
Protocol-Independent Compression for

Resource-Constrained Wireless Networks

by Travis L. Massey

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cal-

ifornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,

Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Kristofer S.J. Pister

Research Advisor

Date

* * * * * *

Michel M. Maharbiz

Second Reader

Date



Abstract

In wireless devices, reducing the time the radio is on results in lower power consump-

tion. In resource-constrained wireless networks, then, sending the same data in fewer bytes

can greatly extend the lifetime of the network. In this paper, we explore the use of protocol-

independent packet compression, a technique orthogonal to current explicit compaction tech-

niques. Such a compression algorithm functions as a transparent layer inside a communication

stack. Because it makes no assumption on the specific protocols used, it is generic enough to

be used on multiple technologies.

Compression is performed by identifying patterns in recently sent packets and replacing

those patterns with bit flags, effectively reducing the size of the packet to be sent. We discuss

the trade-offs between computation, memory costs and power savings in such an algorithm.

We then present the results of compressing actual packet traces collected from several com-

mercial networks using this algorithm. Results indicate compression ratios between 40% and

80%, which yield savings of 30-70% in the average power consumption of a typical time-

synchronized network.
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1 Introduction

The application space for resource constrained wireless networks covers fields as diverse as build-

ing automation, industrial monitoring, body sensor networks, home electronics, computer inter-

facing, and energy applications. Because of the unprecedented conditions under which they can

operate, these networks have received significant attention in the last decade. Standardization bod-

ies such as the IETF and the IEEE are continually developing and standardizing new protocol

stacks to address these diverse wireless sensor network application requirements.

Removing the need for wires to network smart objects also means that most of these devices

become battery powered, which has led to standards such as IEEE802.15.4 [1] having been devel-

oped for low-power radios. Compliant radios, such as the ubiquitous CC2420 [2], consume about

65mW when on. If left on all the time, a wireless device equipped with such a radio would have

a lifetime of only 5 days on a set of two AA batteries (typically containing around 2000mAh). To

further improve lifetime, smart medium access control (MAC) protocols can tune the duty cycle of

the radio to below 1%, yielding lifetimes of multiple years.

IEEE802.15.4 is the de-facto standard for low-power radios, with compliant radios currently

equipping nearly all resource-constrained wireless networks. This standard defines packets up to

a maximum of 128 bytes in length. Fig. 1 shows the energy consumed over time when a packet is

sent (collected from an eZ430-RF2500 wireless sensor node), assuming the node’s radio is initially

off. At time t = 0, the radio turns on its voltage regulator, waits for its crystal oscillator to stabilize,

and for the radio oscillator to settle (tune) to the proper frequency. This initial startup process lasts

for about 800µs, a phase during which the radio consumes 5.2µC. After this, transmission can

start. Fig. 1 was measured when the radio transmitted a full 128-byte-long packet. To transmit a

full packet, the radio consumes 5.2µC + 27.0µC + 63.2µC = 95.4µC. If a node were able to

compress 70% of the data it has to transmit (the white portion in Fig. 1), it would only consume

5.2µC + 27.0µC = 32.2µC, a 66% decrease in the energy consumed (which can translate into

longer lifetime, or smaller batteries). This is the idea behind packet compression.

We call the compression ratio the fraction of bytes that has been compressed out. This is

formalized in (1), where L represents the length, in bytes, of a packet. Note that C < 1. C = 0
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Figure 1: A 70% compression ratio translates into 66% less energy consumed.

means that no compression was possible; C → 1 approaches the case where all bytes have been

compressed out.

C = Loriginal − Lcompressed

Loriginal

(1)

This paper explores protocol-independent packet compression, which relies on two principles:

• the technique used is unaware and independent of the structure of the packet being com-

pressed. Specifically, it does not make any assumption on the contents of the headers. This

is a key difference from, for example, 6LoWPAN header compaction, which is described in

Section 2.2;

• while two nodes need to share some state to be able to compress/decompress, there is never

any explicit state exchange. Instead, each node builds an identical state locally. No explicit

signaling traffic is needed, further reducing the energy expenditure.

The technique presented in this paper is founded upon pattern recognition, in which multiple-

byte patterns are replaced by single-bit flags. All nodes, based on the buffer of previously transmit-

ted/received packets, use a simple algorithm to identify sequences of consecutive bytes recurring



in the packets, which are called patterns. Patterns are stored in a pattern list. A transmitting node,

when asked to transmit a packet, removes the previously identified patterns from that packet, and

replaces them with a set of one-bit flags indicating which patterns were removed. This set of flags,

call the tag, is transmitted at the beginning of the packet. A receiving node decompresses the

packet by inserting the patterns indicated in the tag.

The severe resource constraints of wireless sensor nodes present significant challenges in the

implementation of a pattern-based compression algorithm. Typical wireless sensor nodes have very

little memory. The ubiquitous TelosB mote, for example, features only 10kB of RAM and 48kB

of ROM – very little space for the state maintained the algorithm. Moreover, because we do not

want to explicitly transmit the shared state (i.e. the pattern list), this list has to be built identically

on both ends of a wireless link. This differs from the standard approach used in dictionary-based

algorithms used in desktop file compression tools. Finally, depending on the type of traffic on the

network, tuning the parameters differently may result in widely different performance.

The techniques to overcome these challenges are described in Section 3, which also presents

a practical and simple protocol-independent packet compression method. Prior to that, Section 2

details related work in the field, with a particular focus on IETF 6LoWPAN header compaction.

Section 4 presents our implementation of the compression scheme, as well as experimental results

on two different packet traces collected from commercial wireless sensor networks. Section 5 dis-

cusses the applicability of protocol-independent compression techniques to real-world networks.

Section 6 concludes this paper.

2 Existing Compression Techniques

2.1 Protocol-Independent Compression Techniques

Compression techniques which are unaware of the content of the data typically use dictionaries.

When processing a stream of bytes, the compression algorithm recognizes often-repeated patterns,

stores those patterns into a dictionary, and indicates in the stream of data where those patterns are.

Patterns are typically identified by their key, i.e. the rank of the pattern in the dictionary. The idea



is that the actual pattern is only written once in the dictionary, and replaced multiple times by small

keys. This idea is used in popular desktop file compression tools such as zip, gzip and winzip. The

output file of these algorithms is made up of two parts: the dictionary (typically written at the

beginning of the file) and the compressed data.

In this work, because an individual packet is so small, it makes little sense to prepend the packet

with its dictionary. Instead, for each link, each node has a local copy of the dictionary (which we

call pattern list), and only the compressed data is sent over the air. Moreover, instead of indicating

the keys of the patterns inline with the data, a tag consisting of a set of binary flags indicating

whether or not the corresponding pattern has been compressed out of the packet is prepended to

the data.

2.2 Explicit Compaction Techniques

We differentiate protocol-independent compression from explicit compaction. In the former, a

stream of bytes is compressed by replacing patterns by keys. In the latter, the format of the data

is known a priori, and redundant data is compacted out by analyzing the semantics of the data.

This technique is particularly applicable for communication protocols, as these comply with a

well-defined structure.

Explicit data compaction on constrained links is not a new idea. An early proposal aimed at

increasing the useful throughput on low data rate serial modem connections [3]. Van Jacobson

(VJ) header compaction removes the information that remains constant over the duration of the

connection, including addresses, ports, and offsets from TCP/IPv4 headers. The header is further

pared down as information that can be determined from other fields or other layers is removed;

moreover, the checksum is no longer necessary as the remainder of the TCP header has been

compressed out. For the fields that remain, only the difference between two successive headers is

sent. If the degree of change is restricted to fewer bytes than a complete field, then the bytes that

remain unchanged (or change by one) can be compressed out. As a result, the 40-byte TCP/IPv4

header is compacted to five bytes.

Robust Header Compression (ROHC) [4] demonstrates improved robustness over links with



high error rates, specifically those in wireless networks, and generalizes the compaction algorithm

to several common protocols. ROHC is more dynamic than VJ header compression in that it

gradually progresses the state of the compactor based upon its ”confidence” that it can predict

each successive header. It compacts each field independently of the others using LSB encoding,

transmitting the k least significant bits and calculating the expanded value as a function of k and an

offset vref . Errors that occur during transmission are caught by the CRC or MIC at the MAC layer.

A major limitation of ROHC is the quantity of memory required to support many simultaneous

contexts, and the memory bandwidth required to read and write this information. In the worst

case, the memory bandwidth required can be close to nine times the link rate.

[5] focuses explicitly on wireless networks in which parallel paths exist, designing the com-

paction scheme to exploit the multiple channels. The fundamental compaction mechanism is delta

coding (as in VJ header compaction), but the header of the packet in each channel also contains

information for the bases of the neighboring channels in additional information containers (AICs).

If a neighboring channel loses a packet and the compaction and de-compaction engines lose their

synchronization, they can recover by requesting base information from a neighboring channel.

While three AICs per channel are expected to improve reliability significantly, this is ultimately

a failure as a header compaction scheme because it appends unnecessary bytes to the packet. If

the base information required is substantial, then the size of the AIC quickly becomes significant,

which degrades the efficiency of this approach as a compaction scheme. Advantages of this ap-

proach are high bandwidth efficiency, low memory consumption, low complexity, and robustness.

The Internet Engineering Task Force (IETF), through its working group IPv6 over Low power

Wireless Personal Area Networks (6LoWPAN) has proposed a header compaction scheme for

transmitting IPv6 packets in IEEE802.15.4 networks. While early versions of the technique are

referenced in [6], it has been turned into an IETF standard [7]1. Through deep understanding of

the interaction between IEEE802.15.4, IPv6 and UDP, 6LoWPAN is able to remove fields which

are redundant among those headers, thereby reducing the size of the packets being transmitted over

the air.

To evaluate the performance of 6LoWPAN, let’s assume the simplest case of a point-to-point

1Note that RFC4944 [7] will probably be made obsolete by [8], a work-in-progress at the IETF.



link in a wireless multi-hop network network (the best case for 6LoWPAN). Fig. 2 depicts the

IEEE802.15.4, IPv6 and UDP headers commonly found in a packet. Alliances such as IP for

Smart Objects 2 provide a clear indication that this type of standard packet structure will become

ubiquitous in future networks of resource-constrained wireless devices. Fig. 3 shows the same

packet, compressed using 6LoWPAN.

6LoWPAN removes a number of fields in the IPv6 and UDP headers because they take well-

known values, or because they can be inferred from fields in the IEEE802.15.4 header. In the IPv6

header, the version field is always 6 for IPv6, the traffic class and flow label are

never used3, and the length field is always equal to the length field of IEEE802.15.4 minus the

length of the IPv6 header. All these fields can hence be removed. Because Next Header typi-

cally point to either UDP or TCP, this 8-bit field can be replace by a 2-bit field as part of the the HC1

field of the 6LoWPAN header. Finally, RFC2464 [9] defines how 128-bit IPv6 addresses can be

recovered from 64-bit MAC addresses, such as the IEEE802.15.4’s Source and Destination

fields. This removes the IPv6 Source Address and Destination Address fields. In the

end, only the Hop Limit field needs to be present in the 6LoWPAN header. Similarly for UDP,

the Length can be calculated from the IEEE802.1.54’s Length field; in the most common case,

only a limited number of ports with be used, so 4-bits can be used to describe them, rather than the

original 8 bits.

The drawback of a technique such as 6LoWPAN is that it relies entirely on a deep understand-

ing of the protocol stack, in this case UDP over IPv6 over IEEE802.15.4. Explicit compaction can

hence not act as a transparent layer inside a protocol stack. Moreover, the compaction only applies

to headers and not to the application payload. We will see in Section 5 that explicit compaction and

protocol-independent compression are not mutually exclusive and that they can, in fact, be used

simultaneously on the same packet.

2http://www.ipso-alliance.org
3Note that this assumption is changed in [8].
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3 Protocol-Independent Compression for Wireless Networks

3.1 Overview

Upon receiving a packet from the upper layer, the compression algorithm matches that packet

against the pattern list and identifies which patterns are present in the packet. It then transmits a

shorter version of the packet, where patterns have been replaced by flags in a tag attached at the

beginning of the packet. Upon reception, the receiving node performs the inverse operation.

In order for this technique to function, a node needs to maintain the following state for each of

its neighbors, in each of both directions:

• a pattern list. This contains the patterns that have been learned by the pattern discovery

engine (detailed in Section 3.3) used to compress a packet. The pattern list is empty when a

node is first switched on.

• a recent packet buffer. For the receiving node, this contains the most recent packets that have

been received; for the transmitting node, this contains the latest packets that have been sent.

This buffer is used to generate the pattern list. This buffer is also initially empty.

This requires 3 parameters to define the algorithm:

• B, the size of the packet buffer, in entries.

• P , the size of the pattern list, in entries.

• S, the minimum size of a pattern, in bytes.

Note that B, P , and S are common for all the nodes in the network and do not change with

time. For easier reference, their meaning is recapitulated in Table 1. While this section describes

the algorithm, Section 4 discusses how to set those parameters based upon experimental results on

real-world traces.



C compression ratio (0 ≤ C ≤ 1) output

B recent packet buffer size input

P pattern list size input

S minimum pattern size input

Table 1: Parameters of the proposed compression scheme.

A pattern is defined as a contiguous sequence of constant bytes at a specific location inside the

packet. Because patterns are identified only based upon recurring byte sequences, this technique

requires no knowledge of the type of headers and can be extended to technologies other than

IEEE802.15.4.

The transmitter and receiver must independently maintain the same patterns in their pattern

list, without explicitly transmitting state information over the air. The algorithm for building the

pattern list is described in Section 3.3.

A packet to be transmitted is sent down from the upper layer and compressed transparently be-

fore being passed to the lower layer (see Fig. 4). Compression proceeds according to the following

4 steps:

1. Before the packet is compressed, a cyclic redundancy check (CRC) is computed on its un-

compressed form. This will be appended to the compressed packet and used to verify correct

decompression.

2. The packet is compared against the patterns that in the pattern list; previously identified

patterns found in the packet are removed from the packet, and the corresponding flag in the

tag is raised. The tag is composed of P bits (typically 8, 16 or 24).

3. The tag is prefixed to the compressed packet, and the CRC is appended; the resulting data is

sent to the lower layer.

4. The state is updated with the uncompressed packet.

Decompression proceeds according to the following 4 steps:
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Figure 4: Compression and decompression flow for protocol-independent packet compression.



1. The receiving node reads the tag and inserts the indicated patterns into the compressed packet

to form the candidate decompressed packet.

2. The receiver recomputes the CRC on the candidate packet. If this packet passes the check,

it is used as the decompressed packet. If CRC fails, this means that the packet was not

compressed in the first place4. and the initially received packet is used as the decompressed

packet.

3. The decompressed packet is passed on to the upper layer.

4. The state is updated with the decompressed packet.

The state update (step 4) is identical for both the transmitter and receiver and is performed

using the same uncompressed packet. Given identical a priori states, the following 2 steps will

yield the same a posteriori states:

1. The uncompressed packet is analyzed by the pattern discovery engine. Possible new patterns

are discovered by comparing the current packet with the packets in the recent packet buffer

(details in Section 3.3). If a new pattern is found, it will be added to the pattern list.

2. The uncompressed packet is inserted into the recent packet buffer, replacing the oldest

packet.

3.2 Data Representation

This section describes how the recent packet buffer and pattern list are represented. The packet

buffer is composed of B arrays of bytes, each as long as the maximum packet length (128 bytes in

the case of 802.15.4). The most recently seen packets are stored in this buffer, which stores and

replaces incoming or outgoing packets according to a first in, first out (FIFO) policy. The packets

stored in this recent packet buffer are compared against the current incoming or outgoing packet by

4Note that this CRC field is used solely to detect successful decompression; lower layers typically use their own

CRC to detect transmission errors



the pattern discovery engine (Section 3.3). While this buffer consumes the most memory, Section 4

shows that B = 2 is sufficient to achieve good performance.

A pattern is a contiguous sequence of bytes, at a given position in a packet. A pattern is hence

represented by its starting position, its length, and its contents. Patterns stored in the pattern list

follow a least recently used (LRU) replacement policy.

B, P and S are tuning knobs to optimize the compression for a given application; how to set

them is presented in Section 4.

3.3 Pattern Discovery

The goal of the pattern discovery engine is to find patterns while maintaining low complexity.

Pattern discovery consists of a byte-wise comparison between the current packet and each of the

packets in the recent packet buffer. When the number of consecutive byte matches is greater than or

equal to the minimum pattern size S, the corresponding sequence of bytes, is added to the pattern

list (duplicates are avoided). If the pattern list is full, adding a new pattern causes the least recently

used pattern to be removed.

The minimum pattern size S ensures that the pattern list is not populated by numerous short

patterns at the expense of much longer patterns that would yield greater compression. Note that

pattern discovery is only performed on non-compressed packets, i.e. before the compression engine

at the transmitter and after the decompression engine at the receiver.

As discussed in Section 5, the comparison operations are efficiently translated by compilers,

but can also be implemented on an application-specific integrated circuit (ASIC).



4 Implementation and Experimental Results

4.1 Data collection

We test the compression algorithm using IEEE802.15.4 packet traces collected from two commer-

cial wireless sensor networks; 62,101 packets were collected from company A and 63,988 packets

were collected from company B5. Packets were recorded using Integration’s IEEE802.15.4 USB

Dongle on a single channel in the 2.4 GHz band. Company A data was recorded from a data collec-

tion network that uses 16-bit source and destination IEEE802.15.4 addresses. Company B data was

recorded from a network performing numerous large file transfers; 64-bit source and destination

IEEE802.15.4 addresses were used. Note that the address size and description of the data content

is provided for the reader only and does not impact the functioning of the protocol-independent

compression scheme.

4.2 Implementation Details

The traces collected from company A and company B are run off-line through a C implementation

of the compression algorithm in order to predict the energy gain had these networks been running

protocol-independent compression. Running compression algorithms on packet traces allows us

to precisely quantify the gain of this scheme in real-world commercial applications, something

which an in-lab limited deployment would not allow. The algorithm was implemented for a single

link per the description of Section 3, sans error checking such as CRC or handling for loss of

synchronization as discussed in Section 5.

4.3 Compression Ratio C

Compression ratio C, as defined in (1), is plotted versus the parameters B, S, and P . As is seen

in Figs. 5-7, the compression ratios were in the range of 50 ± 5% for data from company A and

5Unfortunately, marketing considerations do not allow us to disclose the names of these companies.
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Figure 5: Impact of the recent packet buffer size B on the compression ratio C for company A (left)

and company B (right), for P = 8. Note that the y-axis scale is different between graphs.

75±3% for data from company B. These results are consistent with the observation that the packets

from company B have a relatively large static header and are generally quite repetitive given the

nature of a file distribution, whereas the company A data is far less regular and, as a result, benefits

less from compression.

4.4 Impact of the recent packet buffer size B

Increasing the recent packet buffer size B impacts the compression ratio C. When B is large, the

pattern discovery engine can compare the current packet to more recent packets, and can hence

find more patterns.

The regions of positive slope in Fig. 5 intuitively correspond to more points of comparison

from which to discover patterns useful for compression. The decrease in C for large B comes as

a result of useful patterns being removed from the pattern list in favor of new patterns identified,

according to the LRU replacement policy. These patterns (identified in older packets) are often

less beneficial or relevant for future compression than those from more recent packets.

C peaks for lesser values of B and for shorter minimum packet lengths S because patterns

are more quickly cycled through the pattern list due to the increase in number of patterns being

identified. As can be seen from Fig. 5 and Fig. 6, B and S roughly track each other; a small B
warrants a small S , and vice versa. As B grows, S grows as well. As S increases to large values,
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eventually the compression ratio with respect to B flattens out because few patterns of that length

exist, but those that do exist are likely to be often used, representing a large static portion of the

packet.

4.5 Impact of the minimum pattern size S

Additional insight can be gained into the relationship of B to S by carefully examining Fig. 6. The

data from company A indicates that, for small values of B, the change in C with S is relatively

smooth, while as B becomes large the transition between the compression ratio for small S and

large S becomes more abrupt. This abrupt transition occurs because above a minimum pattern size

useful patterns are no longer being ejected from the pattern list; all of the most meaningful patterns

are retained. Data from company B shows little variation with B over a range of S because the

patterns in that data set tend to not change quickly, and the small change in C over the entire range

of S suggests that the patterns in the company B data are typically long.

Another interesting feature to note from Fig. 6 is the convergence of the curves in the company

A data for various B converging to a common C as S exceeds 5 bytes. This behavior indicates that

the only patterns being compressed for large S are those that rarely change, so the rapidly changing

patterns must generally be less than 5 bytes long, most likely corresponding to a specific four-byte

field within the packet.
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Figure 7: Impact of the pattern list size P on the compression ratio C for company A (left) and

company B (right). Note that the y-axis scale is different between graphs.

4.6 Impact of the pattern list size P

The last trend to discuss is the effect of varying the pattern list size P . P was varied coarsely from

8 to 24 in increments of 8, corresponding at each step to one additional tag byte required at the

beginning of the compressed packet. At first glance, Fig. 7 seems to yield contradictory results

for the two data sets; company A data benefits from a larger pattern list, whereas the compression

ratio for the company B data is greater for smaller P . Upon considering what we know about the

data, however, this makes perfect sense; company A has a much greater degree of randomness than

the company B data, so it can benefit from the additional pattern allowance. Data from company

B , on the other hand, changes infrequently and therefore requires fewer than eight patterns to

effectively be compressed. Additional patterns beyond those required result in unnecessary tag

bytes being added to the beginning of the packet. Indeed, the 3% decrease in compression ratio

for the company B data corresponds to two additional bytes being added to a sixty to seventy byte

packet. Finally, we notice also that the declining C for increasing B for company A data is no

longer as pronounced for larger P . As the number of patterns that may be stored is increased, the

useful patterns that were formerly being ejected due to the large B are no longer being removed

from the pattern list and compression does not decrease with increasing B.



4.7 Parameter Tuning Conclusions

With this final piece of information, the intuitive result that the compression ratio can be improved

by providing the algorithm with more memory is shown to be true, up to the point that the cost of

adding additional tag bytes outweighs the benefit of additional patterns. However, the parameters

must be increased with care such that the aforementioned dangers of unbalanced parameters are

avoided. That being said, it is also clear that, at some point, the compression ratio saturates and

there is little compression benefit to further tuning the parameters. From a memory and computa-

tion standpoint, it is advantageous to remain at the edge of this saturated region, or possibly even

at a point with lower compression ratio. As is evident from Figs. 5-7, the compression ratio does

not change drastically over the full range of B, S, and P; leaving each of the parameters at or near

their minimum values is reasonable, especially in situations where available memory is limited.

The peak compression configurations consume approximately 400 and 1200 bytes for Compa-

nies A and B respectively. Efficient protocol-independent compression can hence be implemented

in resource-constrained wireless devices. Additionally, a figure of merit may be established by

weighing the relative importance of power savings versus memory consumption.

5 Discussion

5.1 Insertion into the Protocol Stack

The protocol-independent compression scheme presented in this paper is a transparent layer that

sits between any two protocol layers in a protocol stack; it compresses the data provided by the

layer sitting above it. One possibility is to place this compression layer between the routing and

MAC layers. In this case, the MAC headers are not compressed, which may be desirable if desti-

nation address filtering is done in the radio chip and the MAC destination address needs to be sent

unaltered over the air.

The compression ratio can be further increased by placing the compression layer between MAC

and physical layers. This optionally enables the compression to be performed on a dedicated chip,



sitting between the microcontroller and the radio on the sensor node. Thanks to its simplicity, the

algorithm can be translated into digital logic using a hardware description language such as Verilog

and fabricated on an application-specific integrated circuit (ASIC). Implementing the compression

algorithm on an ASIC reduces the cost of computation, both in time and energy, and compression

becomes transparent for the programmer.

5.2 Efficiency and Flexibility

For only very minimal resources, data can be compressed beyond 50%. In a typical wireless

network, this can potentially double the lifetime of the network. Given the of use of a CRC field,

protocol-independent compression allows for compressed and uncompressed packets to coexist on

a network. This is a valuable level of flexibility that motivates the inclusion of the CRC.

Because the algorithm is independent from other communication protocols (to the extent that

it can be implemented on a separate chip), this compression scheme can be plugged into existing

wireless networking stacks. Protocol-independent compression can even be used in conjunction

with explicit header compaction techniques. Assuming a 6LoWPAN-enabled IEEE802.15.4 net-

work in which the header can not be compressed, such a layer can sit on top of the 6LoWPAN

adaptation layer, compressing only the application data.

5.3 Potential Improvements to the Algorithm

A more elaborate version of the compression algorithm involves weighing the entries in the pattern

list according to criteria different from least recently used. Possible metrics are the length of the

pattern, the number of times a specific pattern has been used, whether one pattern is a subset of

another, or any combination thereof. While such more elaborate metrics can increase the com-

pression ratio in specific cases, this efficiency increase should be weighed against the additional

complexity.

A challenge for using this compression scheme is to tune B, P and S. While good performance

can be achieved with an informed guess, another 20% performance gain can be achieved by fine-



tuning the parameters.

A challenging situation is when two nodes lose synchronization in updating their pattern lists,

a difficulty that can not be avoided in the presence of lossy links. Such a situation can be detected

by reserving 2 bits from the tag to serve as a counter to indicate the state of the pattern table. If a

node receives a packet with this counter set to a different value than its own, it may decide to flush

the pattern list. While this causes a few packets not to be compressed (less than B), this does not

cause any packet to be lost.

The payloads of packets are often encrypted, which causes the payload to appear randomized.

In this case, only the header of the packet is compressed. A possible way of improving the algo-

rithm is to keep track of the location of the patterns; if they are all at the beginning of the packet,

the recent packet buffer can be shrunk to contain only the header portion of recent packets.

6 Conclusion

We have demonstrated a compression algorithm for resource constrained wireless networks that

is independent of network protocols and does not require explicit signaling messages to maintain

shared state between communicating nodes. Furthermore, due to the use of a CRC, compressed

and uncompressed packets may coexist in a network. Compression ratios above 50% and 75%

were achieved on two traces gathered from commercial IEEE802.15.4 networks. This translates

into energy savings of the same order in a time-synchronized network given the minimal energy

cost of computation [6], potentially more than doubling the lifetime of the network. Protocol-

independent compression can be used at any layer in a protocol stack, offering the flexibility to

compress certain headers or not. It can hence be used in conjunction with existing compaction

techniques such as 6LoWPAN. This paper also presented guidelines and insights into fine-tuning

the parameters of the compression algorithm to the needs of a specific network. This work has

been published externally in [10].
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