converters by searching on chip vendor sites, using
Excel calculators, and downloading and importing footprints.

All participants found the more detailed automated checks to be useful, with P01 con-
sidering it the best part of the system. P02 felt the system could be particularly useful for
novices, making it more difficult to get an obviously bad schematic compared to the weaker
ERC in existing tools. Furthermore, in combination with previous hardware-proven designs
built in this system, the block diagram visualization, and familiarity with the circuit from
doing the layout, all participants had between medium and high confidence that their design
would work. However, participants were more skeptical of community libraries, for example
saying that they would do spot checks or want quality indicators.

3.7.5 Limitations
While participants generally felt the electrical checks were reasonable without being excessive,
P01 cautioned that the checks were better described as sanity checks as the modeled values
were based on datasheets which might assume certain conditions, context that is lost in our
model. Furthermore, P02 noted that the modeling and encapsulation of generators might not
be comprehensive: for example, a user instantiating a thermistor block would need to know
whether the signal rises or falls with increasing temperature.

All participants encountered failed checks, often due to tolerances set too strict for parts
like resistive dividers. Though participants recognized these as true-positives and solved
these by loosening tolerances, this tolerance specification with stackup differs from design
practices around nominal values. Furthermore, P01 found the common tolerance debugging
process of loosen, re-compile, and iterate to be annoying, suggesting either tighter iteration
loops or presenting the best achievable value. P01 also preferred checks to be non-fatal and
not prevent netlist generation where possible, though P02 preferred to not waive checks and
instead use more targeted and explicit mechanisms like tightening the worst-case current
draws.

P03 felt that the learning curve was steeper than a GUI, and that the system does require
familiarity with Python. Furthermore, the object-oriented Python in our HDL may differ
from the scripting aspects used by hardware designers. P01 also noted mismatches between
terminology and class names presented in our system and existing schematic capture concepts,
and viewed intuitive names as essential to easy learning.

One issue P01 noted with the refinement process is that this data are stored separately
from the HDL, so the HDL alone would be insufficient for a design review. Suggestions
include having refinements generate code back into the HDL, or having refinements be part
of review. In general, P01 and P03 also noted good tool support for code diffs, though also
acknowledged the existence of schematic diff tools.

56

Finally, participants brought up a slew of less-fundamental usability issues with the
system. This ranged from poor automatic net naming, to HDL syntax issues like excessive
verbosity reducing the signal-to-noise ratio.

3.7.6 Part Building
Though all participants agreed that modeling parts and writing generators was worth the
cost if it was likely to be re-used and shared, they differed in the details. P02 found writing
the math for the RC filter calculation to be easy, and P03 noted that having an existing
generator as a starting was very helpful. On the other hand, P01 pushed for an untyped port,
which would in effect waive model checks for when one just wants things to connect.

3.7.7 Graphical Interfaces
All participants also made use of the visualization and refinement interface to explore the
compiled designs. P01 noted that circuit reading usually relies on visual pattern matching
on schematics, and it was harder to see the connectivity structure from the HDL, though
P02 believed the HDL to be reasonably clear. P01 also thought that while the automatically
generated block diagram was reasonable for the top level, deeper levels showing individual
components significantly deviated from schematic convention. However, that was tempered
with the hope that adding a few more simple rules, like ordering ports by voltage, could
produce significant improvements.

All participants also independently suggested tightening the HDL and block diagram
update loop, perhaps by integrating the visualization into an IDE. One use case suggested by
P02 was to highlight block pins that still need to be connected.

Participants did have differing opinions on the HDL as a design entry interface. P02
thought the HDL with its for loop and textual entry was faster, though modern schematic
tools somewhat close the gap with support for hierarchy replication. P01 noted more generally
that HDLs and graphical schematic editors were suitable for different purposes, preferring
schematics for analog designs with high connectivity between a few components, and preferring
HDLs when the equivalent schematic sheets would be very complex and cluttered.

3.7.8 Design Time
All participants mentioned design time as a metric when comparing this system to mainstream
flows, with P03 also mentioning design pain. While acknowledging that it was difficult to
fairly compare time for such different flows, P02 and P03 estimated their projects would have
taken about as long in a traditional flow (give or take depending on assumptions), while P01
was more wary about comparing new tools to familiar tools. P03 further noted that the end
results were more “portable”, including time invested in reusable components. However, P02
was unsure about benefits when dealing with specialized, one-off components, and P01 noted
the flexibility in mainstream flows to defer component sizing to quickly proceed to layout.

57

3.8 Limitations and Future Work
While we have presented a system that ultimately produces working boards and conducted
user trials with an emphasis on simulating realistic conditions, there are both important
limitations and open avenues for continued work.

3.8.1 Library-Based Approach
Our approach relies on having good and complete libraries to maximize re-use. Though
our current library includes many common parts and subcircuits, it is far from complete.
While a database of simple parts might be easily parse-able from a parametric product table,
complete details for more complex parts are often only available in PDF datasheets. Future
research on extracting data from datasheets with tools such as Tabula [54] and DocParser
could accelerate this effort.

Overall, collaboration from a large community may be key to building a critical mass
of parts and subcircuit generators to support the needs of users. However, as noted by
participants, this must be balanced with quality indicators to enable confidence in re-use.

3.8.2 Electronics Model
The foundational abstractions of hierarchy blocks, links, and parameters appeared useful to
and was understood by users. While the electronics model proved suitable for our intermediate-
level example designs and user projects, it has many limitations, for example defining only a
few signal interfaces and lacking support for multiple grounds. We do caution that continued
work extending the model must balance functionality with usability and usefulness.

3.8.3 Users and User Study
In building our system and libraries, we focused on supporting intermediate-level designers
and projects. In particular, sufficient circuits background enables effective use of library
blocks, while less complex projects avoid needing a long tail of specialized parts. However,
we believe that with additional work – such as on-demand documentation for novices, or an
expanded library and model for experts – our approach will scale up and down both the skill
and complexity hierarchy.

That being said, we do caution against generalizing the user study results, given the small
participant pool and the selection for circuits knowledge and programming experience. We
position our results as a first step, leaving larger and more robust studies – and the need for
a more polished and scalable system – as future work.

58

3.8.4 Graphical Interfaces
Based on user feedback, perhaps the most important usability improvement would be better
integration with graphical block diagram or schematic representations. The most ambitious
idea would be a fully linked, hybrid HDL and block diagram editor, allowing users to freely
move between whichever representation suits their current task best. Less ambitious would
be tighter updating of block diagrams from HDL, better automatic block diagram layouts
(possibly with user-specified hints), and better tools for tracing and sense-making of constraint
errors.

Furthermore, while an HDL is necessary to write generators, the resulting blocks and the
rest of our design model can be used from within a graphical, schematic-like interface. This
would eliminate the need for programming experience and provide a more familiar interface
and graceful transition.

3.9 Conclusion
Unlike Embedded Design Generation (EDG), Polymorphic Blocks (PolyBlocks) exists along-
side the user throughout the system architecture process. Within PolyBlocks, a design exists
as a mixed-abstraction block diagram that can be highly abstract, with many details left
undefined; concrete, with a fully known implementation; or an arbitrary combination of the
two. The user has the freedom to approach the design process, the process of going from an
abstract to a concrete design, however they wish without losing PolyBlocks’ support, due to
its ergonomic design. As they do, PolyBlocks will provide suggestions, check for errors, and
proactively present salient information. Features like parametricity and generators encourage
reuse, and automate much of the work a user would have to do. When a user is finished with
a design, PolyBlocks can export a netlist to board layout tools just like a more conventional
schematic capture tool. This is all captured within a user-facing IDE that mimics a software
development environment.

PolyBlocks, like EDG, uses a block diagram model that can be rendered into a system
of constraints. Unlike EDG, it uses a simpler propagation engine to reason about those
constraints. An electronics model defines how the real-world physical properties of a device
are mapped to properties and constraints within a block diagram. PolyBlocks’ propagation
engine can view the set of constraints within a design in order to auto-complete missing
elements, check for correctness, and query various hypotheticals. More abstract components
simply generate fewer constraints than more concrete elements of a design, but this does not
fundamentally change how the back-end sees them or what operations it can perform.

PolyBlocks’ design, based on a constraint model and evaluated using algorithms from
automated reasoning, is why it is a supportive design tool. Automated reasoning tools free
it from having to privilege a particular abstraction level, allowing it to have the mixed-
abstraction levels needed to ergonomically fit into users’ existing workflows. It is possible to
have high-level design information, like bus protocols, existing alongside low-level information,

59

like individual pin voltages, with interactions between them that are evaluated as needed. This
coexistence allows PolyBlocks to proactively detect errors even in partial designs, presenting
them as early as possible without compromising accuracy. Many of the other features of
PolyBlocks are made possible by the abstraction agnostic nature of the propagation engine.

PolyBlocks’ core approach shows that even a less powerful automated reasoning tool, a
propagation engine, can provide significant benefits to an embedded design tool. Many useful
tasks for a design tool are simple enough that a constraint solver would be overkill. Trading
off power for speed is worthwhile for an interactive tool that must respond quickly to user
actions. The core benefits of automated reasoning are still present even with less inferential
power and can still be used to make tools that are more ergonomic, salient, and automated.

60

Chapter 4

Conclusion

Modern Electronic Design Automation (EDA) tools have stagnated due to a focus on board
layout, leaving the earlier, more-important parts of the design process languishing without
support. These tools lack the holistic perspective over the design process needed to effectively
assist designer decision making.

This dissertation has proposed a methodology for building powerful, assistive embedded
development tools through the use of techniques from automated reasoning and validated
that approach in two new tools. The first, Embedded Design Generation (EDG), is a proof-
of-concept system for design synthesis that demonstrates how our technique is capable of
handling the process of system architecture development without human intervention. Its
successor, Polymorphic Blocks (PolyBlocks), uses the lessons learned from EDG in a more
conventional tool that supports the user as they work. Together they sketch a new model for
embedded development tools that complements how designers approach the process.

There are a number of paths to extending and improving upon our work:
Extending the Model: The logic we use in both EDG and PolyBlocks cannot cover

the full complexity of embedded design. In an immediate sense it does not need to; a logic
covering basic constraints with real numbers is sufficient for reasoning about most systems.
However, new types of logical statements would allow us to reason accurately about aspects
of a design that we must currently treat conservatively. For instance, both tools assume that
all parts in a system are always on. With a logic that includes functions over time, like linear
temporal logic, we could better model the effects of power consumption when elements of a
design are turned on and off. A logic for analog signal processing could replace our current
model, allowing us to reason about filters and impedance. Lastly a tractable notion of paths
and interfaces would allow EDG to handle code spanning multiple processors, allocating
drivers in a heterogenous system.

Alternate Reasoning Methods: One-shot satisfiability solving and variable propaga-
tion are far from the only way to interact with automated reasoning tools. Solvers like Z3
[13] support more incremental interaction modes, potentially allowing clients to find multiple
solutions for similar problems more efficiently than starting from scratch each time. The
additional speed could make it feasible for EDG to find a Pareto frontier of designs satisfying

61

a specification, so users could directly examine the tradeoff space for their problem.
Broadening our Domain: It should be possible to extend our work to cover more than

just the system architecture phase. Extending PolyBlocks to the software domain could lead
to an extended workflow which deeply integrates cross domain simulations, creating a fast
path for tests that would otherwise require prototyping. For example, a common mistake by
novice designers make is placing filter capacitors and crystals too far from the components
that use them. Board layout tools could check for errors like that if they knew how those
components are being used, something a tool aware of context from system architecture phase
could do.

Improving Usability: Multiple users have commented on how PolyBlocks would be
improved with better user interfaces. Instead of a unidirectional flow from HDL to architecture
diagram, they asked for bidirectional interactions where editing the diagram changed the code.
Other potential improvements include a less cluttered HDL and changes to the electronics
model to make extending it easier.

One of the broader lessons from this work is that automated reasoning can be useful in
design tools targeting novices. Other fields use automated reasoning within development
tools, but they use it to ensure correctness and prevent errors. Formal methods increase
the difficulty of integrated circuit design and software development, at least until the task
grows so large or costly that the lower error rate wins out. This doesn’t have to be the
only paradigm for its use. Instead, other types of development tools should consider using
automated reasoning to improve the entry level experience, rather than focusing on the
hardest tasks.

EDG and PolyBlocks serve to show what is possible when the embedded design process is
augmented with automated reasoning. Between functional demonstrations and tests with
outside users, our methodology has proven its worth. There is the potential to both improve
our existing systems and bringing these ideas somewhere new. Ultimately, the true test
of this work is in the hands of designers; seeing whether tools based on these ideas are
enthusiastically adopted by a community of users.

62

Bibliography

[1] Altium. Altium Designer. 2018. url: https://www.altium.com/altium-designer/.
[2] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. “Trigger-Action-Circuits:

Leveraging Generative Design to Enable Novices to Design and Build Circuitry”.
In: Proceedings of the 30th annual ACM symposium on user interface software and
technology. UIST ’17. New York, NY, USA: ACM, 2017, pp. 331–342. url: http://doi
.acm.org/10.1145/3126594.3126637.

[3] Autodesk. EAGLE | PCB Design Software. 2018. url: https://www.autodesk.com/pro
ducts/eagle/overview.

[4] Jonathan Bachrach, David Biancolin, Austin Buchan, Duncan W Haldane, and Richard
Lin. “JITPCB”. In: Intelligent robots and systems (IROS), 2016 IEEE/RSJ international
conference on. IEEE, 2016, pp. 2230–2236.

[5] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. “Satisfiability
Modulo Theories”. In: Handbook of satisfiability. Ed. by Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh. Second. IOS Press, 2021, pp. 1267–1329.

[6] H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-Centered Systems.
Interactive technologies series. Morgan Kaufmann, 1998. url: https://books.google.co
m/books?id=T8pcH4QjATkC.

[7] Nicola Bezzo, Peter Gebhard, Insup Lee, Matthew Piccoli, Vijay Kumar, and Mark
Yim. “Rapid Co-Design of Electro-Mechanical Specifications for Robotic Systems”. In:
ASME 2015 international design engineering technical conferences and computers and
information in engineering conference. American Society of Mechanical Engineers, 2015,
V009T07A009–V009T07A009.

[8] Ernst Christen, Kenneth Bakalar, Allen M Dewey, and Eduard Moser. “Analog and
Mixed-Signal Modeling Using the VHDL-AMS Language”. In: 36th design automation
conference. 1999, pp. 21–25.

[9] circuito.io. Circuit Design App for Makers- Circuito.io. Feb. 2020. url: https://www.c
ircuito.io/.

[10] Sylvain Conchon, David Déharbe, David M. Heizmann, and Tjark Weber. SMT-COMP
2016: Mar. 2017. url: http://smtcomp.sourceforge.net/2016/index.shtml.

https://www.altium.com/altium-designer/
http://doi.acm.org/10.1145/3126594.3126637
http://doi.acm.org/10.1145/3126594.3126637
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://books.google.com/books?id=T8pcH4QjATkC
https://books.google.com/books?id=T8pcH4QjATkC
https://www.circuito.io/
https://www.circuito.io/
http://smtcomp.sourceforge.net/2016/index.shtml

63

[11] J. Crossley et al. “BAG: A Designer-Oriented Integrated Framework for the Development
of AMS Circuit Generators”. In: Proceedings of the international conference on computer-
aided design. ICCAD ’13. San Jose, California: IEEE Press, 2013, pp. 74–81.

[12] Abhijit Davare, Douglas Densmore, Liangpeng Guo, Roberto Passerone, Alberto L.
Sangiovanni-Vincentelli, Alena Simalatsar, and Qi Zhu. “metroII: A Design Environment
for Cyber-Physical Systems”. In: ACM Trans. Embed. Comput. Syst. 12.1s (Mar. 2013),
49:1–49:31. url: http://doi.acm.org/10.1145/2435227.2435245.

[13] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Proceedings
of the theory and practice of software, 14th international conference on tools and
algorithms for the construction and analysis of systems. TACAS’08/ETAPS’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 337–340.

[14] Daniel Drew, Julie L Newcomb, William McGrath, Filip Maksimovic, David Mellis,
and Björn Hartmann. “The Toastboard: Ubiquitous Instrumentation and Automated
Checking of Breadboarded Circuits”. In: Proceedings of the 29th annual symposium on
user interface software and technology. 2016, pp. 677–686.

[15] EDASolver. EDASolver: Welcome to Functional EDA. Jan. 2016. url: https://edasolv
er.com.

[16] Eclipse Foundation. Eclipse Layout Kernel. 2020. url: https://www.eclipse.org/elk/.
[17] Iacopo Giangrandi. Etching Printed Circuits Boards at Home. [Accessed 13-12-2023].

2017. url: https://www.giangrandi.org/electronics/pcb/pcb.shtml.
[18] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. “Synthesis

of Loop-Free Programs”. In: SIGPLAN Not. 46.6 (June 2011), pp. 62–73. url: http:
//doi.acm.org/10.1145/1993316.1993506.

[19] Gumstix. Geppetto. 2018. url: www.gumstix.com/geppetto/.
[20] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. “Complete Completion

Using Types and Weights”. In: SIGPLAN Not. 48.6 (June 2013), pp. 27–38. url:
http://doi.acm.org/10.1145/2499370.2462192.

[21] R. Harjani, R. A. Rutenbar, and L. R. Carley. “OASYS: A Framework for Analog
Circuit Synthesis”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 8.12 (1989), pp. 1247–1266.

[22] Marijin Heule, Matti Järvisalo, and Tomář Balyo. The International Sat Competition
Wepage. July 2016. url: http://www.satcompetition.org/.

[23] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Con-
strained Synthesis from Component Libraries”. In: 13th International Conference on
Formal Aspects of Component Software (FACS). Besancon, France, Oct. 2016.

[24] Accellera System Initiative. “Verilog-AMS Language Reference Manual”. In: (2014).

http://doi.acm.org/10.1145/2435227.2435245
https://edasolver.com
https://edasolver.com
https://www.eclipse.org/elk/
https://www.giangrandi.org/electronics/pcb/pcb.shtml
http://doi.acm.org/10.1145/1993316.1993506
http://doi.acm.org/10.1145/1993316.1993506
www.gumstix.com/geppetto/
http://doi.acm.org/10.1145/2499370.2462192
http://www.satcompetition.org/

64

[25] A. Izraelevitz et al. “Reusability Is FIRRTL Ground: Hardware Construction Lan-
guages, Compiler Frameworks, and Transformations”. In: 2017 IEEE/ACM international
conference on computer-aided design (ICCAD). Nov. 2017, pp. 209–216.

[26] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. “Oracle-Guided
Component-Based Program Synthesis”. In: Proceedings of the 32nd ACM/IEEE inter-
national conference on software engineering (ICSE). May 2010, pp. 215–224.

[27] Susmit Jha and Sanjit A. Seshia. “A Theory of Formal Synthesis via Inductive Learning”.
In: Acta Informatica (2017), pp. 1–34. url: http://dx.doi.org/10.1007/s00236-017-029
4-5.

[28] Rushil Khurana and Steve Hodges. “Beyond the Prototype: Understanding the Challenge
of Scaling Hardware Device Production”. In: Proceedings of the 2020 CHI conference
on human factors in computing systems. 2020, pp. 1–11.

[29] KiCad. KiCad EDA. 2018. url: http://kicad-pcb.org/.
[30] Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk Lee, and Andrea Bianchi. “Virtu-

alComponent: A Mixed-Reality Tool for Designing and Tuning Breadboarded Circuits”.
In: Proceedings of the 2019 CHI conference on human factors in computing systems.
2019, pp. 1–13.

[31] André Knörig, Reto Wettach, and Jonathan Cohen. “Fritzing: A Tool for Advancing
Electronic Prototyping for Designers”. In: Proceedings of the 3rd international conference
on tangible and embedded interaction. TEI ’09. New York, NY, USA: Association for
Computing Machinery, 2009, pp. 351–358. url: https://doi.org/10.1145/1517664.15177
35.

[32] Ultra Librarian. 2020. url: https://www.ultralibrarian.com/.
[33] Richard Lin. “Human-Centered Circuit Board Design with Flexible Levels of Abstraction

and Ambiguity”. PhD thesis. Dec. 2021. url: http://www2.eecs.berkeley.edu/Pubs/Te
chRpts/2021/EECS-2021-259.html.

[34] Richard Lin, Rohit Ramesh, Connie Chi, Nikhil Jain, Ryan Nuqui, Prabal Dutta, and
Björn Hartmann. “Polymorphic Blocks: Unifying High-level Specification and Low-level
Control for Circuit Board Design”. In: Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology. Virtual Event USA: ACM, Oct. 2020,
pp. 529–540. url: 10.1145/3379337.3415860.

[35] Richard Lin, Rohit Ramesh, Antonio Iannopollo, Alberto Sangiovanni Vincentelli,
Prabal Dutta, Elad Alon, and Björn Hartmann. “Beyond Schematic Capture: Meaningful
Abstractions for Better Electronics Design Tools”. In: Proceedings of the 2019 CHI
conference on human factors in computing systems. CHI ’19. New York, NY, USA:
Association for Computing Machinery, 2019. url: https://doi.org/10.1145/3290605.33
00513.

http://dx.doi.org/10.1007/s00236-017-0294-5
http://dx.doi.org/10.1007/s00236-017-0294-5
http://kicad-pcb.org/
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1145/1517664.1517735
https://www.ultralibrarian.com/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-259.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-259.html
10.1145/3379337.3415860
https://doi.org/10.1145/3290605.3300513
https://doi.org/10.1145/3290605.3300513

65

[36] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo Sun, Jun Gong, Teddy Seyed,
Xing-Dong Yang, and Bing-Yu Chen. “AutoFritz: Autocomplete for Prototyping Virtual
Breadboard Circuits”. In: Proceedings of the 2019 CHI conference on human factors
in computing systems. CHI ’19. New York, NY, USA: Association for Computing
Machinery, 2019. url: https://doi.org/10.1145/3290605.3300633.

[37] Ankur Mehta, Nicola Bezzo, Peter Gebhard, Byoungkwon An, Vijay Kumar, Insup Lee,
and Daniela Rus. “A Design Environment for the Rapid Specification and Fabrication
of Printable Robots”. In: Experimental robotics: The 14th international symposium on
experimental robotics. Ed. by M. Ani Hsieh, Oussama Khatib, and Vijay Kumar. Cham:
Springer International Publishing, 2016, pp. 435–449. url: http://dx.doi.org/10.1007
/978-3-319-23778-7_29.

[38] Ankur M Mehta, Joseph DelPreto, Benjamin Shaya, and Daniela Rus. “Cogeneration
of Mechanical, Electrical, and Software Designs for Printable Robots from Structural
Specifications”. In: Intelligent robots and systems (IROS 2014), 2014 IEEE/RSJ
international conference on. IEEE, 2014, pp. 2892–2897.

[39] David A. Mellis, Leah Buechley, Mitchel Resnick, and Björn Hartmann. “Engaging Am-
ateurs in the Design, Fabrication, and Assembly of Electronic Devices”. In: Proceedings
of the 2016 ACM conference on designing interactive systems. DIS ’16. New York, NY,
USA: ACM, 2016, pp. 1270–1281. url: http://doi.acm.org/10.1145/2901790.2901833.

[40] Mentor. Error Reduction in the Design Definition Phase. 2020. url: https://www.men
tor.com/pcb/multimedia/player/error-reduction-in-the-design-definition-phase-0db485
20-5d96-43ba-a208-d10513b742c6.

[41] Mentor. Get to Market Fast and First with Reusable Circuit Blocks. 2020. url: https:
//www.mentor.com/pcb/resources/overview/get-to-market-fast-and-first-with-reusable-
circuit-blocks-981762c9-485a-416f-877c-b6dbf7622c45.

[42] Mentor. Xpedition Enterprise. 2018. url: https://www.mentor.com/pcb/xpedition/.
[43] Mentor. Xpedition Valydate Schematic Analysis. 2020. url: https://www.mentor.com

/pcb/xpedition/schematic-analysis/.
[44] Brant Nelson, Brad Riching, and Josh Mangelson. Using a Custom-Built HDL for

Printed Circuit Board Design Capture. 2012.
[45] Raf Ramakers, Kashyap Todi, and Kris Luyten. “PaperPulse: An Integrated Approach

for Embedding Electronics in Paper Designs”. In: Proceedings of the 33rd annual ACM
conference on human factors in computing systems. ACM, 2015, pp. 2457–2466.

[46] Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto Sangiovanni-Vincentelli,
Björn Hartmann, and Prabal Dutta. “Turning Coders into Makers: The Promise of
Embedded Design Generation”. In: Proceedings of the 1st annual ACM symposium on
computational fabrication. SCF ’17. New York, NY, USA: ACM, 2017, 4:1–4:10. url:
http://doi.acm.org/10.1145/3083157.3083159.

https://doi.org/10.1145/3290605.3300633
http://dx.doi.org/10.1007/978-3-319-23778-7_29
http://dx.doi.org/10.1007/978-3-319-23778-7_29
http://doi.acm.org/10.1145/2901790.2901833
https://www.mentor.com/pcb/multimedia/player/error-reduction-in-the-design-definition-phase-0db48520-5d96-43ba-a208-d10513b742c6
https://www.mentor.com/pcb/multimedia/player/error-reduction-in-the-design-definition-phase-0db48520-5d96-43ba-a208-d10513b742c6
https://www.mentor.com/pcb/multimedia/player/error-reduction-in-the-design-definition-phase-0db48520-5d96-43ba-a208-d10513b742c6
https://www.mentor.com/pcb/resources/overview/get-to-market-fast-and-first-with-reusable-circuit-blocks-981762c9-485a-416f-877c-b6dbf7622c45
https://www.mentor.com/pcb/resources/overview/get-to-market-fast-and-first-with-reusable-circuit-blocks-981762c9-485a-416f-877c-b6dbf7622c45
https://www.mentor.com/pcb/resources/overview/get-to-market-fast-and-first-with-reusable-circuit-blocks-981762c9-485a-416f-877c-b6dbf7622c45
https://www.mentor.com/pcb/xpedition/
https://www.mentor.com/pcb/xpedition/schematic-analysis/
https://www.mentor.com/pcb/xpedition/schematic-analysis/
http://doi.acm.org/10.1145/3083157.3083159

66

[47] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,
Ted Selker, and Mike Eisenberg. “Design Principles for Tools to Support Creative
Thinking”. In: (2005).

[48] Alberto Sangiovanni-Vincentelli. “Quo Vadis, SLD? Reasoning about the Trends and
Challenges of System Level Design”. In: Proceedings of the IEEE 95.3 (2007), pp. 467–
506.

[49] Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann. “Midas: Fabricating Custom
Capacitive Touch Sensors to Prototype Interactive Objects”. In: Proceedings of the
25th annual ACM symposium on user interface software and technology. ACM, 2012,
pp. 579–588.

[50] Scott. Tutorials for KiCad - A Free Open Source Schematic and PCB Layout Editor.
[Accessed 12-12-2023]. 0. url: https://store.curiousinventor.com/guides/kicad/.

[51] Ben Shneiderman. “Creativity Support Tools: Accelerating Discovery and Innovation”.
In: Commun. ACM 50.12 (Dec. 2007), pp. 20–32. url: https://doi.org/10.1145/132368
8.1323689.

[52] Evan Strasnick, Maneesh Agrawala, and Sean Follmer. “Scanalog: Interactive Design
and Debugging of Analog Circuits with Programmable Hardware”. In: Proceedings
of the 30th annual ACM symposium on user interface software and technology. 2017,
pp. 321–330.

[53] Evan Strasnick, Sean Follmer, and Maneesh Agrawala. “Pinpoint: A PCB Debugging
Pipeline Using Interruptible Routing and Instrumentation”. In: Proceedings of the 2019
CHI conference on human factors in computing systems. 2019, pp. 1–11.

[54] Tabula. Tabula. 2020. url: https://tabula.technology/.
[55] The History of Printed Circuit Board PCB 1880 - Present. [Accessed 11-12-2023]. 0.

url: https://how2electronics.com/history-printed-circuit-board-pcb-nextpcb/.
[56] Tube Time. The Original Gerber Photoplotter. Yes, the Same Gerber Format We Use

for PCBS Today. Pic.twitter.com/4tyWsox9yl. July 2020. url: https://twitter.com/Tu
beTimeUS/status/1280669013220012032.

[57] Jeremy Warner, Ben Lafreniere, George Fitzmaurice, and Tovi Grossman. “ElectroTutor:
Test-driven Physical Computing Tutorials”. In: Proceedings of the 31st annual ACM
symposium on user interface software and technology. 2018, pp. 435–446.

[58] R. S. Weiss. Learning from Strangers: The Art and Method of Qualitative Interview
Studies. Free Press, 1995. url: https://books.google.com/books?id=i2RzQbiEiD4C.

[59] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu,
Jun-You Liu, Yu-Chih Lin, and Mike Y Chen. “CurrentViz: Sensing and Visualizing
Electric Current Flows of Breadboarded Circuits”. In: Proceedings of the 30th annual
ACM symposium on user interface software and technology. 2017, pp. 343–349.

https://store.curiousinventor.com/guides/kicad/
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://tabula.technology/
https://how2electronics.com/history-printed-circuit-board-pcb-nextpcb/
https://twitter.com/TubeTimeUS/status/1280669013220012032
https://twitter.com/TubeTimeUS/status/1280669013220012032
https://books.google.com/books?id=i2RzQbiEiD4C

67

[60] Te-Yen Wu et al. “CircuitSense: Automatic Sensing of Physical Circuits and Generation
of Virtual Circuits to Support Software Tools.” In: Proceedings of the 30th annual ACM
symposium on user interface software and technology. 2017, pp. 311–319.

	Contents
	Introduction
	The Modern Embedded Development Process
	Specification Finding
	System Architecture Development
	Schematic Capture
	Board Layout

	Evaluating Embedded Development Tools
	Using Automated Reasoning
	Summary
	Statement of Prior Publication

	Embedded Design Generation
	Introduction
	Related Work
	General EDA
	PBD and Domain-Specific Tools

	Methodology
	EDG Prototype Architecture
	Blocks, Links, and Ports
	Type Signatures
	Design Space Model
	SMT encoding, solving, and decoding

	Type System Design
	Software and Hardware Modeling
	Ports and Links
	Components

	Evaluation
	Basic Synthesis Tasks
	Inferring Missing Design Elements
	Preservation of Function
	Performance

	Discussion
	Performance and Optimization
	Type System Fidelity
	Usability

	Conclusion

	Polymorphic Blocks
	Introduction
	Statement on Author Contributions

	Related Work
	Electronics and HCI
	PCB Design Tools
	Chip Design and Hardware Description Languages

	System Design
	Block Diagram Model
	Electronics Model and Libraries
	Hardware Description Language
	Visualization and Refinement Interface
	Board Generation

	System Implementation
	Compiler Structure
	Block Diagram Layout

	Example Applications
	Simon
	Datalogger

	User Study: Methodology
	Participants
	Structure

	User Study: Results
	Project: Power Meter
	Project: Thermistor Reader
	Project: Multifunction Instrument
	Advantages
	Limitations
	Part Building
	Graphical Interfaces
	Design Time

	Limitations and Future Work
	Library-Based Approach
	Electronics Model
	Users and User Study
	Graphical Interfaces

	Conclusion

	Conclusion
	Bibliography

