

Temperature-Compensated BLE Transmission
from a Crystal-Free Mote

by Titan Yuan

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Kristofer S.J. Pister
Research Advisor

(Date)

* * * * * * *

Professor Prabal Dutta
Second Reader

(Date)

1

Abstract

Temperature-Compensated BLE Transmission from a Crystal-Free Mote

by

Titan Yuan

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kristofer S.J. Pister, Chair

As wireless IoT nodes become increasingly smaller, one solution is to build a wireless sensor
node without a crystal, reducing the size, cost, and power consumption of the node. This
led to the development of a crystal-free wireless system-on-chip with a standards-compatible
radio that can communicate with off-the-shelf IEEE802.15.4 or Bluetooth Low Energy (BLE)
devices. However, the lack of an external frequency reference makes radio operation over
supply and temperature variations challenging. In particular, the frequency drift of the
mote’s local oscillator over temperature exceeds the frequency error requirement specified in
the 802.15.4 and BLE standards.

In this work, we first present a method to calibrate a crystal-free wireless system-on-chip
for use as an IoT temperature sensor between 0 ◦C and 100 ◦C. Using the frequency ratio of
two clocks on the mote, the 2MHz chipping clock for the chip’s transmitter and the 32 kHz
sleep timer, both of which would already be running during normal radio operation, we can
linearly estimate the ambient temperature with an error of less than 2 ◦C.

We then describe how we can configure the chip and tune the local oscillator (LO) using a 15-
bit frequency tuning code to transmit BLE advertising packets on a specified BLE channel.
If we simply sweep the lowest five bits of the LO frequency tuning code, we show that we can
transmit BLE packets over a range of around 20 ◦C. To be more power-efficient, though, we
discuss two possible approaches to compensate the LO frequency for temperature changes.
Instead of sweeping the tuning code, we can calculate the correct frequency setting for the
LO given a temperature estimate. Alternatively, we demonstrate that we can use an external
OpenMote that constantly transmits 802.15.4 packets on a specified frequency channel as a
frequency reference by adjusting the crystal-free mote’s LO frequency based on the interme-
diate frequency (IF) of the received OpenMote packets. Tuning only the last five bits of the
tuning code using this approach allows the crystal-free mote to operate as a BLE beacon
or 802.15.4-to-BLE translator over a temperature range of around 20 ◦C. Finally, while the

2

crystal-free mote’s BLE packets can be received by commercial BLE devices, receiving BLE
packets transmitted by off-the-shelf BLE devices does not work on the mote.

i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1

2 Single-Chip Micro Mote (SCµM) 4
2.1 Overview . 4
2.2 Programming . 6

Bootloading . 6
Optical Frequency Calibration . 7

2.3 Oscillators . 8
Frequency Stability . 13

2.4 2.4GHz LC Oscillator . 15
LC Monotonic Function . 20
LC Frequency Over Temperature . 24

2.5 Radio . 25
LDOs . 27
Radiation Characterization . 27

3 Temperature Estimation 29
3.1 2MHz / 32 kHz Frequencies Over Temperature 30
3.2 Temperature Averaging . 32
3.3 Two-Point Calibration . 37
3.4 Conclusion . 37

4 BLE TX 39
4.1 BLE Overview . 40

BLE Advertising Packet Structure . 41
BLE Sniffer App . 42

4.2 BLE TX On SCµM . 43

ii

4.3 Optical LC Frequency Calibration . 45
4.4 LC Frequency Compensation Using A Temperature Estimate 48
4.5 LC Frequency Compensation By Tracking The 802.15.4 RX Frequency . . . 49

RX IF Frequency Compensation . 50
Averaging Over RX Fine Codes . 53

4.6 Conclusion . 54

5 BLE RX 55
5.1 BLE RX on SCµM . 55
5.2 Results . 57

SCµM to SCµM . 58
Phone to SCµM . 59

5.3 Conclusion . 60

6 Conclusion 61
6.1 Future Work . 62

Bibliography 63

A Temperature Estimation 65

B BLE TX 67
B.1 LC Frequency Calibration . 68
B.2 Fine Code Calibration . 69
B.3 RX Tracking . 70

C BLE RX 72

iii

List of Figures

2.1 Development board Q4 with a wirebonded SCµM chip that I used for my exper-
iments. 5

2.2 SCµM wirebonded onto a smaller PCB with just the power and ground wires. . 5
2.3 Pulse widths of a 1 bit and a 0 bit as transmitted by the IR LED and received

by the optical receiver. 7
2.4 Clock diagram of SCµM3C. 9
2.5 On-chip oscillator counters on SCµM3C. 10
2.6 Clock dividers on SCµM3C. 11
2.7 The 2MHz RC oscillator circuit schematic as presented in [16]. The 32 kHz RC

oscillator circuit does not have a tunable resistor DAC. 12
2.8 The frequency stability of some of the clocks on SCµM measured at room temper-

ature. All frequency counts were recorded every 100ms, either during an optical
SFD interrupt or during an RFTimer interrupt. The optical SFD frames origi-
nating from the Teensy 3.6 microcontroller are fairly accurate. In contrast, since
the RFTimer is divided down from the HF_CLOCK oscillator, RFTimer itself
is noisy. We observe more jitter in the 100ms period for the 2MHz and 32 kHz
oscillators than described in [1]. 14

2.9 Local oscillator schematic with tuning and modulation as presented in [9]. . . . 16
2.10 802.15.4 modulation logic schematic as presented in [9]. 16
2.11 BLE modulation schematic as presented in [9]. 17
2.12 Top-level local oscillator divider block diagram as presented in [9]. 17
2.13 SCµM’s LC frequency counts divided by 960 as a function of the 15-bit frequency

tuning code. Note that the LC frequency is not monotonic with respect to the
tuning code. There is a drop in the LC frequency when the fine code carries over
to the mid code and a larger drop in the LC frequency when the mid code carries
over to the coarse code. The LC counts were recorded every 100ms. 18

2.14 Difference in LC counts between successive 15-bit LC frequency tuning codes as
shown in Figure 2.13. When the fine code rolls over to the mid code, there is
a frequency drop of around 170 counts, which corresponds to a frequency drop
of around 1.6MHz. When the mid code rolls over the coarse code, there is a
frequency drop of around 800 to 1,200 counts, which corresponds to a frequency
drop of around 7.7MHz to 11.5MHz. 19

iv

2.15 LC frequency counts as a function of the 1,133 hard-coded LC monotonic fre-
quency codes, such that the difference between successive codes is at least 8
counts in simulation. The LC counts were recorded once every 40ms for every
LC code. 21

2.16 LC frequency count difference between successive hard-coded LC monotonic fre-
quency codes within 40ms. 22

2.17 LC frequency counts as a function of the rollover LC monotonic codes. The LC
counts were recorded once every 40ms for every LC code. 23

2.18 LC frequency count difference between successive rollover LC monotonic codes
within 40ms. 24

2.19 The LC frequency counts divided by 960 over temperature at a fixed frequency
tuning code. The counts were recorded every 500ms using the RFTimer inter-
rupts. Note the hysteresis caused by the thermal mass of the development board
to which the SCµM chip was wirebonded. 25

2.20 RSSI of 802.15.4 packets transmitted from a SCµM chip wirebonded to a PCB
without an antenna. The x-axis denotes the axis parallel to the PCB plane, and
the z-axis denotes the axis orthogonal to the PCB plane. 28

3.1 SCµM’s 2MHz and 32 kHz frequency counts vs. temperature. Every 100ms,
the RFTimer triggered an interrupt, and in the interrupt handler, we read the
frequency counters of the two oscillators and logged them over UART. 31

3.2 Relationship between temperature and the ratio of the 2MHz and 32 kHz fre-
quency counts. The temperature was varied at a rate of ±1.5 ◦C/min, and ratio
measurements were taken every 100ms as determined by the RFTimer interrupts.
The linear model given by linear least-squares regression and the corresponding
differences between the actual temperature and the temperature estimated by the
linear model are shown. 33

3.3 Standard deviation of the measured temperature vs. the number of samples to
average over. 34

3.4 SCµM’s measured temperature vs. the reference temperature after a temperature
sweep at a ramp rate of 1.5 ◦C/min between 5 ◦C and 80 ◦C. 35

3.5 SCµM’s measured temperature vs. the reference temperature between 0 ◦C and
100 ◦C after a two-point calibration. 36

4.1 BLE sniffer app running on a Google Pixel 2 XL after receiving a BLE packet
from SCµM. The payload includes the short name of SCµM, the LC frequency
tuning codes, and the temperature. The raw payload is displayed as well. 44

4.2 The fine codes of BLE packets received by a smartphone at four select tempera-
tures and the corresponding linear fit. These values were recorded in a tempera-
ture chamber by running a long SMA cable with an antenna out of the chamber.
The presence of the SMA cable causes a frequency shift, so we add a bias term
of around −10 fine codes to the linear fit when we remove the SMA cable. . . . 47

v

4.3 The 802.15.4 RX fine code over temperature after IF compensation as the tem-
perature was increased from 16 ◦C to 35 ◦C at a ramp rate of 1.5 ◦C/min. 51

4.4 SCµM’s RX and TX fine codes and the corresponding filtered IF offset during a
temperature sweep from 16 ◦C to 35 ◦C at a ramp rate of 1.5 ◦C/min. Both the
fine codes and the filtered IF offset were recorded every 800ms. 52

4.5 The raw IF offset of all 802.15.4 packets with a sufficiently low LQI error rate
that were received from the OpenMote. The raw IF offsets were recorded during
a temperature sweep from 16 ◦C to 35 ◦C at a ramp rate of 1.5 ◦C/min with IF
compensation based on the filtered IF offset. The Gaussian FIR filter has 10 taps,
so convolving every 10 of the raw IF offsets gives the filtered IF offset shown in
Figure 4.4b. 53

5.1 Packet error rate vs. input power between FSK and GFSK modulation. This
plot was generated by Brad Wheeler. 56

5.2 The LC frequency codes on SCµM development board Q4 on which we could
receive BLE packets from board QX7. 59

vi

List of Tables

4.1 BLE advertising packet structure. The bold components constitute the Protocol
Data Unit (PDU). 41

4.2 The structure of each data chunk in the BLE advertising packet payload. The
length byte is equal to n+ 1, i.e., it is the length of the GAP code and the data. 42

4.3 List of GAP codes defined by the software described here and their data lengths. 43

5.1 Recovered data vs. the 32-bit target value with a Hamming distance of 0. The
RAWCHIPS_STARTVAL is still being triggered correctly, but there is a bit error when
reading the recovered data from ANALOG_CFG_REG__17 and ANALOG_CFG_REG__18. 58

1

Chapter 1

Introduction

In recent years, there has been a rapid growth in the field of internet of things (IoT). Low-
power wireless technology has enabled many exciting applications, including a wide variety of
sensors, MEMS actuators, and microrobots [5, 6]. There have also been numerous standards
developed for IoT mesh networks, such as 6TiSCH [4] that is based on the Time Synchronized
Channel Hopping (TSCH) standard of IEEE802.15.4, where IoT nodes synchronize with
each other and use channel hopping to reduce power consumption and improve network
reliability [3, 4]. All of these applications require an IoT node that is small, lightweight,
low-cost, low-power, and compatible with off-the-shelf network devices.

The Single Chip Micro Mote (SCµM) was developed to replicate all of the functionali-
ties of a wireless sensor node on a single chip. It was created specifically for microrobotic
applications and features an ARM Cortex M0 microprocessor, an optical receiver, and a
radio compliant with the 802.15.4 and Bluetooth Low Energy (BLE) standards [9] on a
2× 3× 0.3mm3 chip.

Most commercial wireless nodes feature a crystal that functions as an external frequency
reference whose frequency is insensitive to voltage and temperature variations. However, in
order to reduce the cost and power consumption of the chip, SCµM does not have a crystal.
Instead, it relies on CMOS oscillators as the clocks for the microprocessor and the radio.
One benefit of this is that SCµM requires just an antenna and a battery in order to function
as a wireless sensor node. Therefore, it can be used as a wireless controller for microrobots,
attached within a bandage to function as a small body temperature sensor, or placed on top
of insects as a tracker.

As one can imagine, though, building a small, low-cost, and crystal-free mote that can
operate its radio over supply and temperature variations is challenging. In this thesis, we will
primarily focus on SCµM’s radio operation over temperature. While crystal oscillators vary
by around 40 ppm within the entire temperature range, the local oscillator on SCµM, whose
frequency dictates the channel on which the radio is transmitting and receiving, features
a temperature coefficient of around −40 ppm/◦C [9]. However, the 802.15.4 specifications
require the local oscillator to have a frequency error of no more than 40 ppm [9], and the
BLE specifications require a frequency error of no more than 50 ppm [1] although the BLE

CHAPTER 1. INTRODUCTION 2

carrier drift specification is not definitive.
In this thesis, we first introduce the SCµM chip (Chapter 2). We describe how it is

programmed via its optical receiver and how the on-chip oscillators are calibrated after
bootloading using optical start frame delimiter (SFD) interrupts. Afterwards, we discuss
SCµM’s on-chip oscillators and their corresponding frequency stability. In particular, we are
interested in compensating the frequency of the 2.4GHz local oscillator over temperature
variations. While the LO frequency can be tuned using a 15-bit LC frequency tuning code,
the LO frequency is not monotonic with respect to this tuning code. Thus, we outline two
approaches at creating a monotonic function in order to facilitate LO frequency tuning.

We then present some work allowing SCµM to operate its radio over temperature varia-
tions (Chapter 3). The on-chip oscillator frequencies are calibrated once after bootloading,
but a one-time calibration is insufficient for crystal-free radio operation across temperature.
Previous work relies on periodic network compensation to adjust the local oscillator fre-
quency by listening for other packets in the environment, but we show how we can use the
ratio of the free-running 2MHz and 32 kHz RC oscillator frequencies to develop a linear
model that estimates the ambient temperature. The 2MHz oscillator is used as the chip-
ping clock for the chip’s transmitter, and the 32 kHz can be used as a sleep timer for SCµM
between periodic radio operation, so using these two oscillators to estimate the temperature
does not consume extra power. SCµM could then function as an IoT temperature sensor.

Since SCµM was originally designed to transmit and receive 802.15.4 packets, we also
describe how we configure SCµM to transmit BLE packets that can be received by commercial
devices, such as smartphones, so that it can interface between 802.15.4 mesh networks and
other commercial devices (Chapter 4). After calibrating the local oscillator frequency using
optical start frame delimiter (SFD) interrupts, we show that we can transmit BLE-compliant
packets over a range of 20 ◦C simply by sweeping the fine LO frequency tuning code. To
reduce power consumption, though, we discuss two possible approaches. One option is to use
the temperature estimate based on the ratio of the 2MHz and 32 kHz oscillator frequencies
to adjust the LO frequency. Another option, if SCµM is functioning as a 802.15.4-to-BLE
translator, is to keep track of two frequency settings, one for transmitting the BLE packets
and one for receiving the 802.15.4 packets. We adjust the 802.15.4 RX frequency setting
based on the intermediate frequency (IF) of the received 802.15.4 packets, and we adjust the
BLE TX frequency setting by the same amount.

Finally, we describe some results regarding receiving BLE packets on SCµM (Chap-
ter 5). We show that transmitting BLE packets from a SCµM to another SCµM works as
expected because SCµM’s BLE packets are modulated using frequency-shift keying (FSK).
However, receiving BLE packets from off-the-shelf devices, which are modulated using Gaus-
sian frequency-shift keying (GFSK), does not work on SCµM.

In the appendix, we describe the software developed for SCµM for the aforementioned
applications. We describe how to perform temperature calibration on SCµM to find the
linear model for the temperature estimate based on the 2MHz and 32 kHz frequency ratio.
We also show how to configure SCµM and find the LO frequency tuning codes to transmit
BLE packets over temperature variations.

CHAPTER 1. INTRODUCTION 3

In this thesis, all work described uses a SCµM3C board.

4

Chapter 2

Single-Chip Micro Mote (SCµM)

2.1 Overview
SCµM is a 2× 3× 0.3mm3 crystal-free single-chip micro mote that features an ARM Cortex
M0 microprocessor, a standards-compatible IEEE802.15.4 or Bluetooth Low-Energy (BLE)
radio, and an optical receiver for bootloading [8]. SCµM was developed to operate in Open-
WSN networks implementing the 802.15.4 time synchronized channel hopping (TSCH) stan-
dard [4] and for use in microrobotic applications because of its low size and cost. SCµM
features 64 kB of SRAM program memory and 64 kB of SRAM data memory.

Notably, SCµM does not require any external components to operate except a power
supply and an antenna for its radio. It does not have any external frequency reference for
its radio and instead relies on multiple free-running oscillating circuits for timekeeping.

Using the optical receiver, we can program the firmware on the mote. Additionally, the
optical receiver is used during initial bootloading to receive multiple optical start frame
delimiters (SFD) timed 100ms apart to calibrate SCµM’s free-running oscillating circuits.
After the initial programming of the SCµM chip and the subsequent oscillator frequency cal-
ibration, the mote can then transmit packets compliant with the 802.15.4 or BLE standards.

For development, we usually wirebond the SCµM chip onto a development PCB, as
shown in Figure 2.1. This allows us to attach an antenna via an SMA connection, access the
GPIO pins for input and output, and measure the voltages at various points on SCµM. The
development PCB also features an FTDI RS232/UART chip, so that SCµM can transmit
to and receive bytes from a connected computer over UART. This is extremely useful for
debugging since we can then log SCµM’s register values and state variables from the firmware
using printf statements.

We have also developed smaller PCBs, as shown in Figure 2.2, on which to wirebond
SCµM chips, such that the only inputs are power and ground. They have a wirebonded
antenna and are programmed the same way as a SCµM on a development board via the
optical receiver on the chip. These boards lack any debugging unless we probe the pads and
are primarily used as wireless transceivers.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 5

Figure 2.1: Development board Q4 with a wirebonded SCµM chip that I used for my exper-
iments.

Figure 2.2: SCµM wirebonded onto a smaller PCB with just the power and ground wires.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 6

2.2 Programming
Programming SCµM is accomplished using an external infrared LED connected to a Teensy
3.6 microcontroller. We send optical pulses, where a 1 bit is represented by a long pulse and
a 0 bit is represented by a short pulse, to the optical receiver on the SCµM chip in order to
transmit the executable binary and to calibrate its oscillators [14]. For best performance, it
is recommended to position the LED around 2 cm above the corner of the SCµM chip over
where the optical receiver is located.

The entire start-up sequence consists of two stages: bootloading and optical frequency
calibration. First, we transmit the binary to SCµM that then performs a cyclic redundancy
check (CRC) on the payload. After booting, since SCµM does not have an external frequency
reference, we then have the LED send a magic byte sequence every 100ms. These start frame
delimiters (SFDs) trigger an interrupt on SCµM, so that it can tune its on-board oscillators.
After SCµM has received 25 SFD interrupts, it starts executing the program.

Bootloading

When bootloading SCµM, the optical programmer1 first sends 100 bytes of 0b01010101 as a
preamble before the start symbol. If we wish to hard reset SCµM and re-program its flash,
the start symbol is [169, 176, 167, 50]. The programmer then sends 200 bytes of 0b01010101
to allow SCµM to reset itself followed by the actual binary payload encoded in 4B/5B.
Finally, the programmer sends 600 1 bits to clock through all of the received bits on SCµM.
If we wish to skip the hard reset, the start symbol is [184, 84, 89, 40]. Note that all of these
bytes are transmitted in little-endian format.

The received optical data is self-clocked, so the clock to sample the received optical pulses
is a delayed replica of the data signal. As shown in Figure 2.3, a 1 bit is thus a long pulse
because when the delayed clock signal goes high, the data signal is still high. A 0 bit is
a short pulse because when the delayed clock signal goes high, the data signal is already
low. We can modify the pulse widths p1, p2, p3, and p4 by changing the number of NOPs on
the Teensy microcontroller during each of these intervals2. The nominal values are p1 = 80,
p2 = 80, p3 = 2 or 3, and p4 = 80. The trade-off regarding the length of p3 is that a longer
pulse is more likely to be received by SCµM’s optical receiver, but the length of p3 cannot
exceed the delay between the optical data and clock signals, which is set by the hardware.

During bootloading, these two signals, OPTICAL_CLK_RAW and OPTICAL_DATA_RAW, are
available as GPIO outputs3. More information on the optical bootloader can be found
in [16].

1https://github.com/tryuan99/scum-test-code/blob/79104269eef314236c36ccf035edfcc826b24d33/
scm_v3c/teensy_uC_programmer/teensy_uC_programmer.ino

2https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/bootload/bootload.py#L91

3https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/
edit?usp=sharing

https://github.com/tryuan99/scum-test-code/blob/79104269eef314236c36ccf035edfcc826b24d33/scm_v3c/teensy_uC_programmer/teensy_uC_programmer.ino
https://github.com/tryuan99/scum-test-code/blob/79104269eef314236c36ccf035edfcc826b24d33/scm_v3c/teensy_uC_programmer/teensy_uC_programmer.ino
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/bootload/bootload.py#L91
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/bootload/bootload.py#L91
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 7

Figure 2.3: Pulse widths of a 1 bit and a 0 bit as transmitted by the IR LED and received
by the optical receiver.

If SCµM does not boot or the CRC check fails after bootloading, this is usually an
indication that the alignment between the IR LED and SCµM’s optical receiver is incorrect.
Re-positioning the IR LED by trial and error is the usual debug path. Another possibility
is to measure the current consumption of SCµM during the bootloading process. If the hard
reset is triggered, then SCµM’s power consumption should be significantly lower. Afterwards,
SCµM turns on some of its LDOs to prepare for the frequency calibration, which should
raise the current back up to around 2mA or more, especially if the LC divider is on for LC
frequency calibration.

Optical Frequency Calibration

After bootloading, SCµM performs a CRC check on the payload and commences frequency
calibration. Here, the optical bootloader now transmits many interrupt frames until SCµM
has calibrated its oscillators. Every 100ms, the IR LED first sends preamble bytes followed
by the sequence [221, 176, 231, 47] and finally more 1 bits to clock through the data. This
four-byte sequence triggers the optical start frame delimiter (SFD) interrupt4 on SCµM,
allowing us to calibrate the frequencies of SCµM’s on-board oscillators.

During frequency calibration, we measure the frequencies of the on-board oscillators
using counters and tune their frequencies by adjusting their DACs. We tune the 2MHz RC
oscillator, the 64MHz IF RC oscillator divided down to 16MHz, and the 20MHz HCLK RC
oscillator. The 32 kHz RC oscillator does not have a tunable resistor DAC. We describe how
to calibrate the 2.4GHz LC oscillator in Section 4.3.

If these SFD interrupts are not triggered consistently or not triggered at all, this is usually
indicative of a misalignment between the IR LED and SCµM’s optical receiver. Other times,

4https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/optical.c#L122

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L122
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L122

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 8

if SCµM never exits frequency calibration, this could indicate that SCµM has not received
25 start frames yet before the IR LED finished sending start frames. To correct this issue,
we can increase the number of start frames transmitted by the IR LED5.

2.3 Oscillators
In this section, we give a brief overview of the on-chip oscillators on SCµM and describe how
their frequencies can be tuned. We also describe the default use cases of these oscillators
and characterize their frequency stability.

Most of the configurations on SCµM are set by software immediately after bootload-
ing prior to optical frequency calibration. These configurations are stored in the ana-
log scan chain (ASC), a 1,200 bit sequence, that is written into a shift register using
analog_scan_chain_write and then loaded using analog_scan_load6. Examples of these
static configurations are the clock divide ratios and the clock sources.

During execution of the application, dynamic configurations can be changed by modi-
fying the memory-mapped ANALOG_CFG_REG__i registers. Examples of these dynamic con-
figurations include the frequency tuning codes and the LDOs. These ANALOG_CFG_REG__i
registers actually point to different registers when reading and writing. When reading from
the ANALOG_CFG_REG__i registers, we read from the analog_rdata bus, and when writing
to these registers, we write to the analog_cfg bus7.

The frequencies of the oscillators can be estimated using internal memory-mapped counter
registers in the Cortex M0 microprocessor that increment on the positive edge of the respec-
tive clocks. After each of the 100ms SFD interrupts during optical frequency calibration,
we tune the bits controlling the resistor (or capacitor for the LC oscillator) DACs depending
on the number of counts within the last 100ms. For the software described here, 25 optical
SFDs must be received by the mote before calibration is complete.

The oscillator frequencies are sensitive to supply voltage, which, while locally regulated,
varies from chip to chip. They also have a high temperature coefficient as they were not
designed to be temperature-independent, e.g., the 2MHz has a temperature coefficient of
around 160 ppm/◦C [16] and the 2.4GHz oscillator has a temperature coefficient of around
−40 ppm/◦C [9]. All of these variations over voltage and temperature require each SCµM
chip to be calibrated individually during programming.

5https://github.com/tryuan99/scum-test-code/blob/79104269eef314236c36ccf035edfcc826b24d33/
scm_v3c/teensy_uC_programmer/teensy_uC_programmer.ino#L1399

6https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/scm3c_hw_interface.c#L1297

7https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/
edit?usp=sharing

https://github.com/tryuan99/scum-test-code/blob/79104269eef314236c36ccf035edfcc826b24d33/scm_v3c/teensy_uC_programmer/teensy_uC_programmer.ino#L1399
https://github.com/tryuan99/scum-test-code/blob/79104269eef314236c36ccf035edfcc826b24d33/scm_v3c/teensy_uC_programmer/teensy_uC_programmer.ino#L1399
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1297
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1297
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 9

~

÷

÷

÷

÷

÷

÷

÷

÷

~
~
~
~

~
LC_div_N

LC_2MHz

LC_1MHz_stat

LC_1MHz_dyn

system_clk_pri (20MHz ring, SCM2 arch)
aka LF_CLOCK

system_clk_sec (20MHz RC, TI arch)
aka HF_CLOCK

RC_2MHz (2MHz RC, TI arch)

TIMER32k (nominally 32kHz RC, TI arch)

LF_ext_PAD

LF_ext_GPIO (GPIO input)

÷4IF CLK

LC tank

HCLK

RFTIMER_CLK

TX_chip_clk_to_cortex
CLK_2MHz

divider_out_INTEG

GFSK_CLK

EXT_CLK_GPIO

EXT_CLK_GPIO2

BLE_PDA_clk

ADC_CLK

ASC[1182:1147]

VD
D

_alw
ayson

VD
D

_aux_digital
VD

D
_L

O

 V

D
D

_I
F

 V
D

D
_I

O

 a
ux

 v

dd
_a

lw
ay

so
n

 V

D
D

D

cntr

cntr

cntr

cntr

cntr

cntr

cntr

ASC[21:9,552]

counter
control

* LSB of HCLK’s mux select bits will be via mux:

cross_HCLK_sel_LSBASC[1147]

ASC[8:2]

analog_cfg[13:0]

ASC[89:24,556:517]

divider
control

÷

VD
D

_a
ux

_d
ig

ita
l

pad

pad

VDDD
ADC_CLK_Ring

VD
D

D

could be 64M RC or LC/7.5

symbol_clk_ble
CLK_1MHz

0

1

2

3

4

5

6

7

8

9

10

ASC[1150:1147]*

ASC[1154:1151]

ASC[1158:1155]

ASC[1162:1159]

ASC[1166:1163]

ASC[1170:1167]

ASC[1174:1171]

ASC[1178:1175]

ASC[1182:1179]

Crossbar

m
ax

di
v_

en

ASC[145]
analog_cfg[14]

ASC[144]

Figure 2.4: Clock diagram of SCµM3C.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 10

cntrLF_CLOCK

enable resetn

ASC[9]
analog_cfg[1]

ASC[3]

ASC[16]
analog_cfg[8]

ASC[3]

analog_rdata[63:32]

da
ta

cntrHF_CLOCK

enable resetn

ASC[10]
analog_cfg[2]

ASC[4]

ASC[17]
analog_cfg[9]

ASC[4]

analog_rdata[95:64]

da
ta

cntrRC_2MHz

enable resetn

ASC[11]
analog_cfg[3]

ASC[5]

ASC[18]
analog_cfg[10]

ASC[5]

analog_rdata[127:96]

da
ta

cntrTIMER32k

enable resetn

ASC[552]
analog_cfg[0]

ASC[2]

ASC[15]
analog_cfg[7]

ASC[2]

analog_rdata[31:0]

da
ta

cntrLF_ext_GPIO

enable resetn

ASC[12]
analog_cfg[4]

ASC[6]

ASC[19]
analog_cfg[11]

ASC[6]

analog_rdata[159:128]

da
ta

cntrADC_CLK

enable resetn

ASC[14]
analog_cfg[6]

ASC[8]

ASC[21]
analog_cfg[13]

ASC[8]

analog_rdata[223:192]

da
ta

cntrLC_2MHz

enable resetn

ASC[13]
analog_cfg[5]

ASC[7]

ASC[20]
analog_cfg[12]

ASC[7]

analog_rdata[191:160]

da
ta

VD
D

_aux_digital

* The input to resetn is inverted.

Figure 2.5: On-chip oscillator counters on SCµM3C.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 11
Fr

om
 c

ro
ss

ba
r

enable resetn

Nin

passthrough

m
ax

di
v_

en

÷ASC[57:50]
*all inverted except ASC[52]

ASC[25] ASC[31]

ASC[37]

HCLK

ASC[145]
analog_cfg[14]

ASC[144]

enable resetn

Nin

passthrough
÷ASC[49:42]

ASC[24] ASC[30]

ASC[36]

RFTIMER_CLK

enable resetn

Nin

passthrough
÷ASC[89:82]

ASC[29] ASC[35]

ASC[41]

CLK_2MHz

enable resetn

Nin

passthrough
÷ASC[533:526]

ASC[517] ASC[520]

ASC[523]

CLK_1MHz

enable resetn

Nin

passthrough
÷ASC[81:74]

ASC[28] ASC[34]

ASC[40]

divider_out_INTEG

enable resetn

Nin

passthrough
÷ASC[65:58]

ASC[26] ASC[32]

ASC[38]

GFSK_CLK

enable resetn

Nin

passthrough
÷ASC[73:66]

ASC[27] ASC[33]

ASC[39]

EXT_CLK_GPIO

enable resetn

Nin

passthrough
÷ASC[549:542]

ASC[519] ASC[522]

ASC[525]

EXT_CLK_GPIO2

enable resetn

Nin

passthrough
÷ASC[541:534]

ASC[518] ASC[521]

ASC[524]

BLE_PDA_clk

VD
D

_aux_digital
VD

D
D* The inputs to Nin and resetn are inverted.

Figure 2.6: Clock dividers on SCµM3C.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 12

Figure 2.7: The 2MHz RC oscillator circuit schematic as presented in [16]. The 32 kHz RC
oscillator circuit does not have a tunable resistor DAC.

20MHz HF_CLOCK RC Oscillator

The 20MHz HF_CLOCK oscillator is an RC oscillator primarily used as the source for
HCLK and the RFTimer clock discussed below. It uses a circuit topology similar to the
circuit in [11], as shown in Figure 2.7. Notably, it has a 10-bit tunable resistor DAC, split
into a 5-bit coarse and a 5-bit fine tune DAC, so that its frequency can be adjusted during
the optical frequency calibration8. Setting ASC[1147] = 1b’19 sets HF_CLOCK to be the
source for HCLK, and setting ASC[1151] = 1b’110 sets HF_CLOCK to be the source for
RFTimer.

HCLK is used to clock the Cortex M0 microprocessor and is divided down from the
HF_CLOCK oscillator by setting ASC[57:50] to the appropriate divide ratio. Note that
ASC[52] is inverted, so in order to achieve a divide ratio of 2, such that the HCLK frequency
is 10MHz, we would set ASC[57:50] = 8b’00000110. By default, ASC[57:50] = 8b’0, so
the divide ratio is 4, and the nominal frequency of HCLK is 5MHz at boot.

The RFTimer, described in more detail in Sections 3.35 and 4.3.1 of [10], is a clock
divided down from HF_CLOCK in the software described. Setting ASC[36] = 1b’1 sets
HF_CLOCK to pass through to the RFTimer, so that the RFTimer has a frequency of
20MHz. Otherwise, the divide ratio between HF_CLOCK and the RFTimer can be set using
ASC[49:42]. Note that all eight bits of ASC[49:42] are inverted. Nominally, ASC[49:42]
= 8b’1101011111, so the divide ratio is set to 40, meaning that the RFTimer frequency is
500 kHz.

8https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/optical.c#L186

9https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/scm3c_hw_interface.c#L1166

10https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/scm3c_hw_interface.c#L1176

11https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/scm3c_hw_interface.c#L1182

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L186
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L186
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1166
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1166
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1176
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1176
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1182
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1182

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 13

The RFTimer is usually used to trigger recurring interrupts within the code, e.g., to trans-
mit a BLE packet every 500ms. However, since RFTimer is divided down from HF_CLOCK,
the frequency stability of the HF_CLOCK oscillator affects the accuracy of the RFTimer,
as described below.

2MHz RC Oscillator

The 2MHz RC oscillator also uses a circuit topology similar to the circuit in [7]. Notably,
the 2MHz circuit, as described in [1] and shown in Figure 2.7, has a finely tunable resistor
as it is the chipping clock for the chip’s transmitter, so its frequency needs to be accurate
to within ±50 ppm for BLE [1]. It also does not include the additional supply rejection
circuitry from [7]. The frequency is tuned by adjusting a 10-bit resistor DAC containing 5
bits of coarse and 5 bits of fine adjustment during optical frequency calibration12. According
to Section 5.13 of [16], it has a temperature coefficient of around 160 ppm/◦C.

32 kHz RC Oscillator

The 32 kHz is similar to the 2MHz RC oscillator, but it is intended to be a low-frequency
timer and can be used as the on-chip Cortex M0 clock to conserve energy between higher-
power radio operations [1]. Moreover, it does not have a tunable resistor DAC and was
originally designed to have a temperature coefficient of zero.

64MHz IF RC Oscillator

The 64MHz IF RC oscillator is used to generate the 16MHz IF sampling clock. The chip
rate of an 802.15.4 packet is 2MHz, so we sample each chip 8 times. 802.15.4 uses direct
sequence spread spectrum (DSSS) to spread its signals, so that 8 chips correspond to one
bit. The IF sampling clock’s frequency is calibrated during optical frequency calibration13.

2.4GHz LC Oscillator

The 2.4GHz LC tank is used as the local oscillator (LO) and is described in Section 2.4.

Frequency Stability

We characterized the frequency stability of the aforementioned oscillators at a fixed temper-
ature by using the counter registers for each of the oscillators. We first used the IR LED
with the Teensy 3.6 microcontroller to transmit many 100ms start frames over a period of
between half a minute to a minute. Each of these start frames triggers an SFD interrupt

12https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/optical.c#L236

13https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/optical.c#L269

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L236
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L236
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L269
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L269

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 14

0 100 200 300 400 500
Iteration

100

50

0

50

100

150

Di
ffe

re
nc

e
of

 L
C

co
un

t /
 9

60
 fr

om
 m

ea
n

Optical SFD vs. RFTimer interrupt on LC counts
Optical SFD
RFTimer

(a) 2.4GHz LC oscillator.

0 50 100 150 200 250 300 350
Iteration

750

500

250

0

250

500

750

1000

Di
ffe

re
nc

e
of

 H
F_

CL
OC

K
co

un
t f

ro
m

 m
ea

n

Optical SFD on HF_CLOCK counts
Optical SFD

(b) 20MHz HF_CLOCK oscillator.

0 50 100 150 200 250 300 350
Iteration

100

75

50

25

0

25

50

75

Di
ffe

re
nc

e
of

 2
M

 c
ou

nt
 fr

om
 m

ea
n

Optical SFD vs. RFTimer interrupt on 2M counts

Optical SFD
RFTimer

(c) 2MHz oscillator.

0 100 200 300 400 500
Iteration

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
ffe

re
nc

e
of

 3
2k

 c
ou

nt
 fr

om
 m

ea
n

Optical SFD vs. RFTimer interrupt on 32k counts

Optical SFD
RFTimer

(d) 32 kHz oscillator.

Figure 2.8: The frequency stability of some of the clocks on SCµM measured at room tem-
perature. All frequency counts were recorded every 100ms, either during an optical SFD
interrupt or during an RFTimer interrupt. The optical SFD frames originating from the
Teensy 3.6 microcontroller are fairly accurate. In contrast, since the RFTimer is divided
down from the HF_CLOCK oscillator, RFTimer itself is noisy. We observe more jitter in
the 100ms period for the 2MHz and 32 kHz oscillators than described in [1].

in SCµM, and in the interrupt handler, we recorded the number of counts for each of the
oscillators. We also used the RFTimer to trigger 100ms interrupts, in which we also recorded
the number of counts for each of the oscillators. The results for the frequency stability of
the oscillators at room temperature are shown in Figure 2.8.

In Figure 2.8a, note that the frequency counts using the RFTimer interrupts are much

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 15

noisier than the frequency counts measured using the optical SFD interrupts. This has
two implications. First, at a fixed temperature, the frequency of the 2.4GHz LC oscillator
does not drift much. Second, the 500 kHz RFTimer, derived from the 20MHz HF_CLOCK
oscillator, has around 200 ppm of RMS noise. This is substantiated by Figure 2.8b, where
HF_CLOCK has an RMS noise of around 200 ppm as well. It is important to note that
during normal operation without a Teensy 3.6 microcontroller, the RFTimer is the most
commonly used timer. However, it is subject to a frequency stability of 200 ppm, which
should be considered when developing SCµM applications requiring an accurate on-chip
timer.

In Figures 2.8c and 2.8d, both of the frequency counts show some noise regardless of the
source of the 100ms interrupts. The 2MHz oscillator has an RMS noise of around 100 ppm,
which is higher than the 20 ppm of frequency stability observed in Figure 5 of [1]. Since the
32 kHz frequency counts seem to be dominated by quantization noise, we do not characterize
its frequency stability, but in Figure 6 of [1], the 32 kHz oscillator has a frequency stability
of around 20 ppm.

2.4 2.4 GHz LC Oscillator
The local oscillator (LO) consists of an LC tank whose frequency can be adjusted using a
15-bit tuning code, split into 3 5-bit values called the coarse, mid, and fine frequency tuning
codes. Each of the coarse, mid, and fine codes is used to tune a 5-bit capacitive DAC, as
shown in Figure 2.9. Each fine code corresponds to a change of around 100 kHz in the LO
frequency, each mid code corresponds to a change of around 700 kHz, and each coarse code
corresponds to a change of around 11MHz [9]. The coarse, mid, and fine codes are set in
software by calling LC_FREQCHANGE14.

Figure 2.10 shows the 802.15.4 modulation logic schematic that is used to modulate the
802.15.4 modulation capacitor, where {b3, b2, b1, b0} = ASC[996:999]. Figure 2.11
shows the BLE modulation schematic that is used for BLE transmission. Note that for this
project, we use FSK modulation for BLE packets.

To measure the frequency of the LC oscillator, we use the local oscillator divider, a top-
level diagram of which is shown in Figure 2.12 and described in more detail in Section 5.5
of [9]. We divide the local oscillator frequency by 960 and measure a counter every 100ms
as determined by the on-chip RFTimer interrupts. The results are shown in Figure 2.13 as
we sweep through all possible 215 tuning codes along with a plot of the LC frequency over
coarse codes 23 and 24 only. Notably, the LC frequency is not monotonic with respect to the
15-bit frequency tuning code. Instead, when the fine code carries over to the mid code, there
is a small drop in the frequency of around 1.6MHz, and when the mid code carries over to
the coarse code, there is a larger drop in the frequency of 7.7MHz to 11.5MHz, as shown
in Figure 2.14. These frequency drops at the edges of the fine and mid codes vary across

14https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/scm3c_hw_interface.c#L1489

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1489
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1489

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 16

Figure 2.9: Local oscillator schematic with tuning and modulation as presented in [9].

Figure 2.10: 802.15.4 modulation logic schematic as presented in [9].

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 17

Figure 2.11: BLE modulation schematic as presented in [9].

Figure 2.12: Top-level local oscillator divider block diagram as presented in [9].

the tuning code and are difficult to characterize, changing across current settings, between
chips, across temperature, and from one end of the band to the other.

Since the LC frequency as a function of the 15-bit frequency tuning code is non-monotonic
and there are 215 possible frequency tuning codes, it is difficulty to calibrate the LC frequency
with only 25 SFD interrupts unless we have a good initial estimate of the frequency tuning
code. Instead, we can tune the LC frequency by trial and error by using a spectrum analyzer,
or we can use optical LC calibration as described in Section 4.3. Once the frequency tuning
code of a particular SCµM chip for a particular frequency at a particular temperature has
been found, it can be used as a good initial frequency tuning code for subsequent calibrations.

Note that the LC frequency varies with temperature and is chip-dependent. The fre-
quency also drifts if the antenna load on SCµM is changed or if some LDOs, especially the
one controlling the LC divider that draws a significant amount of current, are turned on or
off.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 18

0 5000 10000 15000 20000 25000 30000
15-bit frequency tuning code

220000

230000

240000

250000

260000

LC
 c

ou
nt

s d
iv

id
ed

 b
y

96
0

LC counts / 960 vs. 15-bit frequency tuning code

23500 24000 24500 25000 25500
15-bit frequency tuning code

249000

250000

251000

252000

253000

LC
 c

ou
nt

s d
iv

id
ed

 b
y

96
0

LC counts / 960 over coarse codes 23-24

Figure 2.13: SCµM’s LC frequency counts divided by 960 as a function of the 15-bit frequency
tuning code. Note that the LC frequency is not monotonic with respect to the tuning code.
There is a drop in the LC frequency when the fine code carries over to the mid code and a
larger drop in the LC frequency when the mid code carries over to the coarse code. The LC
counts were recorded every 100ms.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 19

0 5000 10000 15000 20000 25000 30000
15-bit frequency tuning code

1200

1000

800

600

400

200

0
LC

 c
ou

nt
 d

iff
er

en
ce

Difference in LC count between each frequency tuning code

23500 24000 24500 25000 25500
15-bit frequency tuning code

1000

800

600

400

200

0

LC
 c

ou
nt

 d
iff

er
en

ce

Difference in LC count over coarse codes 23-24

Figure 2.14: Difference in LC counts between successive 15-bit LC frequency tuning codes
as shown in Figure 2.13. When the fine code rolls over to the mid code, there is a frequency
drop of around 170 counts, which corresponds to a frequency drop of around 1.6MHz. When
the mid code rolls over the coarse code, there is a frequency drop of around 800 to 1,200
counts, which corresponds to a frequency drop of around 7.7MHz to 11.5MHz.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 20

LC Monotonic Function

In order to facilitate LC frequency calibration, we attempted to create a monotonic function
that maps an LC_code to a 15-bit frequency tuning code. There are two different approaches
we attempted to create a monotonic function. First, the naive solution is to hard-code all
of the 15-bit frequency tuning codes to use to cover the entire 2.4GHz ISM band, such
that their corresponding LC frequencies are monotonically increasing. The other approach,
as described in Section 5.6 of [9], is that since there is some frequency overlap between
consecutive mid codes and coarse codes, we need to find the fine code and the mid code,
both less than 32, at which we would roll over earlier instead of at 32. Both of these
approaches were first simulated using the frequency count data similar to the one presented
in Figure 2.13 but with a shorter 40ms RFTimer interrupt period.

Hard-coding Frequency Tuning Codes

The first approach to creating an LC monotonic function is by simply hard-coding all of
the 15-bit frequency tuning codes into an array on SCµM’s firmware and indexing into this
array to change LC frequencies. After characterizing the LC frequency as a function of
all 215 frequency codes, we greedily selected the monotonic frequency codes, such that the
frequency difference between successive monotonic frequency codes was at least 8 LC counts
within a 40ms interval, which corresponds to around 190 kHz. This gave us a total of 1,133
LC frequency tuning codes to use.

We then coded these 1,133 LC frequency tuning codes into an array on SCµM’s firmware
and swept through all of these 1,133 tuning codes in the array, measuring the corresponding
LC counts. We set the RFTimer to trigger an interrupt every 40ms, during which we
recorded the LC counts and switched to the next monotonic frequency tuning code in the
array. The resulting LC counts, both in simulation and on the actual SCµM development
board Q4, are shown in Figure 2.15.

The corresponding LC count difference between successive hard-coded frequency codes is
shown in Figure 2.16. In simulation, this hard-coding solution creates a strictly monotonic
function of the LC frequency with respect to the 1,133 selected frequency tuning codes to
use. However, when sweeping through all hard-coded frequency codes on board Q4, the LC
frequency does not increase monotonically.

It is important to note that the 40ms interrupts were triggered by the RFTimer. Compar-
ing Figures 2.16 and 2.8a, this non-monotonicity could be caused by the frequency stability
of the RFTimer clock. One disadvantage of using this approach to build a LC monotonic
function is that storing 1,000 hard-coded frequency codes in the firmware requires around
4 kB, a considerable amount when SCµM only features 64 kB of program memory.

Rollover Fine and Mid Codes

Another approach is to observe that there is some frequency overlap between consecutive
mid and coarse codes. Therefore, in order to build the LC monotonic function, we need to

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 21

0 200 400 600 800 1000
LC code

90000

92500

95000

97500

100000

102500

105000

LC
 c

ou
nt

s d
iv

id
ed

 b
y

96
0

LC counts vs. hard-coded LC frequency codes
Simulated
Actual, on board Q4

500 520 540 560 580 600
LC code

96200

96400

96600

96800

97000

97200

97400

97600

97800

LC
 c

ou
nt

s d
iv

id
ed

 b
y

96
0

LC counts vs. hard-coded LC frequency codes
Simulated
Actual, on board Q4

Figure 2.15: LC frequency counts as a function of the 1,133 hard-coded LC monotonic
frequency codes, such that the difference between successive codes is at least 8 counts in
simulation. The LC counts were recorded once every 40ms for every LC code.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 22

500 520 540 560 580 600
LC code

20

0

20

40

60

LC
 c

ou
nt

 d
iff

er
en

ce
 d

iv
id

ed
 b

y
96

0

Difference in LC count between successive hard-coded LC frequency codes
Simulated
Actual, on board Q4

Figure 2.16: LC frequency count difference between successive hard-coded LC monotonic
frequency codes within 40ms.

find where to roll over from the fine or mid codes to the next mid or coarse code, respectively.
To implement this in simulation, we first found the range of coarse codes, such that the

LC frequency is between 2.3GHz and 2.5GHz, thus covering the entire 2.4GHz ISM band.
For SCµM development board Q4, this corresponded to coarse codes 20 through 30.

Afterwards, for each of the coarse codes, we found the fine code, at which we would roll
over to the next mid code. In other words, we found how many fine codes we would use for
every mid code. For board Q4, we found the rollover fine codes to be mid0_codes = [9,
8, 9, 9, 9, 9, 9, 10, 9, 10, 10].

Finally, we found how many frequency codes we would use for each coarse code be-
fore rolling over to the next coarse code. For board Q4, we round the rollover mid codes
to be coarse0_codes = [166, 148, 166, 166, 166, 166, 166, 185, 168, 185, 185].
In other words, for the coarse code 20, we would use the following coarse, mid, and fine code
triplets:

(20, 0, 0), (20, 0, 1), . . . , (20, 0, 8), (20, 1, 0), . . . , (20, 1, 8), . . . , (20, 18, 0), . . . (20, 18, 3)

to have a total of 166 frequency codes for coarse code 20.
This algorithm is described in Section 5.6 of [9]. After implementing this algorithm on

SCµM development board Q4’s firmware, we swept through all rollover LC monotonic codes
and measured the LC counts for every LC monotonic code every 40ms as determined by the
RFTimer interrupts. The results are shown in Figure 2.17 with the corresponding LC count
difference between successive LC codes in Figure 2.18.

This approach does get us a more monotonic LC frequency tuning function, even with
the presence of noise in the RFTimer clock. Another benefit of this approach compared to

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 23

0 200 400 600 800 1000 1200 1400 1600
LC code

245000

247500

250000

252500

255000

257500

260000

262500

265000

LC
 c

ou
nt

 d
iv

id
ed

 b
y

96
0

LC counts vs. rollover LC frequency codes

500 520 540 560 580 600
LC code

251400

251600

251800

252000

252200

252400

252600

LC
 c

ou
nt

 d
iv

id
ed

 b
y

96
0

LC counts vs. rollover LC frequency codes

Figure 2.17: LC frequency counts as a function of the rollover LC monotonic codes. The LC
counts were recorded once every 40ms for every LC code.

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 24

100 150 200 250 300 350 400 450 500
LC code

5

10

15

20

25

30

35

40

LC
 c

ou
nt

 d
iff

er
en

ce
 d

iv
id

ed
 b

y
96

0

Difference in LC count between successive rollover LC frequency codes

Figure 2.18: LC frequency count difference between successive rollover LC monotonic codes
within 40ms.

the hard-coding approach is that this only requires us to store two integers, one mid0_code
and one coarse0_code, for every coarse code. However, the LC monotonic function is still
not completely linear.

In this section, we showed two approaches at creating an LC monotonic function. Future
work will involve characterizing the LC frequency using a more accurate timer than RFTimer
and applying these approaches to the more accurate LC counts. In Sections 4.4 and 4.5,
where we compensate the LC frequency using temperature and RX IF feedback, we resort
to compensating the frequency only across the 32 fine codes, keeping the mid and coarse
codes fixed, in order to not run into issues resulting from the non-monotonicity of the LC
frequency tuning codes.

LC Frequency Over Temperature

Another important characteristic to note is the frequency drift of the LC oscillator as the
temperature changes. In the absence of temperature changes, the LC tank has a frequency
stability better than ±40 ppm [15].

In Figure 2.19, we measured the number of LC counts divided by 960 over a 500ms
interval as the ambient temperature was varied. We used the RFTimer, which has around
200 ppm of RMS noise, to generate the 500ms intervals. SCµM was wirebonded onto a
development board and placed in a TestEquity Model 107 temperature chamber. Starting
from room temperature, we decreased the temperature down to 5 ◦C, then increased it to
80 ◦C, and finally decreased it back to room temperature. We measured the temperature in

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 25

10 20 30 40 50 60 70 80
Temperature (C)

1230000

1240000

1250000

1260000

1270000

LC
 c

ou
nt

s d
iv

id
ed

 b
y

96
0

LC counts / 960 vs. temperature

Figure 2.19: The LC frequency counts divided by 960 over temperature at a fixed frequency
tuning code. The counts were recorded every 500ms using the RFTimer interrupts. Note
the hysteresis caused by the thermal mass of the development board to which the SCµM
chip was wirebonded.

the chamber using a SparkFun TMP102 digital temperature sensor connected to a Teensy
3.6 microcontroller placed next to SCµM. Since the development board has a large metal
ground plane, it has a large thermal mass. Therefore, due to the high temperature ramp
rate relative to the board’s thermal mass, we observe some hysteresis in the measurements.

According to Figure 5.30 of [9], the LC oscillator has a temperature coefficient of around
−40 ppm/◦C, much larger than the very small temperature coefficient seen in crystal oscilla-
tors that vary within ±40 ppm across the entire temperature range. In order to compensate
the LC frequency to allow SCµM to transceive 802.15.4 and BLE packets over temperature
variations, we describe two possible methods in Chapter 4.

The temperature coefficient seen in Figure 2.19 seems much larger than the one observed
in [9] because the RFTimer, sourced from the HF_CLOCK oscillator, was used to generate
the 500ms interrupts. As described in Section 2.3, the HF_CLOCK oscillator has around
200 ppm of RMS noise and an unspecified temperature coefficient of its own, which affects
the precision of the LC frequency counts.

2.5 Radio
With a standards-compatible radio, SCµM is able to transmit and receive 802.15.4 and
transmit BLE packets from off-the-shelf devices. In this section, we describe how to configure
SCµM to transmit and receive 802.15.4 or transmit BLE packets and how the LDOs are

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 26

turned on and off. We also characterize the radiation profile of a SCµM chip wirebonded
onto a small PCB as shown in Figure 2.2 but without an antenna.

As described in Sections 3.25 and 4.3.2 of [10], the RFcontroller is the interface between
the Cortex M0 microprocessor and the radio. The RFcontroller implements the finite state
machines, the spreader and despreader, and the FIFOs for both TX and RX. However, as
the radio was originally designed as a 802.15.4 transceiver, it does not fully support BLE
packets directly.

The chip rate for 802.15.4 is 2MHz, so during 802.15.4 transmission, we use the 2MHz
chipping clock to convert the packet data into bits for transmission. To load a packet into
the TX FIFO, we call radio_loadPacket15. We then turn on the LDOs using the function
radio_txEnable16 and transmit the 802.15.4 packet by calling radio_txNow17. Furthermore,
for 802.15.4, we tune the LO frequency to be 500 kHz above the intended channel frequency
since it has an FM modulation frequency spacing of 1MHz. For example, to transmit on
channel 11 (2.405GHz), we need to tune the radio to 2.4055GHz.

In contrast, the chip rate for BLE is 1MHz ± 40 ppm, so we cannot use the FIFO in
the RFcontroller. Instead, we use a separate asynchronous FIFO, whose bits are clocked
out at 1MHz using a divided version of the 2MHz chipping clock. We also set the LO
frequency to be 250 kHz below the intended channel frequency because the FM modula-
tion frequency spacing for BLE is 500 kHz, so for channel 37 (2.402GHz), the target LO
frequency is 2.401 75GHz. Lastly, unlike 802.15.4 that uses minimum-shift keying (MSK),
BLE standards require Gaussian frequency-shift keying (GFSK). However, on SCµM, we are
only transmitting BLE packets with FSK instead of GFSK, but this seems to be sufficient for
off-the-shelf BLE devices, such as phones, to receive BLE packets from SCµM. More details
on BLE transmission on SCµM can be found in Section 4.2.

During RX, we tune the LO frequency to be 2.5MHz below the target frequency. To
receive 802.15.4 packets on channel 11 (2.405GHz), we thus tune the LO frequency to
2.4025GHz. The incoming signal is first down-converted to an intermediate frequency (IF) of
2.5MHz. We use the 64MHz IF clock divided down to 16MHz to sample the down-converted
signal. 802.15.4 uses direct sequence spread spectrum (DSSS) to spread its signals with a
chip rate of 2MHz, so we sample each chip eight times. Groups of 32 chips correspond to 4
bit symbols in the packet data.

For 802.15.4 RX, we use a matched filter initialized with the function radio_init_rx_MF18.
To receive a packet, we first call radio_rxEnable19 to turn on the appropriate LDOs fol-

15https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L179

16https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L192

17https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L208

18https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/scm3c_hw_interface.c#L709

19https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L215

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L179
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L179
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L192
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L192
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L208
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L208
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L709
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L709
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L215
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L215

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 27

lowed by radio_rxNow20 to start the RX FSM. When a packet has been received, we can
call radio_getReceivedFrame21 to read the packet contents, the packet length, the RSSI,
and the LQI error rate from the digital baseband [16].

The RFcontroller’s RX finite state machine is only compatible with 802.15.4 packets. For
BLE packets, we can use the zero crossing counter (ZCC) block to recover the data and
clock of the BLE packet. We still tune the LO frequency to be 2.5MHz below the channel
frequency, so to receive BLE packets on channel 37 (2.402GHz), we set the LO frequency
to 2.3995GHz. SCµM could receive BLE packets transmitted by other SCµMs, but it could
not receive BLE packets transmitted by a smartphone. This is most likely because SCµM’s
BLE packets are only modulated with FSK instead of GFSK. More details on BLE RX are
described in Chapter 5.

LDOs

The LDOs are controlled by the memory-mapped register ANALOG_CFG_REG__10 and are
usually turned on by calling radio_txEnable and radio_rxEnable. The most important
LDOs for radio operation are the local oscillator (LO) LDO, the intermediate frequency (IF)
LDO, the power amplifier (PA) LDO, and the LC divider (DIV) LDO.

For radio transmission, the LO and PA LDOs should be turned on. The DIV LDO can
be optionally turned on as well if the LC frequency needs to be counted. For radio reception,
the LO and IF LDOs should be turned on with the DIV LDO optionally on.

Note that turning on any one of the LDOs changes the current and will affect the LO
frequency. For example, if LC frequency calibration is performed during optical calibration
with the LC divider on, turning the LC divider off during normal radio operation to conserve
power will induce a frequency shift in the LO.

The current settings of these LDOs can be set by calling set_PA_supply, set_LO_supply,
and set_DIV_supply, respectively. In previous version of the SCµM’s firmware, there was a
bug in these functions that caused them to modify the incorrect ASC bits22.

Radiation Characterization

We now characterize the radiation profile of SCµM’s radio without an antenna. For this
experiment, we wirebonded SCµM onto a small PCB as shown in Figure 2.2. Unlike as
shown in the figure, we did not wirebond an antenna onto SCµM, and we did not cover
SCµM with epoxy.

We programmed SCµM to transmit 802.15.4 packets, and we used an OpenMote at
variable distance away from SCµM to read the RSSI of the received packets. Afterwards,

20https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L243

21https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L253

22https://github.com/PisterLab/scum-test-code/pull/19

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L243
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L243
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L253
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L253
https://github.com/PisterLab/scum-test-code/pull/19

CHAPTER 2. SINGLE-CHIP MICRO MOTE (SCµM) 28

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Distance along x-axis (cm)

100

95

90

85

80

75

70

RS
SI

 (d
Bm

)

RSSI vs. distance along x-axis

(a) Distance along the x-axis.

5 10 15 20 25 30
Distance along z-axis (cm)

100

95

90

85

80

75

70

RS
SI

 (d
Bm

)

RSSI vs. distance along z-axis

(b) Distance along the z-axis.

Figure 2.20: RSSI of 802.15.4 packets transmitted from a SCµM chip wirebonded to a PCB
without an antenna. The x-axis denotes the axis parallel to the PCB plane, and the z-axis
denotes the axis orthogonal to the PCB plane.

we measured the RSSI along the x-axis, i.e., the axis parallel to the PCB plane, and along
the z-axis, i.e., the axis pointing orthogonally out of the PCB plane. The results are shown
Figure 2.20.

The range at which the OpenMote could receive SCµM’s 802.15.4 packets depends on
the distance and on the direction from SCµM. For example, we found that at an angle of
approximately 20° from the vertical z-axis, the OpenMote could receive 802.15.4 packets
with an RSSI of −97 dBm at a distance of around 122 cm, much greater than the range in
either the x-axis or z-axis.

For comparison, Figure 5.38 of [9] shows the RSSI of BLE packets transmitted by SCµM
with a wirebonded and a rubber ducky antenna. As expected, due to the presence of an
antenna, the RSSI is higher at similar distance. However, radiation measurements are very
imprecise due to external factors. For example, in the aforementioned experiment, tilting the
antenna of the OpenMote changes the RSSI value, and the OpenMote can pick up packets
from the radiating power cables as well.

29

Chapter 3

Temperature Estimation

Obtaining reliable temperature data is important for many IoT applications because of the
dependence of many devices on the ambient temperature. For SCµM specifically, even a
rough temperature estimate allows for temperature compensation, thus permitting the mote
to be deployed in various environments. Most importantly, this allows SCµM to operate as
a a small, low-cost IoT temperature sensor, enabling many exciting applications, such as a
small body wearable to track the temperature on different parts of the body. However, it is
challenging to keep both the size and the cost of such temperature sensors low.

In [13], previous temperature compensation was done using network-based calibration
that tracks the intermediate frequency (IF). An external OpenMote beacon was programmed
to periodically transmit 802.15.4 frames every 125ms, and when SCµM received each frame,
the IF frequency offset was determined in the clock and data recovery module and was then
used to finely tune the RF frequency.

Another method described in [12] to allow channel hopping over varying temperature was
by performing an offline characterization and an online network-based calibration of the LO
frequency. In the offline stage, the authors swept through all of the LC frequency tuning
settings and mapped these settings to the measured LC frequency. They then developed
two linearization models, a recursive least-squares (RLS) model and a moving average (MA)
model, that predict the tuning codes based on the current environment’s temperature and
on the 802.15.4 channel as demanded by the channel hopping schedule. In the online stage,
initial frequency calibration for SCµM was done by using the IF frequency offset to ensure
that the radio frequency accuracy was within 40 ppm per the 802.15.4 standards. The lin-
earization models were then used to update the frequency tuning codes when the channel
or the environment temperature changed and were themselves updated using network-based
calibration from an OpenMote. However, when there is no external beacon providing a
stream of 802.15.4 frames, such a network-based calibration is infeasible, so we propose a
new method to estimate the ambient temperature using on-chip components in order to tune
the LO frequency.

In this chapter, we present a method to calibrate SCµM for use as an IoT temperature
sensor between 0 ◦C and 100 ◦C. The original purpose of finding a temperature estimate on

CHAPTER 3. TEMPERATURE ESTIMATION 30

SCµM is to compensate the radio’s LO frequency that is largely temperature-dependent, so
that SCµM can operate over temperature variations. A one-time frequency calibration at
room temperature is insufficient for crystal-free radio operation across temperature, so one
possibility is to resort to periodic network compensation to calibrate the LO frequency over
temperature.

Another solution is to estimate the ambient temperature using two existing running os-
cillators on the chip during radio operation similar to the method proposed in [11] and thus
eliminate the need for periodic compensation after calibration. To find this temperature
estimate, we use two clocks on SCµM that would already be running during radio operation
anyway—the 32 kHz RC free-running oscillator similar to a crystal and the 2MHz RC os-
cillator that is used as the chipping clock for transmitting 802.15.4 and BLE packets. We
create a temperature sensor by finding a linear relationship between the ambient temperature
and the ratio of these two clock frequencies. We show that a simple two-point temperature
calibration is sufficient to find this linear model, and by averaging over a few temperature
measurements, we observe a temperature error of less than 2 ◦C. We can then use SCµM as
a tiny wireless temperature sensor by using the temperature estimate to calibrate the radio
frequency oscillator.

3.1 2MHz / 32 kHz Frequencies Over Temperature
We use the 2MHz and the 32 kHz RC oscillators on SCµM to calibrate it with respect to
temperature. The 2MHz oscillator is used as the chipping clock for transmitting 802.15.4
and BLE packets while the 32 kHz oscillator, similar to a crystal, can be used as a sleep
timer for when SCµM is operating in networks implementing the 802.15.4 time synchronized
channel hopping (TSCH) standards [4].

The frequencies of both of these RC oscillators have a non-linear relationship with tem-
perature as plotted in Figure 3.1 on SCµM development board Q4. According to Sec-
tion 5.13 of [16], the 2MHz oscillator has a temperature coefficient of around 160 ppm/◦C.
Figure 3.1a shows a much larger temperature coefficient because the RFTimer, sourced from
the HF_CLOCK oscillator, was used to generate the 100ms interrupts. As described in
Section 2.3, the HF_CLOCK oscillator has around 200 ppm of RMS noise and an unspeci-
fied temperature coefficient of its own, both of which affect the 2MHz and 32 kHz frequency
counts.

We measured these values by placing SCµM into a TestEquity Model 107 temperature
chamber along with a reference temperature sensor that consisted of a SparkFun TMP102
digital temperature sensor connected to a Teensy 3.6 microcontroller as the reference tem-
perature sensor.

While sweeping the temperature between 5 ◦C and 85 ◦C, we used the RFTimer, a 500 kHz
clock divided down from the on-board 20MHz HF_CLOCK oscillator, to trigger an inter-
rupt approximately every 100ms on SCµM. This is similar to optical calibration, but the
interrupts originate from a noisier on-chip oscillator instead of a Teensy 3.6 microcontroller.

CHAPTER 3. TEMPERATURE ESTIMATION 31

10 20 30 40 50 60 70 80
Temperature (C)

198500

199000

199500

200000

200500

201000

201500

202000
2M

Hz
 c

ou
nt

s
2MHz counts vs. temperature

(a) 2MHz frequency counts vs. RFTimer.

10 20 30 40 50 60 70 80
Temperature (C)

3240

3250

3260

3270

3280

3290

3300

3310

3320

32
kH

z c
ou

nt
s

32kHz counts vs. temperature

(b) 32 kHz frequency counts vs. RFTimer.

Figure 3.1: SCµM’s 2MHz and 32 kHz frequency counts vs. temperature. Every 100ms,
the RFTimer triggered an interrupt, and in the interrupt handler, we read the frequency
counters of the two oscillators and logged them over UART.

CHAPTER 3. TEMPERATURE ESTIMATION 32

Every 50,000 cycles of RFTimer, which corresponds to roughly 100ms, we read the frequency
counts of both the 2MHz and the 32 kHz oscillators and reset the counters. We then logged
the frequency counts as well as the reference temperature to a computer over UART.

Starting from an initial temperature of 25 ◦C, we programmed the temperature chamber
to linearly decrease the temperature to 5 ◦C, then increase it to 80 ◦C, and finally decrease it
back down to room temperature at a rate of ±1.5 ◦C/min. Since the SCµM chip was placed
on a development PCB with a large metal ground plane, the board’s large thermal mass
caused some hysteresis in the frequency count measurements if the temperature ramp rate
was too high.

When we divided the 2MHz frequency count by the 32 kHz frequency count, we observed
that the frequency ratio was approximately linear to temperature, as shown in Figure 3.2a
overlaid with a linear regression line. The ratio values used in Figure 3.2a were actually cal-
culated on the SCµM chip and then printed to a computer over UART along with the 2MHz
and 32 kHz frequency counts. Since SCµM has no floating point unit, a fixed point library1

was implemented on the chip for floating point operations, especially the ratio calculation.
As mentioned previously, the 100ms interrupts were generated by RFTimer, which is

sourced from HF_CLOCK with an RMS noise of 200 ppm and some unspecified temperature
coefficient. However, since we are calculating the ratio of the 2MHz and the 32 kHz frequency
counts, this removes the dependence of the ratio calculation on the HF_CLOCK’s frequency
stability and temperature coefficient. However, the hysteresis caused by the thermal mass
of SCµM’s underlying development board is still visible in Figure 3.2.

Nevertheless, we propose a linear model to predict the temperature based on the frequency
ratio of the two oscillators. Calibrating SCµM to its ambient temperature is thus equivalent
to determining this linear relationship.

Running this temperature sweep on multiple SCµM chips, we confirmed that, as expected,
the coefficients of the linear model are chip-dependent. For the particular SCµM we used,
SCµM development board Q4, we found using a linear least-squares regression:

temperature = −30.7 · ratio+ 1920 (3.1)

The maximum error between the linear model and the actual temperature was less than 3 ◦C,
as shown in Figure 3.2b, but there are some measurement inaccuracies due to the hysteresis
caused by the board’s thermal mass.

3.2 Temperature Averaging
After the initial temperature calibration described above, we observed that SCµM’s estimated
temperature at a given fixed temperature would vary by up to 1 ◦C. Compared to the Allan
deviation plots in [1] for the 2MHz and 32 kHz oscillators, the data we observed had more
jitter in the 100ms range.

1https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/
scm_v3c_BLE/fixed-point.h

https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scm_v3c_BLE/fixed-point.h
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scm_v3c_BLE/fixed-point.h

CHAPTER 3. TEMPERATURE ESTIMATION 33

59.5 60.0 60.5 61.0 61.5 62.0 62.5
Ratio of 2MHz / 32kHz counts

0

20

40

60

80

Te
m

pe
ra

tu
re

 (
C)

Temperature vs. ratio of 2MHz / 32kHz counts
Temperature vs. frequency ratio
Linear model

(a) Temperature vs. ratio of the 2MHz and 32 kHz counts and
the linear model given by linear least-squares regression.

10 20 30 40 50 60 70 80
Temperature (C)

2

1

0

1

2

3

Te
m

pe
ra

tu
re

 e
rro

r (
C)

Difference between actual temperature
and estimated temperature using a linear model

(b) Difference between actual temperature and estimated temper-
ature using a linear model.

Figure 3.2: Relationship between temperature and the ratio of the 2MHz and 32 kHz fre-
quency counts. The temperature was varied at a rate of ±1.5 ◦C/min, and ratio measure-
ments were taken every 100ms as determined by the RFTimer interrupts. The linear model
given by linear least-squares regression and the corresponding differences between the actual
temperature and the temperature estimated by the linear model are shown.

CHAPTER 3. TEMPERATURE ESTIMATION 34

1 2 3 4 5 6 7 8 9 10
of samples to average

0.18

0.20

0.22

0.24

0.26

0.28

0.30

St
d.

 d
ev

. o
f m

ea
su

re
d

te
m

pe
ra

tu
re

 (
C)

Std. dev. of measured temperature vs. # of samples to average

Figure 3.3: Standard deviation of the measured temperature vs. the number of samples to
average over.

To mitigate variance in the temperature estimate, we implemented a simple averaging
method. We recorded the 2MHz and the 32 kHz frequency ratios at room temperature over
an hour and calculated the standard deviations of the estimated temperature as a function
of how many samples we average. The results are shown in Figure 3.3.

We found that averaging over any more than five temperature samples did not signifi-
cantly decrease the variance of the temperature estimates, so we chose to average over five
samples. This results in a duration of around 500ms for each temperature measurement.

Having each temperature update last 500ms with averaging instead of 100ms corresponds
to moving to a different position on the Allan variation curves in Figures 5 and 6 of [1]. From
100ms to 500ms, the variation of the 2MHz oscillator stays roughly constant while the
variation of the 32 kHz oscillator decreases by approximately a factor of 2 before it flattens
out around 500ms. We observe a similar trend in Figure 3.3, where the variation in the
measured temperature decreases by around a factor of 2 from averaging over 1 sample to
averaging over 5 samples. Afterwards, the variation in the measured temperature flattens
out.

Using the coefficients given in Equation (3.1) and averaging over 5 samples, we verified
the accuracy of SCµM’s estimated temperature at intervals of 5 ◦C between 5 ◦C and 80 ◦C.
At each temperature, we waited for SCµM’s estimated temperature to stabilize and then
recorded around 50 consecutive temperature measurements before increasing the tempera-
ture by another 5 ◦C. In Figure 3.4a, we used the means of these estimated temperatures
at each 5 ◦C interval to plot SCµM’s estimated temperature between 5 ◦C and 80 ◦C, and in
Figure 3.4b, we show the corresponding temperature errors and their distributions. While

CHAPTER 3. TEMPERATURE ESTIMATION 35

0 10 20 30 40 50 60 70 80
Actual temperature (C)

10

20

30

40

50

60

70

80
M

ea
su

re
d

te
m

pe
ra

tu
re

 (
C)

Measured vs. actual temperature
Measured temperature
Reference temperature

(a) SCµM’s measured temperature vs. the reference temperature.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Temperature (C)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Te
m

pe
ra

tu
re

 e
rro

r (
C)

Difference between measured and actual temperature

(b) Distribution of SCµM’s temperature error.

Figure 3.4: SCµM’s measured temperature vs. the reference temperature after a temperature
sweep at a ramp rate of 1.5 ◦C/min between 5 ◦C and 80 ◦C.

CHAPTER 3. TEMPERATURE ESTIMATION 36

0 10 20 30 40 50 60 70 80 90 100
Actual temperature (C)

0

20

40

60

80

100
M

ea
su

re
d

te
m

pe
ra

tu
re

 (
C)

Measured vs. actual temperature
Measured temperature
Reference temperature

(a) SCµM’s measured temperature vs. the reference temperature.

0 10 20 30 40 50 60 70 80 90 100
Temperature (C)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Te
m

pe
ra

tu
re

 e
rro

r (
C)

Difference between measured and actual temperature

(b) Temperature error between the measured and the actual tem-
perature.

Figure 3.5: SCµM’s measured temperature vs. the reference temperature between 0 ◦C and
100 ◦C after a two-point calibration.

CHAPTER 3. TEMPERATURE ESTIMATION 37

the measured temperature is fairly accurate around room temperature (20 ◦C), the maximum
error of around 2 ◦C occurs at higher temperatures.

3.3 Two-Point Calibration
Due to the nearly linear relationship between the temperature and the ratio of the 2MHz
and the 32 kHz frequencies, a lengthy temperature sweep to find this relationship is rather
unnecessary. Instead, we propose a two-point calibration at two different temperatures.
Using the same SCµM chip, we performed the temperature calibration as described above
again, but we measured the ratio of the two frequencies at only 20 ◦C and at 30 ◦C, both
after the temperature in the chamber stabilized. Notably, we did not choose to calibrate at
the extremes of the temperature range in order to reduce the cost and time of the two-point
calibration.

After calculating a linear model for the measured temperature and adjusting the bias
term to account for observed hysteresis, we reprogrammed SCµM and verified the accuracy
of this model by sweeping the chamber temperature from 0 ◦C to 100 ◦C while recording
SCµM’s estimated temperature and using the TMP102 temperature sensor as the ground
truth. The measured temperature and its corresponding error between 0 ◦C and 100 ◦C are
shown in Figure 3.5. At low temperatures, we noticed sporadic overflow errors occurring in
the embedded software due to the implemented fixed point division algorithm. Ignoring the
chip’s erroneous estimated temperatures, we found that the difference between the measured
and the actual temperature was within 1 ◦C.

3.4 Conclusion
We showed a method to find a linear relationship between the ambient temperature and the
frequency ratio of the 2MHz chipping clock for the chip’s transmitter and the 32 kHz timer.
Although these two RC oscillators have different temperature coefficients, their frequency
ratio is roughly linear over temperature. Using a two-point calibration, the coefficients of the
linear model can be easily determined, and after averaging over 5 temperature samples, we
showed that the error of SCµM’s measured temperature is less than 2 ◦C between 0 ◦C and
100 ◦C and less than 1 ◦C between 5 ◦C and 85 ◦C. This allows SCµM to generate fairly ac-
curate temperature estimates and perform temperature compensation using these estimates,
which eliminates the need for network-based compensation involving an external beacon.
The next step is to tune the radio frequency oscillator using this temperature estimate, so
that it can operate within the 802.15.4 or BLE standards over varying temperature without
an external frequency reference, as described in Section 4.4. We can also transmit this tem-
perature directly, so that SCµM can operate as a tiny wireless temperature sensor, e.g., for
medical applications.

CHAPTER 3. TEMPERATURE ESTIMATION 38

Details on the software for the aforementioned temperature calibration can be found in
Appendix A.

39

Chapter 4

BLE TX

IEEE 802.15.4 is a communication standard commonly found in networks for internet-of-
things devices. However, most commercial devices, such as phones and computers, do not
support the 802.15.4 standard, making it difficult to interface with IoT devices. One possibil-
ity to allow mesh networks implementing the 802.15.4 standard to communicate with other
devices is to have some IoT nodes transmit and receive data over Bluetooth Low Energy
(BLE), a widely supported standard. This enables many new applications, such as con-
trolling microrobots and communicating with wireless sensors using commercially available
phones and computers.

To realize this, we would need an IoT node that is small and low-cost, so that it can
be placed ubiquitously on microrobots or as wireless sensors, and that can transceive BLE-
standards compliant packets. Since SCµM as presented in [8] has a standards-compatible
802.15.4 transceiver and Bluetooth Low-Energy (BLE) transmitter, we can use it as a
802.15.4-to-BLE translator for this purpose. It can communicate with other nodes in the
802.15.4 mesh network as a regular IoT node, but it can then transmit to Bluetooth-enabled
devices as well.

In this chapter, we first give a brief description about the structure of the BLE packets
that SCµM will transmit. Afterwards, we describe how we can tune the free-running radio
frequency (RF) oscillator to transmit BLE packets on a specified BLE channel using SCµM’s
optical receiver.

The BLE specifications prescribe a data bitrate of 1Mbit/s and a maximum frequency
drift of ±40 ppm. However, SCµM does not have an external frequency reference. While this
is great for keeping its package size small, the mote’s communication frequency varies with
temperature, so much that the frequency drift over temperature exceeds the limit specified
in the BLE standards. Thus, we then describe how we can overcome this hurdle.

One possibility is to simply sweep the LC frequency tuning code to transmit BLE packets
over a range of frequencies close to the target frequency in the hopes that at least one of the
packets meets the BLE specifications. We show that this is sufficient for SCµM to operate as
a BLE beacon over a range of around 20 ◦C. However, transmitting a BLE packet for each
frequency setting is inefficient, so we present two methods to compensate the local oscillator

CHAPTER 4. BLE TX 40

(LO) frequency more efficiently over temperature.
First, as described in Chaper 3, we estimate the ambient temperature by finding a linear

model based on the ratio of the frequencies of two separate clocks that would be running
during radio operation, a 32 kHz oscillator similar to a crystal and another 2MHz chipping
clock for the radio transmitter. We then use this temperature estimate to calculate the
correct frequency setting for the LO.

Alternatively, we use an external OpenMote with no frequency drift over temperature
that constantly transmits 802.15.4 packets on a specified channel as a frequency reference.
As the temperature changes, we adjust SCµM’s RX tuning code, such that we continue to
receive the OpenMote’s 802.15.4 packets, by either measuring the intermediate frequency
(IF) offset or by sweeping the RX tuning code and taking the average of the tuning codes of
all received packets. In the meantime, we adjust the TX tuning code for transmitting BLE
packets as well. We show that these methods allow us to operate SCµM as a BLE beacon
over a range of around 20 ◦C, limited by the monotonicity of the tuning codes.

4.1 BLE Overview
The BLE standards compatible radio on SCµM allows it to communicate with commercial
off-the-shelf devices that support BLE. However, since SCµM cannot receive BLE packets
(see Chapter 5), we resort to simply using SCµM as a BLE advertiser that does not accept
any connections [2].

A BLE-enabled device can communicate data to other BLE-enabled devices via two
possible methods:

1. It can act as a broadcaster and broadcast BLE packets to all listening BLE-enabled
devices, called observers, in the vicinity. In the BLE specifications, an observer can
request scan response data from the broadcaster, but since SCµM does not have a
working BLE receiver, we only broadcast BLE packets from SCµM. In other words, we
are limited to a one-way data transfer.

2. It can establish a permanent connection with another BLE device and exchange BLE
packets. Since SCµM does not have a working BLE receiver, SCµM cannot establish
these BLE connections.

Notably, BLE packets are sent on 40 different channels on the 2.4GHz frequency band.
The first 37 channels are used for connections only, and the last 3 channels—channel 37
(2.402GHz), channel 38 (2.426GHz), and channel 39 (2.480GHz)–are used for advertising.
Unless stated otherwise, we will solely focus on having SCµM broadcast on channel 37
(2.402GHz).

The Generic Access Profile (GAP) layer specifies how BLE advertising is accomplished.
Since SCµM can only be used as a broadcaster, GAP specifies the broadcaster and observer
roles, whether the device is discoverable or connectable, and how the advertising data is
communicated to the observer.

CHAPTER 4. BLE TX 41

Component Length Value (in little-endian format unless stated
otherwise)

B
LE

pa
ck
et

Preamble 1 byte 0x55
Access address 4 bytes 0x6B7D9171
PDU header 2 bytes 0x40A4

Advertiser address 6 bytes 0x0002723280C6 in big-endian format
Payload 0-31 bytes Application-dependent.

SCµM uses all 31 bytes and zero-pads the
unused bits.

CRC 3 bytes Calculated during packet assembly.

Table 4.1: BLE advertising packet structure. The bold components constitute the Protocol
Data Unit (PDU).

BLE Advertising Packet Structure

The BLE advertising packet is structured as shown in Table 4.11. The bold components, i.e.,
the PDU header, the advertiser address, and the payload, constitute the Protocol Data Unit
(PDU). When assembling the BLE packet, the CRC is first calculated based on the PDU
contents, and both the PDU and the CRC are then whitened using a linear feedback shift
register (LFSR). The BLE packet generation code for SCµM can be found in the function
ble_gen_packet2.

We now break down each component of a BLE advertising packet3. Note that BLE
packets are transmitted little-endian, so the order of the bits in each byte of the packet must
be flipped prior to transmission.

1. The preamble of a BLE advertising packet is 0b10101010, or 0x55 in little-endian
format.

2. The access address of a BLE advertising packet is always 0x8E89BED6, or 0x6B7D9171
in little-endian format.

3. The PDU header consists of a 4-bit PDU type specifying the type of advertising followed
by 2 bits for an RFU field (reserved for future use), 1 bit each for TxAdd and RxAdd, and
8 bits for the length of the ensuing PDU. In little-endian format, we set the value of

1See https://web.archive.org/web/20200523001311/https://microchipdeveloper.com/
wireless:ble-link-layer-packet-types for more details on the BLE packet structure. Archived
from https://microchipdeveloper.com/wireless:ble-link-layer-packet-types on May 22, 2020.

2https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/ble.c#L70

3https://web.archive.org/web/20200523001538/http://j2abro.blogspot.com/2014/06/
understanding-bluetooth-advertising.html. Archived from http://j2abro.blogspot.com/2014/06/
understanding-bluetooth-advertising.html on May 22, 2020.

https://web.archive.org/web/20200523001311/https://microchipdeveloper.com/wireless:ble-link-layer-packet-types
https://web.archive.org/web/20200523001311/https://microchipdeveloper.com/wireless:ble-link-layer-packet-types
https://microchipdeveloper.com/wireless:ble-link-layer-packet-types
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L70
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L70
https://web.archive.org/web/20200523001538/http://j2abro.blogspot.com/2014/06/understanding-bluetooth-advertising.html
https://web.archive.org/web/20200523001538/http://j2abro.blogspot.com/2014/06/understanding-bluetooth-advertising.html
http://j2abro.blogspot.com/2014/06/understanding-bluetooth-advertising.html
http://j2abro.blogspot.com/2014/06/understanding-bluetooth-advertising.html

CHAPTER 4. BLE TX 42

Length GAP code Data
1 byte 1 byte n bytes

Table 4.2: The structure of each data chunk in the BLE advertising packet payload. The
length byte is equal to n+ 1, i.e., it is the length of the GAP code and the data.

the PDU header to 0x40A4. The first four bits (0b0010, or 0x4 in little-endian format)
signifies an ADV_NONCONN_IND event that is non-connectable and undirected. TxAdd is
set to 0 because we have a fixed public advertiser address. The second byte (0d37, or
0xA4 in little-endian format) specifies the total length of the advertiser address and
the payload in the BLE packet. We set it equal to the maximum possible value of 37
bytes because we will simply zero-pad the unused bits in the payload.

4. The advertiser address is set to 0x0002723280C6 in big-endian format for SCµM. In
general, the advertiser address can be arbitrary, but it is usually unique to the adver-
tiser, so most smartphone apps, including the BLE sniffer app described below, will
only show the first BLE packet received from each unique advertiser address during
each scan for BLE packets.

5. The payload can have a length up to 31 bytes. Its structure is described below.

6. The CRC is calculated based on the PDU header, the advertiser address, and the
payload prior to whitening of the PDU and CRC fields with an LFSR. The LFSR is
initialized to 0b1, channel, where channel is the TX channel (channel 37 for SCµM).

According to the GAP guidelines, the payload consists of multiple chunks of data, each
consisting of the length of the GAP code and data followed by the GAP code and the data
itself as shown in Table 4.2.

Since the GAP code is always one byte in length, the length field is always equal to the
data length+1. Most of the GAP codes are pre-defined4. In particular, we use the GAP code
0x08 to advertise the short name of SCµM, which is set to SCUM3. However, it is possible to
define custom GAP codes for other types of data specific to the application, which are listed
in Table 4.3. Note that all of the bytes, including the GAP code, the length, and the actual
data, have to be in little-endian order.

BLE Sniffer App

In the BLE experiments, we used SCµM as the BLE broadcaster, and we used a Google Pixel
2 XL as the observer. Successful reception of SCµM’s BLE packets indicated that SCµM’s

4https://web.archive.org/web/20200523001739/https://www.bluetooth.com/specifications/
assigned-numbers/generic-access-profile/. Archived from https://www.bluetooth.com/
specifications/assigned-numbers/generic-access-profile/ on May 22, 2020.

https://web.archive.org/web/20200523001739/https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://web.archive.org/web/20200523001739/https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/

CHAPTER 4. BLE TX 43

Data Data length
(excluding GAP
code length)

GAP code Notes

Short name 5 bytes 0x08 Assigned GAP code
LC frequency
tuning code

2 bytes 0xC0 15-bit LC frequency tuning code

2MHz and 32 kHz
frequency counters

8 bytes 0xC2 4 bytes for 2MHz counter and
4 bytes for 32 kHz counter

Temperature 2 bytes 0xC1 100 · temp truncated to the
nearest integer

Custom data 4 bytes 0xC3 Used to re-broadcast 802.15.4
packets received from OpenMotes
as BLE packets

Table 4.3: List of GAP codes defined by the software described here and their data lengths.

BLE compatible radio was functional and tuned correctly.
In order to correctly parse the received BLE packets, including the custom GAP codes

defined in Table 4.3, we developed an Android app based on a sample app provided by Google
to read GATT attributes from BLE devices. This Android app, which can found at https:
//github.com/tryuan99/android-ble-scum, scans the environment for BLE advertising
packets, and if it finds packets with an advertiser address of 0x0002723208C6, it parses the
payload and displays the relevant information on the screen. An example of the app is shown
in Figure 4.1.

4.2 BLE TX On SCµM
SCµM is usually configured to transmit 802.15.4 packets. In order for SCµM to transmit
BLE packets, we initialize the analog scan chain (ASC) with different configuration bits, as
done in the function ble_init_tx5. We no longer need the 802.15.4 modulation DAC and
instead enable the BLE modulation DAC. Most importantly, analog_cfg[183] must be set
to 0 to select BLE modulation (a 1 will select 802.15.4 modulation otherwise), which can be
accomplished by setting ANALOG_CFG_REG__11 = 0x0000 instead of 0x0080.

After initializing the radio to use BLE modulation, when transmitting a BLE packet on
SCµM, we first load the BLE packet into an asynchronous FIFO whose contents are clocked
out at 1MHz divided down from the 2MHz chipping clock. In software, this is done in

5https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/ble.c#L265

https://github.com/tryuan99/android-ble-scum
https://github.com/tryuan99/android-ble-scum
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L265
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L265

CHAPTER 4. BLE TX 44

Figure 4.1: BLE sniffer app running on a Google Pixel 2 XL after receiving a BLE packet
from SCµM. The payload includes the short name of SCµM, the LC frequency tuning codes,
and the temperature. The raw payload is displayed as well.

CHAPTER 4. BLE TX 45

the function ble_transmit6. We first call load_tx_arb_fifo, then turn on the LDOs, and
finally transmit the BLE packet using transmit_tx_arb_fifo. The bits are then used to
modulate the LO. Note that SCµM’s BLE packets are modulated with FSK instead of GFSK
as specified by the BLE standards. However, off-the-shelf devices, such as phones, are still
able to receive FSK BLE packets from SCµM.

There was one issue that I discovered while debugging why SCµM was not modulating
when I initialized the radio to transmit BLE packets. The expected current draw on SCµM
board Q4 with the LO, PA, and DIV on is around 2.2mA, but the current I was measuring
was considerably lower. After further debugging, I found that adding a delay in the orders
of tens of microseconds after turning on the LDOs solved this issue7. The issue is most likely
caused by transients after the LDOs are turned on, and immediately transmitting the BLE
packet from the FIFO after turning the LDOs on will not work as expected.

To tune the LO frequency, we adjust the 15-bit LC frequency tuning code that controls
the 3 5-bit capacitive DACs of the 2.4GHz LC oscillator. However, the LO frequency is
usually application-specific, e.g., the desired BLE channel to transmit on may vary, and the
LC frequency tuning code depends on the ambient temperature, so we cannot easily hard-
code the frequency tuning code. The tuning code is also chip-dependent primarily due to
effective reference mismatch between voltage regulators and the DC supply sensitivity of the
oscillator. Furthermore, since there are 215 possible LC frequency tuning codes, sweeping all
settings to find the correct tuning code takes unfeasibly long. We thus use the LC divider,
shown in Figure 2.12, to estimate the LC frequency and use the divider to calibrate the LO
frequency during bootloading of SCµM.

Thus, since the LC frequency is calibrated with the divider on, we turn it on as well when
transmitting BLE packets. The reason for this is simple: the divider consumes quite some
power (see Figure 5.21 of [9]), and turning it off will shift the LC frequency and invalidate
the tuning code found during LC frequency calibration. To conserve power, it is possible to
turn off the LC divider as it is not necessary for BLE TX, but the LC frequency tuning code
will need to be found using an alternative method, e.g., by sweeping all tuning codes.

Lastly, since the modulated BLE signal has a frequency spacing of 500 kHz, in order to
transmit at 2.402GHz (channel 37), we set the target frequency of the LO to be 250 kHz
below the channel frequency, i.e., at 2.401 75GHz, so that the modulated BLE signal is
centered at 2.402GHz.

4.3 Optical LC Frequency Calibration
The simplest method to calibrate the LC frequency of SCµM without the use of the LC
divider is to use a spectrum analyzer to measure the frequency of SCµM’s radio output.

6https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/ble.c#L373

7https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/ble.c#L381

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L373
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L373
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L381
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c#L381

CHAPTER 4. BLE TX 46

We can adjust the LC frequency by changing the 15-bit LC frequency tuning code until the
desired LC frequency is achieved. However, this method is infeasible in the absence of a
spectrum analyzer, so we describe another approach using the LC divider to calibrate the
LC frequency during bootloading.

After the initial 25 SFD interrupts to calibrate the other free-running oscillators, as
described in Section 2.2, we begin LC calibration, which proceeds similarly. After every
SFD interrupt, we measure the number of LC counts within the last 100ms and find the
15-bit frequency tuning code that gets us closest to the target frequency of 2.401 75GHz.
However, since 215 100ms SFD interrupts would take unfeasibly long, we observed that for
many SCµM chips we tested, 2.401 75GHz corresponded to a coarse code between 21 and
25. Furthermore, we fix the fine code to be 15, so that we would only be sweeping the coarse
code between 21 and 25 and the mid code between 0 and 31, totaling around 20 s for LC
calibration. If the ambient temperature does not vary much, this calibration to find the
optimal coarse and mid codes for BLE transmission is a one-time operation.

However, since we fixed the fine code at 15, the LO frequency might be incorrect. Fur-
thermore, as described Section 2.4, the frequency error over temperature of the LO is greater
than that specified in the BLE standard. Thus, even after the initial LO frequency tuning,
we are limited to BLE transmission within a small range of temperature. An initial working
solution to this is to simply sweep the fine code from 0 to 31 while keeping the coarse and
mid codes as calibrated. We do not want the fine code to roll over because as described in
Section 2.4, the LC frequency is not monotonic when the fine code rolls over, making LC
frequency compensation much harder.

To characterize how well this fine code sweep works over temperature variations, we
placed the SCµM development board Q4 in a temperature chamber. Inside, we connected
an SMA cable to SCµM, which we ran out of the temperature chamber, and attached an
antenna onto the other end of the SMA cable. This antenna was then placed next to a phone
to pick up any BLE packets transmitted from SCµM.

Prior to the temperature sweep, we ran LC frequency calibration on SCµM in order to
determine the optimal coarse and mid codes to use at room temperature with the additional
SMA cable at the antenna output. We also programmed SCµM, such that the last byte of its
advertiser address would be equal to the fine code, on which it was transmitting. This way,
on the BLE sniffer app, when we received a BLE packet from SCµM, we could determine
the fine code on which it was transmitted.

Finally, we selected four temperatures between 5 ◦C and 35 ◦C to measure the range of
fine codes the phone could receive, as shown by the blue dots in Figure 4.2. At each of these
four temperatures, we waited around two minutes for the on-board temperature on SCµM
to settle in order to mitigate any hysteresis caused by the thermal mass of the development
board. Note that we did not allow the fine code to roll over, so we only swept the fine code
between 0 and 31. As shown in Figure 4.2, a one-time LC frequency calibration at room
temperature allows for BLE operation over a range of around 20 ◦C.

Note that since we attached a long SMA cable with the antenna to SCµM, this changes
the load at the antenna output and affects the BLE TX frequency. We can approximate

CHAPTER 4. BLE TX 47

10 15 20 25 30 35
Temperature (C)

0

5

10

15

20

25

30

Fi
ne

 c
od

e

coarse=22, mid=30

Fine code vs. temperature
Linear fit
Fine codes received by phone

Figure 4.2: The fine codes of BLE packets received by a smartphone at four select tempera-
tures and the corresponding linear fit. These values were recorded in a temperature chamber
by running a long SMA cable with an antenna out of the chamber. The presence of the SMA
cable causes a frequency shift, so we add a bias term of around −10 fine codes to the linear
fit when we remove the SMA cable.

its effect as a constant bias term on the fine code, so after removing the SMA cable after
the temperature sweep, we simply determine the range of fine codes that can be received
at room temperature and calculate this bias term. Experimentally, on SCµM development
board Q4, we found this bias term to be around −10 fine codes.

Since each fine code corresponds to around a 100 kHz change in the LO frequency but
we could pick up packets over a range of nine fine codes at 20 ◦C, for example, this means
that the phone could receive packets over a range of 900 kHz, considerably larger than the
±40 ppm frequency drift specified by the BLE specifications. This implies that the phone
has some frequency tolerance.

This temperature sweep also lets us hypothesize that in order for SCµM to operate in
a larger temperature range, we could perform LC calibration at different temperatures and
sweep the fine codes for every coarse and mid code pair found for each temperature. For
example, for radio operation between 0 ◦C and 45 ◦C, we could calibrate SCµM at 5 ◦C, 20 ◦C,
and 30 ◦C, find their corresponding coarse and mid codes, and sweep the fine code from 0
to 31 with every of the three coarse and mid code pair to ensure that at least one of these
settings meets the BLE frequency specifications.

While sweeping the fine code is a simple brute force solution, it is not efficient in terms
of both power and time as SCµM transmits multiple packets for each data. In the next two

CHAPTER 4. BLE TX 48

sections, we present two methods for improved frequency compensation over temperature.

4.4 LC Frequency Compensation Using A Temperature
Estimate

In Figure 4.2, we observe that instead of sweeping through all fine codes, we can find a linear
model that determines which fine code to use at a given temperature. We thus only need to
transmit one packet with this frequency setting instead of 32 identical packets over a range of
frequencies, conserving power by a factor of 32. Furthermore, as described previously, since
the phone has some frequency tolerance, as long as the predicted fine code is close enough
to the channel frequency, then the packet will be received.

As described in Chapter 3, we can obtain a fairly accurate temperature estimate on SCµM
by measuring the ratio of the 2MHz and the 32 kHz RC oscillator frequencies. Therefore,
we need to perform two temperature sweeps to allow LC frequency compensation using a
temperature estimate:

1. We perform one temperature sweep in order to find the relationship between the
SCµM’s 2MHz and 32 kHz oscillator frequency ratio and the ambient temperature.
This can be a simple two-point calibration.

2. We perform another temperature sweep in order to determine which fine codes are
received by the phone at various temperatures. Using the mean fine code received at
each temperature, we then perform a least-squares linear regression to find the best
linear model relating the fine code to the measured temperature. After the temperature
sweep, if the antenna load was changed during the sweep, e.g., with the presence of an
SMA cable, the linear model needs to be corrected with a constant bias term.

For the SCµM development board Q4, we found the relationship between the fine code
and the temperature to be:

fine code = 1.2 · temperature− 18.4 (4.1)

We then verified that this linear model is feasible by placing SCµM into the temperature
chamber, sweeping the ambient temperature, and checking that the phone still receives
BLE packets across temperature. The primary disadvantage of this frequency compensation
method is that it requires two temperature sweeps: one to find the linear model for the
temperature estimate and one to find the linear model for the fine code depending on the
temperature.

CHAPTER 4. BLE TX 49

4.5 LC Frequency Compensation By Tracking The
802.15.4 RX Frequency

Since SCµM was designed to operate in 802.15.4 networks with other IoT devices, we can
use the 802.15.4 packets in the environment as a frequency reference for SCµM’s LO fre-
quency, thus enabling real-time frequency compensation. Our setup consisted of an Open-
Mote CC2538 placed about 15 cm away from SCµM that transmitted an 802.15.4 packet
with the same packet contents approximately every 62.5ms on channel 11 (2.405GHz).

SCµM would act as a “translator,” receiving 802.15.4 packets and re-transmitting the
contents of the most recently received 802.15.4 packet as a BLE packet every 400ms. We
kept track of the 802.15.4 RX frequency tuning code, so that we could continue receiving
the 802.15.4 packets from the OpenMote, and the BLE TX frequency tuning code, so that
we could transmit BLE packets on channel 37 (2.402GHz).

Every 800ms, SCµM would adjust its RX and TX tuning codes. Before starting the RX
and TX frequency compensation, we pre-calibrated SCµM, so that we knew the RX and
TX frequency tuning codes at room temperature. For the SCµM board Q4 used in this
experiment, the 802.15.4 RX coarse and mid codes were (23, 11), and the TX coarse and mid
codes were (23, 15). In the future, we can determine the initial RX and TX frequency tuning
codes using the calibration box described in [3], where the authors use many OpenMotes to
find the correct RX and TX tuning codes for each of the sixteen 802.15.4 channels. This can
be augmented to find the BLE TX tuning code.

Due to the non-monotonicity of the LC frequency over the 15-bit frequency tuning code,
as shown in Figure 2.13, we focused on frequency compensation over one coarse and one mid
code to ensure that the frequency is strictly monotonically increasing with the fine codes.
From the aforementioned fine code sweep in Section 4.4, we know that 32 fine codes allow
for BLE operation over a range of around 20 ◦C

In [12], the authors characterized the difference between the RX and TX tuning codes
for 802.15.4 channels at 10 ◦C and 50 ◦C. For 802.15.4 channel 11, the difference was 50
tuning codes at 10 ◦C and 28 tuning codes at 50 ◦C. However, since we focused on frequency
compensation over 20 ◦C and the phone has some frequency tolerance, we assumed that a
change in the RX tuning code corresponded to an equal change in the TX tuning code. This
one-to-one correspondence turned out to be an acceptable approximation as will be shown
in the next two subsections.

Both of these RX feedback methods could be used for online network-based frequency
compensation after an initial calibration. For example, a crystal-free mote operating in a
mesh network with other 802.15.4 devices could first find the initial frequency tuning codes
for 802.15.4 TX and RX using the QuickCal algorithm presented in [3]. Afterwards, during
normal operation, it can use the 802.15.4 packets transmitted by other devices to calibrate
its own 802.15.4 TX and RX tuning codes.

CHAPTER 4. BLE TX 50

RX IF Frequency Compensation

As described in [13, 16], we can perform network compensation by measuring the IF frequency
as SCµM receives 802.15.4 packets. In RX mode, we set the LO frequency to be 2.5MHz
below the target channel frequency, i.e., 2.4025GHz for 802.15.4 channel 11. When we
receive a packet, the received RF signal is down-converted to an intermediate frequency (IF)
of 2.5MHz before demodulation.

We measure the IF frequency by counting the number of zero-crossings within 100µs.
If the LO frequency is correctly tuned, the IF frequency should be 2.5MHz. In a 100µs
interval, we thus expect 500 zero-crossings; otherwise, there is some non-zero IF offset from
the expected value of 500, which indicates that the LO frequency is not tuned to exactly
2.4025GHz. The IF frequency count is performed in hardware and is written to a register,
which we can then read in software8. Additionally, we can read the received signal strength
indicator (RSSI) and the link quality indicator (LQI) error rate generated by the digital
baseband from two hardware registers whenever we receive a packet.

As described in [16], to reduce noise from spuriously received packets, we only use the IF
offsets of packets that have a sufficiently low LQI error rate as packets with a large LQI error
rate likely encountered interference. Furthermore, we convolve the IF offsets of all received
packets with a pre-defined FIR Gaussian filter in the firmware and use the filtered IF offset
to tune the LO. The FIR Gaussian filter9 has 10 taps (length chosen arbitrarily) and was
designed to have a corner frequency of 0.5Hz. For this experiment, we used this filter to
smooth out the IF offsets of the received packets before adjusting the LO frequency, but any
filter that does some averaging on the history of IF offsets would probably work as well.

Every 800ms, we then check if we have received more correct 802.15.4 packets than the
number of taps in the FIR Gaussian filter. If so, we convolve the IF offsets of the most
recently received packets with the FIR Gaussian filter to find the filtered IF offset. Each
fine code corresponds to around 100 kHz for the LO frequency, which then corresponds to
an IF offset of 20, so if the filtered IF offset is greater than ±20, then we know that the RX
and TX tuning codes are tuned incorrectly by at least one fine code. Since the frequency
difference between two successive tuning codes corresponds to an IF offset of 20, we decided
to adjust the LO frequency if the filtered IF offset has an absolute value greater than 12,
which corresponds to a frequency offset of 60 kHz, a little more than halfway to the next
frequency tuning code.

We placed SCµM with an OpenMote CC2538 inside the temperature chamber and in-
creased the chamber temperature from 16 ◦C to 35 ◦C at a rate of 1.5 ◦C/min. To reduce
any temperature lag on SCµM caused by the thermal mass of the development board to
which the SCµM chip was wirebonded, we used a Nubee NUB8500H infrared thermometer

8https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/scm3c_hw_interface.c#L1039

9https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L23

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1039
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/scm3c_hw_interface.c#L1039
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L23
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L23

CHAPTER 4. BLE TX 51

18 20 22 24 26 28 30
Temperature (C)

5

10

15

20

25

30

RX
 fi

ne
 c

od
e

Temperature ramp rate: 1.5 C/min

RX fine code vs. temperature

Figure 4.3: The 802.15.4 RX fine code over temperature after IF compensation as the tem-
perature was increased from 16 ◦C to 35 ◦C at a ramp rate of 1.5 ◦C/min.

to measure the on-board temperature. Using this thermometer, we measured the on-board
temperature whenever the RX fine code was incremented, which is shown in Figure 4.3.

In Figure 4.4, we plot the RX and TX frequency tuning codes over time as the temperature
increases from 16 ◦C to 35 ◦C with the corresponding filtered IF offset. The filtered IF offset is
always within ±20, indicating that the RX frequency is within ±40 ppm of 802.15.4 channel
11. During this entire experiment, we confirmed with a phone that we were receiving BLE
packets from SCµM in the temperature chamber.

We also characterize the effect of the Gaussian FIR filter with which we convolve the
raw IF offsets before adjusting the 802.15.4 RX and BLE TX fine codes. In Figure 4.5, we
plot the raw IF offset of all 802.15.4 packets received during this experiment. Note that
compared to Figure 4.4b, we observe that the unfiltered IF offset of all received packets is
within ±40, around twice the range of the filtered IF offsets. Therefore, the Gaussian FIR
filter is necessary to remove some of the noise present in the digital baseband’s IF estimates.

While frequency compensation using the IF offset allows for near real-time tuning code
updates, we noticed that this method took some time to find the correct tuning codes if
the initial LO frequency was not near the correct value. The cause of this is that we only
use the IF offsets from packets with a low LQI error rate and we need to receive at least
as many error-free packets as taps in the FIR Gaussian filter before updating the tuning
codes. If the RX LO frequency is tuned far from the desired frequency of 2.4025GHz, most
of the received packets have a high LQI error rate, so it takes long to receive enough correct
802.15.4 packets for IF compensation.

CHAPTER 4. BLE TX 52

0 100 200 300 400
Time (s)

5

10

15

20

25

30

Fi
ne

 c
od

e

Temperature sweep from 16 C
 to 35 C at 1.5 C/min

RX and TX fine code vs. time
RX fine code
TX fine code

(a) The 802.15.4 RX and BLE TX fine codes over time after
IF compensation. The TX fine code was adjusted by the same
amount as the RX fine code to keep the filtered IF estimate at
its nominal value of 500, or the filtered IF offset at its nominal
value of 0.

0 100 200 300 400
Time (s)

20

10

0

10

20

IF
 o

ffs
et

Temperature sweep
from 16 C to 35 C at 1.5 C/min

Filtered IF offset vs. time

(b) The corresponding filtered IF offset over time from the nominal
value of 500. An IF offset of 20 corresponds to around 40 ppm of
deviation from the channel frequency.

Figure 4.4: SCµM’s RX and TX fine codes and the corresponding filtered IF offset during
a temperature sweep from 16 ◦C to 35 ◦C at a ramp rate of 1.5 ◦C/min. Both the fine codes
and the filtered IF offset were recorded every 800ms.

CHAPTER 4. BLE TX 53

0 100 200 300 400
Time (s)

40

20

0

20

40

IF
 o

ffs
et

Temperature sweep from 16 C
 to 35 C at 1.5 C/min

Raw IF offset vs. time

Figure 4.5: The raw IF offset of all 802.15.4 packets with a sufficiently low LQI error rate that
were received from the OpenMote. The raw IF offsets were recorded during a temperature
sweep from 16 ◦C to 35 ◦C at a ramp rate of 1.5 ◦C/min with IF compensation based on the
filtered IF offset. The Gaussian FIR filter has 10 taps, so convolving every 10 of the raw IF
offsets gives the filtered IF offset shown in Figure 4.4b.

Averaging Over RX Fine Codes

An alternative to using the IF offset is to simply find the fine code on which SCµM receives the
most 802.15.4 packets. In order to realize this, every few seconds, we would have SCµM stop
its 802.15.4-to-BLE translation task, which involves listening for packets and intermittently
broadcasting BLE packets, and just listen for 802.15.4 packets.

When SCµM listens for 802.15.4 packets, we sweep its RX frequency tuning code within a
range of ±2 fine codes of the current RX tuning code without rolling over. This corresponds
to listening for 802.15.4 packets on five different frequency settings in a range of approxi-
mately 500 kHz. At each of the five fine codes, we listen for incoming 802.15.4 packets for
800ms, recording how many packets are received at each frequency setting. Therefore, we
spend a total of 4 s listening for 802.15.4 packets.

Afterwards, we find the weighted average of the fine codes of all received packets within
the last 4 s, which indicates the best fine code to listen on for incoming 802.15.4 packets. We
then adjust the RX tuning code accordingly and change the TX tuning code by the same
amount.

In a temperature sweep from 16 ◦C to 35 ◦C, we verified that this method also allows us
to compensate for any frequency drift in the LO and that we are continuously receiving BLE
packets during the entirety of the sweep. Although listening for incoming 802.15.4 packets

CHAPTER 4. BLE TX 54

pauses 802.15.4-to-BLE translation for a total of around 4 s, this method does work better
if the initial LO frequency is further off from the correct setting.

One issue that I ran into while running this experiment is that I would randomly not
receive packets even when I expected to receive packets, skewing the weighted average and
causing the LO frequency to be tuned incorrectly. For example, I would receive some 802.15.4
packets on fine code x, but after incrementing the RX frequency tuning code to x+1, I would
not receive any packets at all. However, if I increment the RX frequency tuning code again
to x+ 2, I would receive some 802.15.4 packets again. The next time SCµM sweeps the RX
tuning code again to listen for packets, I would receive 802.15.4 packets on all three frequency
settings. On other occasions, I would not receive any 802.15.4 packets for the entirety of the
4 s even though I would receive some packets during the next round of calibration.

I did not manage to debug the root cause of this radio issue. Instead, a quick fix I
implemented is to threshold the number of packets that need to be received before the RX
fine code is set equal to the weighted average of the received fine codes. I set an arbitrary
threshold of 10, so that I would need to receive at least ten 802.15.4 over the 4 s of listening
before adjusting the RX and TX frequency tuning codes.

4.6 Conclusion
We showed how we could create a Bluetooth Low Energy (BLE) beacon and a 802.15.4-
to-BLE translator using a crystal-free mote with a standards-compatible radio. Without
an external frequency reference, the LO is subject to a temperature coefficient of around
−40 ppm/◦C [9], exceeding the frequency specification in the BLE standards. After tuning
the LC frequency via 100ms SFD interrupts to find the frequency settings closest to the
desired target frequency (2.401 75GHz for BLE channel 37), the naive solution is to sweep
the fine code of the frequency tuning code while transmitting BLE-compliant packets to
compensate for temperature changes.

To be more efficient, we notice that the phone has some frequency tolerance, so we can
use a temperature sweep to find a linear model that determines the fine code to use at each
temperature. Otherwise, we can use network compensation by either measuring the IF offset
of incoming 802.15.4 packets to tune both the 802.15.4 RX and BLE TX tuning codes or
by averaging over the fine codes of incoming 802.15.4 packets to correct any LO frequency
drift. While measuring the IF offset allows for real-time frequency compensation, it performs
worse with a large frequency drift. Future work could involve combining these two network
compensation methods to leverage both of their benefits and create a tiny, temperature-
independent 802.15.4 and BLE-enabled IoT mote without any external frequency reference.

Details on the software for BLE TX as well as on performing the fine code calibration
and using 802.15.4 RX to compensate the BLE TX frequency can be found in Appendix B.

55

Chapter 5

BLE RX

In Chapter 4, we discussed how to transmit BLE packets from SCµM over temperature
variations without an external frequency reference. However, to be a fully fledged BLE-
compatible mote, SCµM would need to receive BLE packets from off-the-shelf devices as
well.

In particular, two-way communication with SCµM over BLE enables many interesting
applications because almost all smartphones support BLE but not 802.15.4. For example,
for microrobotic applications, if SCµM is placed on a robot, we could control it using our
smartphones by sending control signals to it over BLE.

However, since SCµM’s radio was originally designed to support 802.15.4 packets, we
cannot use the RFcontroller’s RX finite state machine to receive BLE packets. Furthermore,
BLE technically requires Gaussian frequency-shift keying (GFSK) as the channel frequencies
are more closely spaced together. However, as shown in Figure 5.1, the packet error rate is
considerably higher for packets using GFSK modulation at the same TX power.

In this chapter, we describe the progress made in receiving BLE packets from other
SCµMs and from off-the-shelf devices. We explain how we can detect a BLE advertising
packet by comparing the 32-bit access address to a 32-bit shift register containing the recov-
ered data. Afterwards, we show that transmitting FSK BLE packets from SCµM to SCµM
works, but SCµM is unable to receive GFSK BLE packets from off-the-shelf BLE devices.

5.1 BLE RX on SCµM
To configure SCµM to receive BLE packets, we use the zero crossing counter, which can be
initialized by calling radio_init_rx_ZCC_BLE1. This function initializes the ZCC module
to recover the clock and data, which will then be used to check whether we have received
a valid BLE advertising packet. For BLE, we want the recovered clock frequency to be
1MHz. If the recovered clock frequency seems to be off by more than 1% of 1MHz, we can

1https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/scm_ble_functions.c#L382

https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/scm_ble_functions.c#L382
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/scm_ble_functions.c#L382

CHAPTER 5. BLE RX 56

Figure 5.1: Packet error rate vs. input power between FSK and GFSK modulation. This
plot was generated by Brad Wheeler.

adjust the IF clock by modifying IF_clk_target2 before optical frequency calibration. To
receive BLE packets, we then first turn on the corresponding LDOs by calling the function
radio_rxEnable and radio_rxNow to reset the digital baseband3.

The recovered data and clock from the ZCC module are available as GPIO outputs4 in
bank 4 as mux_out_M0_data and mux_out_M0_clk. Probing the recovered clock is the easiest
way to verify that the recovered baseband clock frequency for BLE packets is 1MHz. The
recovered data is then fed through a 32-bit shift register clocked by the recovered baseband
clock.

There is another memory-mapped 32-bit register that contains the 32-bit target value
we are searching for within the 32-bit shift register. The 32-bit target value is set through
ANALOG_CFG_REG__1 for the 16 LSBs and ANALOG_CFG_REG__2 for the 16 MSBs5. As de-
scribed in Section 4.1, the PDU of the BLE packet is whitened prior to transmission. There-
fore, we choose the access address of a BLE advertising packet, 0x6B7D9171 in little-endian

2https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/main.c#L78

3https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/main.c#L366

4https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/
edit?usp=sharing

5https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/main.c#L267

https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L78
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L78
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L366
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L366
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L267
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L267

CHAPTER 5. BLE RX 57

format, as the 32-bit target value since this 32-bit sequence will be present in all BLE ad-
vertising packets.

Thus, the 32-bit shift register is continuously updated with the next demodulated bit
once every 1 µs for BLE. When the Hamming distance between the 32-bit shift register and
the 32-bit target value is below some threshold, a RAWCHIPS_STARTVAL interrupt is triggered.
The Hamming distance can be set using the last five bits of ANALOG_CFG_REG__36. In general,
ANALOG_CFG_REG__3[6:0] = {clear_interrupt_startval, clear_interrupt32, threshold[4:0]}.

Once a RAWCHIPS_STARTVAL interrupt7 has been triggered, for every successive 32 bits
that are shifted through the 32-bit shift register, a RAWCHIPS_32 interrupt8 is triggered. This
allows us to theoretically piece together the raw BLE packet bits, where the 32-bit access
address is found in the first RAWCHIPS_STARTVAL interrupt and each successive 32-bit blocks
can be read during the RAWCHIPS_32 interrupts.

To read the data in the shift register, there is a buffer between the 32-bit shift register
and the Cortex M0 microprocessor, such that we can access the buffer using the memory-
mapped registers ANALOG_CFG_REG__17, containing the 16 LSBs, and ANALOG_CFG_REG__18,
containing the 16 LSBs of the buffer. However, there is some error in the hardware when
copying the bits from the 32-bit shift register to the buffer, possibly a hold time violation,
that causes the buffer to contain erroneous bits. In fact, only around the first 20 to 25 bits
of each BLE packet can be recovered perfectly. Therefore, with the SCµM3C boards, we
can unfortunately only verify whether we have received a certain 32-bit sequence instead of
recovering the entire BLE packet.

If we want to test the Hamming distance and the interrupts without the recovered data
and clock signals from the ZCC module, we can set the ASC bits 269 and 270 to be high9,
so that the recovered data and clock signals are taken from the GPIOs. The GPIO inputs
are in bank 2 as DATA_IN and DATA_CLK_IN.

5.2 Results
For the BLE RX experiments, we used SCµM development board QX7 since the GPIO
pins on board Q4 are non-functional. Unfortunately, since QX7 does not have an FTDI
RS232/UART chip, we rely on raising GPIO pins as flags for having received a BLE packet.

Before attempting to receive BLE packets using the ZCC module, we first used an Analog
Discovery 2 to generate a 1MHz baseband clock with the dummy bits of a BLE packet as the
data signal. In RAWCHIPS_STARTVAL_ISR, we would then set a GPIO pin high as a flag that

6https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/main.c#L274

7https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/Int_Handlers.h#L714

8https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/Int_Handlers.h#L645

9https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/scm_ble_functions.c#L441

https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L274
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L274
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L714
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L714
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L645
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L645
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/scm_ble_functions.c#L441
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/scm_ble_functions.c#L441

CHAPTER 5. BLE RX 58

32-bit target value Hexadecimal Binary
Expected 0x6B7D9171 0b01101011011111011001000101110001
Actual 0xD6FB2263 0b11010110111110110010001001100011

Table 5.1: Recovered data vs. the 32-bit target value with a Hamming distance of 0. The
RAWCHIPS_STARTVAL is still being triggered correctly, but there is a bit error when reading
the recovered data from ANALOG_CFG_REG__17 and ANALOG_CFG_REG__18.

the 32-bit access address was found within the generated data signal. We then tested the
Hamming distance by flipping bits within the access address and verifying that the GPIO
pin would no longer be set high if the number of bit flips exceeded the Hamming distance
threshold.

In RAWCHIPS_STARTVAL_ISR, when we printed the contents of ANALOG_CFG_REG__17 and
ANALOG_CFG_REG__18, we noticed that spurious bit errors would occur after around the 20th
bit, as shown in Table 5.1. This means that we would be able to verify whether the 32-bit
target value was found in the recovered data, but we would not be able to recover the entire
packet contents in software.

SCµM to SCµM

Afterwards, we first attempted to receive SCµM’s BLE packets on another SCµM board.
We used SCµM development board QX7 to transmit BLE advertising packets to SCµM
development board Q4. We set the PA current to be at its maximum value on QX7, and we
attached a WiFi antenna to each of the two SCµM development boards. As expected, the
distance at which we could receive the BLE advertising packets varies with the Hamming
distance threshold.

1. Hamming distance = 1: Q4 could pick up BLE packets from within a few millimeters.

2. Hamming distance = 2: Q4 could pick up BLE packets from within a few centimeters.

3. Hamming distance ≥ 3: Q4 starts to pick up erroneous packets due to noise.

Thus, setting the Hamming distance to 2 allows us to receive BLE packets over the longest
distance without picking up too many erroneous packets. To characterize the frequency
tolerance of SCµM, we set the Hamming distance to 2 and placed the antennas of Q4 and
QX7 approximately 2 cm apart. We then swept through all mid and fine codes on Q4 while
keeping the coarse code at 23 and recorded all pairs of mid and fine codes on which we
received a BLE packet from QX7. The results are shown in Figure 5.2.

Finally, to verify that we were indeed receiving the entire BLE packet, we probed the
recovered baseband clock and data signals with a Saleae digital logic analyzer. Using the
baseband clock, we sampled the data signal and recovered the entire BLE packet. In the

CHAPTER 5. BLE RX 59

5 6 7 8 9 10 11
Mid code

0

5

10

15

20

25

30

Fi
ne

 c
od

e

Board Q4 with coarse code=23

Frequency tuning codes to receive BLE packets

Figure 5.2: The LC frequency codes on SCµM development board Q4 on which we could
receive BLE packets from board QX7.

entire 120-bit test BLE packet, the recovered BLE packet exhibited four bit errors, one of
which was in the 32-bit access address. Thus, SCµM-to-SCµM BLE transmission works with
some transmission errors.

Phone to SCµM

However, phone-to-SCµM BLE transmission is much more useful than SCµM-to-SCµM as
802.15.4 communication works between two SCµM boards. We used the nRF Connect for
Mobile app10 on a Google Pixel 2 XL to transmit BLE advertising packets. Using a mixer,
we verified that the 32-bit target value consisting of the BLE advertising address was indeed
present in the packet. We set the LO input of the mixer to a 2.402GHz tone, attached
an antenna to the RX input held next to the phone, and probed the IF output with an
oscilloscope. Indeed, the 32-bit access address, 0x6B7D9171 in little-endian format, is present
in the phone’s BLE advertising packets.

Afterwards, we held the transmitting phone next to the antenna of SCµM, but we did
not receive any BLE packets. We probed the recovered data and clock signals, and when
correlating the sampled data with the 32-bit target value, the minimum number of bit errors
within the 32-bit chunk was 10. When nothing was transmitting next to SCµM, the minimum

10https://web.archive.org/web/20200523001918/https://www.nordicsemi.com/
Software-and-tools/Development-Tools/nRF-Connect-for-mobile. Archived from https:
//www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile on May
22, 2020.

https://web.archive.org/web/20200523001918/https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://web.archive.org/web/20200523001918/https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile

CHAPTER 5. BLE RX 60

number of bit errors within the 32-bit chunk was 8. This implies that the GFSK BLE packets
from the phone look like noise to SCµM’s ZCC module.

One possible explanation for SCµM’s inability to pick up GFSK BLE packets is shown in
Figure 5.1, where the packet error rate for GFSK is much higher than for FSK at similar input
power. Future work will involve using a waveform generator to generate a GFSK-modulated
signal of 0xAAAAAAAA with a bit rate of 1Mbit/s and probe what SCµM’s recovered data
and clock signals look like.

5.3 Conclusion
In this chapter, we described the current progress on receiving BLE packets on SCµM. We
showed how we can demodulate incoming BLE signals by using the ZCC module. The
recovered data is then fed through a 32-bit shift register, where we check the Hamming
distance between a certain 32-bit target value and each 32-bit sequence in the recovered data
bitstream. Since the access address, 0x6B7D9171 in little-endian format, is not whitened in
BLE packets, we set it as the 32-bit target value. SCµM-to-SCµM BLE transmission works,
although at a small range, but phone-to-SCµM transmission does not work. The most likely
root cause is that SCµM’s BLE packets are modulated using FSK while the phone’s BLE
packets are modulated using GFSK.

Details on the software for BLE RX can be found in Appendix C.

61

Chapter 6

Conclusion

In this thesis, we presented some work on the Single Chip Micro Mote (SCµM). We described
how it is programmed using an infrared diode and how the on-chip oscillator frequencies are
calibrated using 100ms optical start frame delimiter (SFD) interrupts. We then discussed
the oscillators on SCµM and characterized their frequency stability. In particular, we showed
that the frequency of the 2.4GHz LC oscillator can be tuned using a 15-bit LC frequency
tuning code, but the LC frequency is not monotonic with respect to this tuning code. Thus,
we presented two approaches at creating an LC monotonic function in order to facilitate
future LC frequency compensation.

Since the LC oscillator has a temperature coefficient of around −40 ppm/◦C [9], we de-
scribed a method to estimate the ambient temperature by finding a linear relationship be-
tween the temperature and the ratio of the 2MHz chipping clock for the chip’s transmitter
and the 32 kHz oscillator. Using a two-point calibration, the coefficients of the linear model
can be easily determined, and after averaging over 5 temperature samples, we showed that
the error of the mote’s measured temperature is less than 2 ◦C between 0 ◦C and 100 ◦C
and less than 1 ◦C between 5 ◦C and 85 ◦C. This allows SCµM to generate fairly accurate
temperature estimates and perform temperature compensation using these estimates, which
eliminates the need for network-based compensation.

Afterwards, we showed how we could create a Bluetooth Low Energy (BLE) beacon
and a 802.15.4-to-BLE translator using SCµM that operates across temperature. After
tuning the LC frequency via a 15-bit frequency tuning code using 100ms SFD interrupts,
the naive solution is to sweep the fine code of the LC frequency tuning code while transmitting
BLE-compliant packets to compensate for temperature changes. To be efficient, though, we
discussed two possible approaches. We can use a temperature sweep to find a linear model
that determines the fine code to use at each temperature. Otherwise, we can use network
compensation by either measuring the intermediate frequency (IF) offset of incoming 802.15.4
packets from an external OpenMote to tune both the 802.15.4 RX and BLE TX tuning codes
or by averaging over the fine codes of incoming 802.15.4 packets to correct any LO frequency
drift. While measuring the IF offset allows for real-time frequency compensation, it performs
worse with a large LO frequency drift. Either of these methods allows for BLE transmission

CHAPTER 6. CONCLUSION 62

within a temperature range of around 20 ◦C without rolling over from the fine code to a mid
code, which causes monotonicity issues.

6.1 Future Work
IF compensation is more robust than using the temperature estimate when adjusting the
LC frequency tuning code. The next step is to have SCµM transmit BLE packets over
a temperature range from 0 ◦C to 100 ◦C using IF compensation. Since 32 fine codes allow
SCµM to operate as an 802.15.4-to-BLE translator over a range of 20 ◦C, one could repeat LC
frequency calibration at intervals of 20 ◦C between 0 ◦C and 100 ◦C. In other words, we would
find the coarse and mid codes for BLE TX and 802.15.4 RX at, for example, 10 ◦C, 30 ◦C,
50 ◦C, 70 ◦C, and 90 ◦C. During normal operation as a 802.15.4-to-BLE translator, SCµM
would then use IF compensation to adjust the BLE TX and 802.15.4 RX frequency tuning
codes within the 32 fine codes. When the fine code rolls over, we would change the coarse
and mid codes to the ones corresponding to the next 20 ◦C interval. In general, though, an
LC monotonic function would eliminate the need for calibration at multiple temperatures.

It is also possible to combine both the IF offset and RX fine code averaging approaches to
perform network compensation for BLE TX. Since RX fine code averaging performs better
with a large LO frequency drift, SCµM could halt 802.15.4-to-BLE translation and sweep
the RX fine code for incoming 802.15.4 packets when it receives fewer 802.15.4 packets than
expected. Otherwise, it will continue using the IF offset approach as this is more suited for
real-time frequency compensation.

Finally, all of the experiments described in this work have the LC divider turned on
as the LC divider is needed to measure and calibrate the LC frequency. However, the LC
divider consumes a third of SCµM’s power, as shown in Figure 5.21 in [9]. Therefore, in
order to reduce power consumption, the next step would be to find a way to calibrate SCµM
to operate over a wide temperature range without the need for the LC divider.

63

Bibliography

[1] D. C. Burnett et al. “CMOS oscillators to satisfy 802.15.4 and Bluetooth LE PHY
specifications without a crystal reference”. In: 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC). Jan. 2019, pp. 0218–0223. doi:
10.1109/CCWC.2019.8666473.

[2] David Burnett. “Crystal-free wireless communication with relaxation oscillators and
its applications”. PhD thesis. EECS Department, University of California, Berkeley,
Apr. 2019. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-
2019-5.html.

[3] T. Chang et al. “QuickCal: Assisted Calibration for Crystal-Free Micro-Motes”. Sub-
mitted to IEEE Internet of Things Journal. 2020.

[4] Tengfei Chang et al. “6TiSCH on SCµM: Running a Synchronized Protocol Stack
without Crystals”. In: Sensors 20.7 (Mar. 2020), p. 1912. issn: 1424-8220. doi: 10.
3390/s20071912.

[5] D.S. Contreras and Kristofer Pister. “A Six-Legged MEMS Silicon Robot Using Mul-
tichip Assembly”. In: May 2018, pp. 54–58. doi: 10.31438/trf.hh2018.15.

[6] D. S. Drew et al. “Toward Controlled Flight of the Ionocraft: A Flying Microrobot
Using Electrohydrodynamic Thrust With Onboard Sensing and No Moving Parts”. In:
IEEE Robotics and Automation Letters 3.4 (2018), pp. 2807–2813.

[7] D. Griffith et al. “A 190nW 33kHz RC oscillator with ±0.21% temperature stability and
4ppm long-term stability”. In: 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). Feb. 2014, pp. 300–301. doi: 10.1109/ISSCC.
2014.6757443.

[8] F. Maksimovic et al. “A Crystal-Free Single-Chip Micro Mote with Integrated 802.15.4
Compatible Transceiver, sub-mW BLE Compatible Beacon Transmitter, and Cortex
M0”. In: 2019 Symposium on VLSI Circuits. June 2019, pp. C88–C89. doi: 10.23919/
VLSIC.2019.8777971.

[9] Filip Maksimovic. “Monolithic Wireless Transceiver Design”. PhD thesis. EECS De-
partment, University of California, Berkeley, May 2020. url: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2020/EECS-2020-33.html.

https://doi.org/10.1109/CCWC.2019.8666473
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-5.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-5.html
https://doi.org/10.3390/s20071912
https://doi.org/10.3390/s20071912
https://doi.org/10.31438/trf.hh2018.15
https://doi.org/10.1109/ISSCC.2014.6757443
https://doi.org/10.1109/ISSCC.2014.6757443
https://doi.org/10.23919/VLSIC.2019.8777971
https://doi.org/10.23919/VLSIC.2019.8777971
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-33.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-33.html

BIBLIOGRAPHY 64

[10] Sahar Mesri. “Design and User Guide for the Single Chip Mote Digital System”. MA
thesis. EECS Department, University of California, Berkeley, May 2016. url: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-71.html.

[11] S. Park, C. Min, and S. Cho. “A 95nW ring oscillator-based temperature sensor for
RFID tags in 0.13µm CMOS”. In: 2009 IEEE International Symposium on Circuits
and Systems. May 2009, pp. 1153–1156. doi: 10.1109/ISCAS.2009.5117965.

[12] I. Suciu et al. “Dynamic Channel Calibration on a Crystal-Free Mote-on-a-Chip”. In:
IEEE Access 7 (2019), pp. 120884–120900. issn: 2169-3536. doi: 10.1109/ACCESS.
2019.2937689.

[13] I. Suciu et al. “Experimental Clock Calibration on a Crystal-Free Mote-on-a-Chip”.
In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS). Apr. 2019, pp. 608–613. doi: 10.1109/INFCOMW.2019.
8845103.

[14] B. Wheeler et al. “A Low-Power Optical Receiver for Contact-free Programming and
3D Localization of Autonomous Microsystems”. In: 2019 IEEE 10th Annual Ubiqui-
tous Computing, Electronics Mobile Communication Conference (UEMCON). 2019,
pp. 0371–0376.

[15] B. Wheeler et al. “Crystal-free Narrow-band Radios for Low-cost IoT”. In: 2017 IEEE
Radio Frequency Integrated Circuits Symposium (RFIC). 2017, pp. 228–231.

[16] Bradley Wheeler. “Low Power, Crystal-Free Design for Monolithic Receivers”. PhD
thesis. EECS Department, University of California, Berkeley, May 2019. url: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-36.html.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-71.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-71.html
https://doi.org/10.1109/ISCAS.2009.5117965
https://doi.org/10.1109/ACCESS.2019.2937689
https://doi.org/10.1109/ACCESS.2019.2937689
https://doi.org/10.1109/INFCOMW.2019.8845103
https://doi.org/10.1109/INFCOMW.2019.8845103
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-36.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-36.html

65

Appendix A

Temperature Estimation

All of the code can be found on the titan/ble_temp_sweep branch of the repository found
here: https://github.com/tryuan99/scum-test-code.

For the temperature estimation, I used a TestEquity Model 107 temperature chamber.
Although the chamber has a temperature controller by itself to enable temperature ramps, it
is not very accurate because the actual temperature in the chamber lags behind the displayed
temperature. Therefore, I used a SparkFun TMP102 digital temperature sensor connected to
a Teensy 3.6 microcontroller as the reference temperature sensor. The .ino file for the Teensy
3.6 microcontroller with the pin connections for the TMP102 breakout board can be found
in scum/temp_sense/temp_sense_v2/temp_sense_v2.ino. To read the measured temper-
ature on a computer, run the Python script found in scum/counter_temp/read_temp.py
with python read_temp.py to measure the temperature once every second.

All of the code for SCµM can be found in scm_v3c_BLE. To enable temperature calibra-
tion, set the flag sweeping_2M_32k_counters = true in main.c. If this flag is true, SCµM
will continuously measure the 2MHz and the 32 kHz oscillator frequency counts over an in-
terval of 50,000 cycles of RFTimer, which corresponds to approximately 100ms, and print
the frequency counts over UART.

After programming SCµM, the UART output from SCµM should look like the following:

1 count_32k: 3213, count_2M: 200014
2 count_32k: 3212, count_2M: 200003
3 count_32k: 3212, count_2M: 200031
4 count_32k: 3213, count_2M: 200022
5 count_32k: 3211, count_2M: 199953
6 count_32k: 3214, count_2M: 200065
7 count_32k: 3212, count_2M: 200010

Place SCµM into the temperature chamber with the TMP102 digital temperature sen-
sor. Run the Python script found in scum/counter_temp/2M_32k_counter_temp.py with

https://github.com/tryuan99/scum-test-code/tree/titan/ble_temp_sweep
https://github.com/tryuan99/scum-test-code
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scum/temp_sense/temp_sense_v2/temp_sense_v2.ino
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scum/counter_temp/read_temp.py
https://github.com/tryuan99/scum-test-code/tree/cf82f44c9b990296e95a0af586c22b51c2e766da/scm_v3c_BLE
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scum/counter_temp/2M_32k_counter_temp.py

APPENDIX A. TEMPERATURE ESTIMATION 66

python 2M_32k_counter_temp.py to read the 2MHz and 32 kHz frequency counts and the
reference temperature together. The rate at which these three values are read is limited by
the period between the frequency count measurements on SCµM, nominally around 100ms.

We can now perform a temperature sweep by adjusting the chamber temperature, dur-
ing which the frequency counts and the chamber temperature will be recorded. Since the
development PCB for SCµM has a large thermal mass, I limited the temperature ramp rate
to 1.5 ◦C/min or less to minimize hysteresis. If a two-point calibration is preferred, wait for
a few minutes until the measured reference temperature has stabilized. When quitting the
Python script, all of the data will be written to a NumPy .npz file.

To find the linear model, I used a linear regression. In Python, I opened the .npz file,
loaded the 2MHz and 32 kHz frequency counts, and calculated their ratios. I then used
SciPy to find the linear regression that relates the reference temperature to the frequency
ratio as shown in scum/counter_temp/2M_32k_counter_temp.ipynb.

The coefficients for the linear model can now be set in SCµM’s firmware1 to estimate
the temperature. The firmware already implements averaging over five ratio measurements
before updating the temperature to increase the precision of the temperature estimate. Fi-
nally, the temperature estimate can be used to tune the fine code of the local oscillator and
is also included in the BLE packet.

1https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/
scm_v3c_BLE/Int_Handlers.h#L663

https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scum/counter_temp/2M_32k_counter_temp.ipynb
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scm_v3c_BLE/Int_Handlers.h#L663
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scm_v3c_BLE/Int_Handlers.h#L663

67

Appendix B

BLE TX

All of the code can be found on the titan/SW-23 branch in the scm_v3c directory of the
repository found here: https://github.com/tryuan99/scum-test-code. An older version
of the code before refactoring can be found on the titan/ble_temp_sweep branch of the
same repository.

A sample application to transmit BLE packets is the applications/ble_tx project. All
BLE-related functions can be found in ble.c and the corresponding header file ble.h. In
particular, ble_init_tx() should be called after calling initialize_mote() in the appli-
cation file. ble_init_tx sets the corresponding analog scan chain bits to configure the radio
to enable BLE modulation and initialize the FIFO for BLE transmission.

To generate a BLE packet, we can use ble_gen_test_packet to generate a dummy
BLE test packet that simply has SCUM3 as the short name. Otherwise, to customize the
contents of SCµM’s BLE packet, call ble_set_[data]([value]) to change the data values
and ble_set_[data]_tx_en(true) to include this data in the BLE packet, where [data]
represents one of the following BLE packet content types:

1. name for the short name

2. lc_freq_codes for the LC frequency tuning codes

3. counters for the 2MHz and 32 kHz frequency counts

4. temp for the temperature

5. data for four bytes of custom data

Afterwards, call ble_gen_packet() to generate the BLE packet.
For example, to generate a BLE packet with the short name HELLO and the temperature

20 ◦C, run the following:

1 char name[5] = {'H', 'E', 'L', 'L', 'O'};
2 ble_set_name(name);

https://github.com/tryuan99/scum-test-code/tree/titan/SW-23
https://github.com/tryuan99/scum-test-code
https://github.com/tryuan99/scum-test-code/tree/titan/ble_temp_sweep
https://github.com/tryuan99/scum-test-code/tree/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.c
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/ble.h

APPENDIX B. BLE TX 68

3 ble_set_name_tx_en(true);
4 ble_set_temp(20.00);
5 ble_set_temp_tx_en(true);
6 ble_gen_packet();

Before generating the BLE packet, we can also modify the channel on which to transmit
the BLE packet using the function ble_set_channel, and we can modify the advertiser
address with the function ble_set_AdvA.

By default, the short name SCUM3 is always included in the BLE packet, and the packet
is transmitted on channel 37 (2.402GHz) with the advertiser address 0x0002723280C6.

To transmit a BLE packet, first find the appropriate LC frequency tuning codes for the
SCµM board through LC frequency calibration, as described below, or with a spectrum
analyzer. Replace the corresponding LC frequency codes in ble_tx.c1. Transmitting the
BLE packet involves just calling ble_transmit_packet() after the BLE packet has been
generated.

If you would like to sweep the fine code and transmit one BLE packet for each of the 32
fine codes, set #define BLE_SWEEP_FINE true at the top of ble_tx.c. This is helpful if
SCµM’s BLE packets are not being received and you suspect that its LC frequency codes
might not be tuned correctly.

B.1 LC Frequency Calibration
To enable LC frequency calibration with the 100ms optical start frame delimiter (SFD)
interrupts immediately after programming, set #define BLE_CALIBRATE_LC true at the
top of ble_tx.c. Before enabling optical calibration, call optical_setLCTarget(250182)2

to set the target LC frequency count, which is divided by 960, within 100ms to 250182,
which corresponds to a frequency of 2.401 75GHz. This value may need to be adjusted for
different SCµM chips. For example, for SCµM development board Q4, I set the target LC
frequency count to 250020 in order for LC frequency calibration to find the correct frequency
codes for BLE transmission.

After programming, SCµM will then find the best coarse and mid LC frequency codes
with a fine code of 15, such that the LC frequency count within 100ms is closest to the
target LC frequency count3. In order to retrieve the found coarse, mid, and fine codes, we

1https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx/ble_tx.c#L116

2https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx/ble_tx.c#L96

3https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/optical.c#L199

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L116
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L116
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L96
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L96
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L199
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/optical.c#L199

APPENDIX B. BLE TX 69

call optical_getLCCoarse(), optical_getLCMid(), and optical_getLCFine()4.
The coarse, mid, and fine codes found with optical LC frequency calibration are printed

to UART as well. I have found that LC frequency calibration usually produces the same
result after each calibration run, so it is sufficient to simply run LC frequency calibration
once and use the calibrated frequency codes for subsequent programmings. Replace the
corresponding hard-coded LC frequency codes in ble_tx.c5 and turn off LC calibration for
future programmings.

B.2 Fine Code Calibration
Fine code calibration was only performed using the older version of the code, which can be
found on the titan/ble_temp_sweep branch.

We first confirmed that we could receive BLE packets at room temperature on a smart-
phone and then re-programmed SCµM to sweep through all fine codes, transmitting one
BLE packet for each code, i.e., by setting sweep_fine_codes = true in main.c. We also
set the last byte of the advertiser address to be equal to the fine code. This way, when the
smartphone receives multiple BLE packets from SCµM at different fine codes, we can easily
determine on which fine codes we could receive a packet.

To find the linear model that dictates which fine code at each temperature, we placed
SCµM into a temperature chamber. We slowly decreased the chamber temperature and
verified that we were still receiving some BLE packets from SCµM. For example, on SCµM
development board Q4, at 20 ◦C, we received packets with fine codes 12 through 20, but at
9 ◦C, we only received BLE packets with fine codes between 0 and 4. Similarly, at the other
end of the temperature range, we received BLE packets with fine codes between 28 and 30
at 31 ◦C.

To find the linear model, we declined to use a linear regression on all of the data points
since a linear regression will be biased toward temperatures at which we could receive BLE
packets over a wide range of fine codes. Instead, we applied linear regression on the means
of the fine codes at each temperature.

We then turned off fine code sweeping and re-programmed SCµM with the coefficients
we found6.

4https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx/ble_tx.c#L112

5https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx/ble_tx.c#L116

6https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/
scm_v3c_BLE/main.c#L368

https://github.com/tryuan99/scum-test-code/tree/titan/ble_temp_sweep
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L112
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L112
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L116
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx/ble_tx.c#L116
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scm_v3c_BLE/main.c#L368
https://github.com/tryuan99/scum-test-code/blob/cf82f44c9b990296e95a0af586c22b51c2e766da/scm_v3c_BLE/main.c#L368

APPENDIX B. BLE TX 70

B.3 RX Tracking
The applications/ble_tx_154_rx project lets SCµM operate as a 802.15.4-to-BLE trans-
lator. SCµM will keep listening for 802.15.4 packets from OpenMote and record the first four
bytes of each received 802.15.4 packet. Every TIMER_PERIOD cycles of the RFTimer clock,
SCµM will then transmit a BLE packet with the four bytes of the most recently received
802.15.4 packet as the custom data within the packet. Nominally, we set TIMER_PERIOD to
200000, so SCµM sends one BLE packet around every 400ms.

Note that for this translator application, we keep track of two LC frequency settings,
one for receiving the 802.15.4 packets, called rx_coarse, rx_mid, and rx_fine, and one for
transmitting BLE packets, called tx_coarse, tx_mid, and tx_fine. Additionally, note that
when we receive a 802.15.4 packet, we can read the IF estimate of the packet and the LQI
error rate by calling radio_getIFestimate() and radio_getLQIchipErrors()7.

In order to use the received 802.15.4 packets to adjust the LC frequency code of BLE
TX, there are two additional projects.

The applications/ble_tx_154_rx_track_if project uses the IF estimates of all re-
ceived 802.15.4 packets and stores them in the array IF_estimate_history8 by calling
the function radio_update_IF_estimate(IF_estimate, LQI_chip_errors). It then con-
volves all of the IF estimates with the Gaussian FIR filter. In ble_tx_154_rx_track_if.c,
every CALIBRATE_PERIOD * TIMER_PERIOD cycles of the RFTimer clock, we call the func-
tion calibrate_fine_code(). Nominally, we set CALIBRATE_PERIOD to 2. In this func-
tion, we check whether SCµM has received enough 802.15.4 packets with a sufficiently
low LQI error rate by calling radio_get_IF_estimate_ready(). If this is the case, then
radio_get_IF_estimate() returns the IF offset, with which we can adjust the 802.15.4 RX
and the BLE TX frequency codes9. Note that we adjust the frequency codes by one fine code
for every IF offset of 1210. An IF offset of 20 corresponds to a frequency offset of 100 kHz,
approximately the frequency difference between two successive fine codes, so 12 is a little
more than halfway to the next fine code.

The other project, applications/ble_tx_154_rx_track_mean, adjusts the 802.15.4 RX
and BLE TX frequency codes by listening for 802.15.4 packets every CALIBRATE_PERIOD *
TIMER_PERIOD cycles of the RFTimer clock on all fine codes within CALIBRATE_RX_DIFF of
the current fine code. For example, nominally, CALIBRATE_RX_DIFF is set to 2, so we listen
on five fine codes for 802.15.4 packets. On each fine code, we spend 2 * TIMER_PERIOD
cycles of RFTimer listening for packets, which corresponds to around 400ms on each fine
code nominally. We record the number of 802.15.4 packets we receive on every fine code, and

7https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx_154_rx/ble_tx_154_rx.c#L151

8https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/radio.c#L24

9https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx_154_rx_track_if/ble_tx_154_rx_track_if.c#L286

10https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx_154_rx_track_if/ble_tx_154_rx_track_if.c#L293

https://github.com/tryuan99/scum-test-code/tree/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx
https://github.com/tryuan99/scum-test-code/tree/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_if
https://github.com/tryuan99/scum-test-code/tree/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_mean
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx/ble_tx_154_rx.c#L151
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx/ble_tx_154_rx.c#L151
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L24
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/radio.c#L24
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_if/ble_tx_154_rx_track_if.c#L286
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_if/ble_tx_154_rx_track_if.c#L286
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_if/ble_tx_154_rx_track_if.c#L293
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_if/ble_tx_154_rx_track_if.c#L293

APPENDIX B. BLE TX 71

at the end of this procedure, if we have received at least CALIBRATE_MIN_SUCCESS packets,
nominally set to 10, we find the weighted average of the fine codes of all received 802.15.4
packets. We set the new 802.15.4 RX fine code to be equal to this weighted average, and we
adjust the BLE TX fine code by the same difference11.

11https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/
scm_v3c/applications/ble_tx_154_rx_track_mean/ble_tx_154_rx_track_mean.c#L316

https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_mean/ble_tx_154_rx_track_mean.c#L316
https://github.com/tryuan99/scum-test-code/blob/483cea44ce66808409eeed8b5d9f2ab0ec53ae10/scm_v3c/applications/ble_tx_154_rx_track_mean/ble_tx_154_rx_track_mean.c#L316

72

Appendix C

BLE RX

All of the code can be found on the titan/ble_rx branch of the repository found here:
https://github.com/tryuan99/scum-test-code.

The code for SCµM can be found in scm_v3c_BLE. BLE RX from commercial off-the-
shelf BLE devices does not work on SCµM, but SCµM-to-SCµM BLE transmission works. To
listen for the incoming BLE packets, we configure SCµM to sweep through some LC frequency
codes to find a frequency setting on which it can receive BLE packets. The 32-bit target
value is set to the access address of BLE advertising packets by setting ANALOG_CFG_REG__1
= 0x9171; ANALOG_CFG_REG__2 = 0x6B7D;1, and the Hamming distance is nominally set
to 2 with uint8_t hamming_distance = 2U.

The RAWCHIPS_STARTVAL_ISR interrupt routine2 is then executed when the 32-bit shift
register has a Hamming distance equal to or less than hamming_distance from the 32-
bit target value. For every subsequent 32-bit value that is shifted into the register, the
RAWCHIPS_32_ISR interrupt routine3 is executed.

If no BLE packets are being received, check that the recovered digital baseband clock
frequency is within 1% of 1MHz. The recovered clock is available as the GPIO output
mux_out_M0_clk on pin 1 of bank 44. Adjust the IF_clk_target5 until the recovered clock
frequency is within 1% of 1MHz.

If you would like to bypass the ZCC module and input the recovered data and clock signals
via the GPIO pins, in the function radio_init_rx_ZCC_BLE, replace clear_asc_bit(269);

1https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/main.c#L267

2https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/Int_Handlers.h#L714

3https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/Int_Handlers.h#L645

4https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/
edit?usp=sharing

5https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/main.c#L78

https://github.com/tryuan99/scum-test-code/tree/titan/ble_rx
https://github.com/tryuan99/scum-test-code
https://github.com/tryuan99/scum-test-code/tree/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L267
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L267
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L714
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L714
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L645
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/Int_Handlers.h#L645
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1aphqlyBsOSbV8ofCgYJlZNo2-GQ3CV6BmYxwak9xiTg/edit?usp=sharing
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L78
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/main.c#L78

APPENDIX C. BLE RX 73

clear_asc_bit(270); with set_asc_bit(269); set_asc_bit(270);6. Furthermore, in
the initialize_mote_ble function, we need to configure the GPIO pins corresponding to
DATA_IN and DATA_CLK_IN, pins 1 and 2 of bank 2, as inputs. Thus, replace GPI_enables(0x0000);
GPO_enables(0xFFFF); with GPI_enables(0x000E); GPO_enables(0xFFF1);. After pro-
gramming SCµM, if the 32-bit target value is in the inputted data signal, the RAWCHIPS_STARTVAL_ISR
interrupt routine should be executed.

6https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/
scm_v3c_BLE/scm_ble_functions.c#L441

https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/scm_ble_functions.c#L441
https://github.com/tryuan99/scum-test-code/blob/7c208655add9f637837ec6e4b91dd4309c911fe1/scm_v3c_BLE/scm_ble_functions.c#L441

	Contents
	List of Figures
	List of Tables
	Introduction
	Single-Chip Micro Mote (SCµM)
	Overview
	Programming
	Bootloading
	Optical Frequency Calibration

	Oscillators
	Frequency Stability

	2.4 GHz LC Oscillator
	LC Monotonic Function
	LC Frequency Over Temperature

	Radio
	LDOs
	Radiation Characterization

	Temperature Estimation
	2 MHz / 32 kHz Frequencies Over Temperature
	Temperature Averaging
	Two-Point Calibration
	Conclusion

	BLE TX
	BLE Overview
	BLE Advertising Packet Structure
	BLE Sniffer App

	BLE TX On SCµM
	Optical LC Frequency Calibration
	LC Frequency Compensation Using A Temperature Estimate
	LC Frequency Compensation By Tracking The 802.15.4 RX Frequency
	RX IF Frequency Compensation
	Averaging Over RX Fine Codes

	Conclusion

	BLE RX
	BLE RX on SCµM
	Results
	SCµM to SCµM
	Phone to SCµM

	Conclusion

	Conclusion
	Future Work

	Bibliography
	Temperature Estimation
	BLE TX
	LC Frequency Calibration
	Fine Code Calibration
	RX Tracking

	BLE RX

