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ABSTRACT OF THE THESIS

Towards Extracting Protein-Compound Interactions from BioChemical Patents

by

Kaiser Stefan Pister

Master of Science in Computer Science

University of California San Diego, 2019

Professor Leon Bergen, Chair

We present in this work a protein entity tagging and normalization process focused on

data extraction from biochemical patents. The project acts a single stage in the pipeline of

general chemical interaction extraction. Novel to this work is the character embedded approach

to mention identification and normalization. Additionally, this is the first work to use a siamese

network and a prototypical network to augment protein database normalization. Our results show

that character embeddings provide a reasonable approach to protein entity extraction achieving

up to 6% better results than previous work, and that normalization tasks can be improved

significantly with a learned embedded space.

viii



Introduction

Biochemical patents are arduous to read and comprehend. They can require multiple

domain experts to parse out important details such as which proteins bind to what compounds

in what ways. With recent advances in information retrieval and semantic analysis from neural

networks, this project aims to reduce the workload on researchers in the field by performing parts

of these tasks automatically. In this work we focus on patent protein extraction and further divide

the task into three distinct subsections: protein entity recognition, protein mention normalization,

and target protein selection.

Protein entity recognition is a specific form of named entity recognition. Here we locate

all mentions of proteins within a document. To solve this problem, we build an LSTM classifier

which distinguishes protein from non-protein sequences.

Tagging proteins is only a piece of the puzzle. Protein mentions are often not consistently

referenced, leading to difficulty in finding related database entries. Thus, protein mention

normalization is the process of converting a protein mention into a standardized name. We

propose the use of deep learning to build embedded spaces which cluster mentions based on

similarity.

Patents often mention many proteins, but are only concerned with the effects of one or

two specific target proteins. We define the target protein selection task as recognizing which

normalized protein or proteins are of highest significance to the patent. We use a set of heuristics

combined with confidence scores from recognition to find the most important proteins.

This work presents a single pipeline to combine protein recognition, normalization, and

selection into a usable process for researchers to quickly analyze and extract information from
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patents without needing to delve too deeply into the dense writing itself.
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Chapter 1

Background

In this chapter we describe various approaches that have been used in the past, analyzing

their effectiveness and describing ideas on which the rest of this work is based. We concede that

this is by no means an exhaustive list of works in the area, as that list would be too large to fit

into this short paper.

Mention Recognition

There are many different obstacles in the way of recognizing a protein in biochemical

documents. Primarily, the density of information can be daunting. Patents are packed with jargon

which can be easily confused for important biochemical information. Without years of study and

domain experience it would be impossible for a human to pull out the most important entities.

As a result, researchers look to approaches which quickly learn in ways that humans cannot. In

pursuit of protein entity recognition many groups have used traditional algorithms to varying

degrees of success [8] [13]. These approaches often consist of regular expression- and rule-based

dictionary lookups. In recent years, these approaches have been pushed out of practice and out

performed by new techniques in deep learning [23]. We leave the discussion of these traditional

methods to normalization where they are still comparable in performance.

In pursuit of well performing cheminformatics processing, BioCreative hosts competitive

research workshops on a regular basis [10]. These workshops focus on specific tasks, such

as chemical entity recognition, relationship extraction, document triage, and more, prompting
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researchers to apply modern techniques to solve problems in the field of chemistry and biology.

In the most recent two workshops, all of the top performing models leveraged advances in neural

networks [11] [12].

The majority of work in this problem space make use of long short term memory neural

networks which have proven to be quite effective in solving natural language processing tasks

due to their ability to processes sequential data, extracting information from surrounding context.

Since it has been discussed in great detail elsewhere, and the internal structure of an LSTM cell

does not play a key role in this work’s innovation, we refer the reader to [26] for a complete

description of the mathematics behind these models.

Using LSTM architectures, research groups have been able to achieve great performance

on chemical entity recognition [17]. However, the general task of tagging chemical entities

proves to be easier to learn than tagging specifically proteins. At BioCreative V.5, the best teams

achieved F1-scores above 90% when classifying chemical entities, while the GPRO (gene protein

related object) tagging scores lagged behind at 81% [11]. General chemical entities often follow

a stricter naming scheme than proteins, resulting in stronger patterns and signals which a network

can identify [29].

Many deep learning approaches to recognition look fairly similar. Previous works largely

build their neural network architecture from a set of LSTM nodes and a feature set from some

combination of word embeddings and document information (e.g. frequency count or location in

sentence) [8] [14] [20] [23]. These approaches have outdone previous results, however they also

suffer from a couple of different problems. Due to the limits of manual annotation, the input data

on protein names and feature sets of frequency, location, etc. are not necessarily representative of

the full dataset [14]. Word embeddings do not convey the same information about form through

the network, losing information about casing and structure of the sequence, forcing these to be

used as separate features, leading to larger parameter spaces and more complicated networks

[16].

Less common, character embedded models are another approach. In most work, they
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Figure 1.1. The structure of a character embedded bi directional LSTM neural network. Image
from: [21]

manifest as a single feature of input data to be processed alongside a word embedding [23] [28].

We argue that the character model alone is enough to perform recognition, as has been shown in

other application spaces [21]. In the work of Ling et al., they show that the form of a word can

often convey enough information for classification tasks. These models rely on a non-arbitrary

connection between the form and function of a sequence. The form of a character embedded

model is shown in figure 1.2, which makes use of a character embedding flowing through a

bi-directional LSTM network [21].

Some attempts at different architectures have been used in the past, a common thought is

to use character embedded convolutional neural networks, however these approaches have not

historically performed as well due to the importance of order in the sequence. In contrast, LSTM

RNN architectures carry information directly through the order of the sequence [14].

The most common method of classification follows the BIEO system, tagging tokens as

the Beginning, Internal, Ending, or Outside of a sequence [27]. Some approaches extend this
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with a Singleton class as well to denote a single token sequence. Documents will be tokenized,

often splitting into sentences, and then word sequences based on spaces, punctuation or special

characters [13]. Depending on its location in a protein sequence, each token will then be tagged

according to the BIEO scheme. Due to abnormal structure of chemical jargon, tokenization is

not as simple a task as on traditional documents, preventing automatic solutions [5]. The result is

that BIEO systems often have a smaller input dataset to train on, since the only reliable data will

be hand curated. In trade for the smaller dataset, the BIEO system allows for precise learning of

sequence structure that a binary system would not.

Mention Normalization

Due to its importance in database curation, named entity normalization is a heavily

researched problem [22]. The most common approach has been dictionary look-up [5]. These

normalization techniques range from a naive edit distance comparison between a target and

the dictionary, and more complex regular expression comparisons. An alternative to dictionary

look-up is rule based normalization, which describes a set of functions that transform the mention

into a standardized form and then often use the standard form to perform dictionary look-up.

A list of common problems in normalization are shown in table 1.1 [27].

Perhaps the most commonly discussed disadvantage is that dictionary based approaches

miss 100% of all new proteins. Without a constantly updating dictionary it is impossible to

determine what a new protein normalizes too. Word embedding approaches have this issue

as well, which we will discuss below. Stemming is a more difficult issue than commonly

seen in linguistic tasks, as biochemical entities do not follow the same naming conventions as

many normal stemming rules expect. The result is poorly stemmed names which cause more

confusion than help. Acronym expansion is an issue in many different approaches, but can

often be remedied by structural rules. For example, many documents will expand a full name of

an entity before writing its acronym in parenthesis, allowing for easy detection. Orthographic

variations account for a significant number of different representations of entities. Finally,
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Table 1.1. Issues with normalization of protein names

Protein Mention Standard Name Issue

GHF1 GHF-1 Orthographic var.
GHF-1 Growth Hormone Factor 1 Acronym
Transcriptional Factor Transcription Factor Stemming
Antimicrobial Peptide NDBP Naming var.

naming conventions vary across regions and institutions, leading to tens of different ways to

referring to the same protein. For a more in depth examination of normalization issues, we point

the reader to Eltyeb et al. [5].

Beyond all of these problems, an even more pressing issue arises as noted by Leaman et

al., which is that the process of name normalization often follows the imperfect process of entity

recognition [16]. The pipelined nature of this task leads to cascading errors which can make any

approach look worse than it would in an isolated case.

In 2010, BioCreative proposed a research track to normalize protein and gene names.

The results of the track were dismal, with TAP-k scores of under 0.45 (k=20) [22] (an equivalent

F1-score of 46.56% [27]). At the time, almost all approaches were constrained to either regular

expression- or rule-based dictionary retrieval, with only a couple submissions making use of

machine learning techniques such as conditional random fields, and support vector machines.

More recently, there have been approaches to perform normalization with deep learning ap-

proaches [15][16][27]. These approaches use embedded spaces to transform proteins or protein

representations into some new space, and then use a pairwise ranking function to find the nearest

neighbor.

All of these works are using pre-trained word embeddings, sometimes with feature sets

which include character representations. Since we build our features from only the character

embeddings of sequences, there are other avenues of normalization available to our approach.

In 2005, Chopra et al. proposed a new network architecture called a siamese network [1].

Figure ?? displays the structure of a siamese network. The purpose of this network is to build an
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Figure 1.2. The structure of a siamese network with convolutional encoders. Image from: [1].

embedded space on the input data by embedding the data and optimizing loss on a distance metric

between different classes of input data. The work was improved upon in [9]. In constructing this

embedded space on character embeddings of normalized proteins with some of their mentions,

we can find the nearest neighbor of an unknown embedded protein mention and treat that as the

normalized name. This method acts in a very similar way to clustering techniques. For distance

metrics, we use cosine similarity and Euclidean distance between points. The loss function is a

contrastive loss function.

Hard negative mining (HNM) gives better results in similarity prediction as it furthers

the distance between similar classes [7]. With HNM, the loss of each batch is penalized for

the distance between each positive pair of input, and the similarity between each input and the

closest non-identical element of the same batch. The result is that the network will build large

inter-class distance, while keeping intra-class distance small.

More recently, Snell et al. proposed Prototypical networks for the task of few-shot or

zero-shot classification [25] of handwritten characters. Prototypical networks aim to find the

prototype of a class which acts as the center of a cluster by averaging the embeddings of each
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Figure 1.3. Predicting an input value X using few-shot and zero-shot prototypes. Image from:
[25].

member in a class. Shown in figure 1.3, the prototypes of each class are used to predict on input.

Then when embedding a new input with the network, their results show, the nearest prototype is

a more accurate predictor of the class. Their structure also follows a contrastive loss function

built on Euclidean distance. Building on their work, we apply a prototypical embedding network

to the normalization process and compare the results in chapter 3.

Relation Extraction

This work acts a stepping stone towards solving the larger problem of extracting re-

lationships between proteins and compounds in biochemical patents. We do not address the

relationship extraction task, though there has been other recent research on this task. At the

most recent BioCreative workshop, an entire track was dedicated to this problem [12]. Bert was

introduced in 2018 by Devlin et al. as a new approach to solve many different natural language

processing tasks. The key to its success is the idea of using a layer of transformers which perform

significantly better than previous state of the art [4]. Following Bert, Lee et al. propose a domain

specific BioBert which takes the same architecture but pre-trains with a different biology-tailored

dataset [18]. Using different input data gives the Bert model a strong contextual understanding

of biological terms which has given similarly impressive improvements to retrieval tasks in the

biochemical domain. Some other recent applications use transfer learning with specialized word

embeddings to extract relationships [3]. For more complete information, we refer the reader to

[23].
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Chapter 2

Methodology

In the following chapter, we describe the various approaches to solve each step of protein

extraction. We conclude with some unsuccessful methods and the knowledge gained from them.

As mentioned previously, we segment the task of protein extraction into three parts: protein

recognition, protein mention normalization, and target protein selection.

Protein Mentions Recognition

To recognize protein mentions in documents, we build a character embedded bidirectional

LSTM classifier. The model is inspired by Ling et. al’s work and does not innovate on their

structure. Our goal is to make use of character embedded models in the biochemical application

space, since previously most work focuses on word embedded models.

Dataset

We use a dataset of protein names gathered from the UNIPROT KB gold star database

[2]. This dataset includes information about each protein, from which we take the full name and

alternative names for each entry. This dataset includes 64,496 unique proteins and approximately

240,000 total names. There are almost twice that many entries in the database, however there are

duplicates for each species where the protein is found, which we do not include as the mentions

are the same. The full set of protein names is treated as our positive dataset. To generate a set of

negative sequences, we scrape bio-medical Wikipedia entries. We choose bio-medical pages to
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have a better contextual match to the content in patent data, hopefully negating generic scientific

terms while emphasizing proteins. With hundreds of pages as negative input, we have millions

of negative data points. As an additional negative dataset, we generate a blended set of data

which consists of fractions of protein names combined with parts of Wikipedia sequences. These

blended samples are randomly generated and are meant to help the classifier find the precise

location of a protein mention without including the surrounding words. We also include the

patents themselves as a negative dataset. This will train the model to dismiss common sequences

in the patents, while highlighting rarer sequences. Finally, we include a list of metabolites (small

chemical compounds) as a negative dataset. Metabolites represent the most common chemical

entities in our patent dataset, so we use them with a negative label to better target proteins.

With each dataset, we convert it into a set of uni-, bi-, and tri-gram sequences which

are then fed into the model with their respective labels. We restrict our labels to positive or

negative, ignoring the location of a token in a protein mention. We hypothesize this will improve

the network’s ability to reorder parts of proteins, however it comes at the cost of less precise

boundaries of mentions.

We also perform casing and ordering transformations on the positive dataset. The case

of a protein can convey distinctive information, but is not standardized across usage, thus we

allow for all forms of casing to be positive (e.g. Adenosine A1, adenosine A1, adenosine a1,

Adensosine a1). Additionally, we compute some permutations of the protein names to allow for

different usage (e.g. adenosine a1, a1 adenosine). With these transformations, we capture many

different styles of writing protein names.

Architecture and Parameters

The architecture of our model is a simple single layer bidirectional LSTM RNN. We use

a one hot character embedding model to convert each sequence to a network readable input, then

create a single hidden layer of 120 LSTM nodes which feed forward into a fully connected layer

that outputs to 2 classes. We use a ReLU non-linearity function on the results. To convert the
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LSTM layer to the fully connected layer, we average across all the hidden layer weights. Similar

to other work, we use a learning rate of 0.001 and an ADAM optimizer. The loss function is a

categorical cross-entropy loss. These parameters were chosen after performing a grid search

across layer size, learning rate, and batch size.

Normalizing Mentions

Protein mentions are notoriously diverse. As mentioned previously, they can be repre-

sented with abbreviations, in different term order, with different spellings, or simply different

colloquial names. Thus a single protein may be discussed with five, ten or even twenty different

possible descriptions. When we identify a single mention, we cannot assume that the form of

that mention is the normal form that will be stored in a dictionary. We solve this problem with

three methods and evaluate their effectiveness in the next chapter.

Dataset

We utilize the same positive dataset as the recognition step, but modify its structure to

distinguish classes of proteins. For each protein, we define the class name to be its Full Name

according to UNIPROT, and list every other version of its name as an example of the class. With

about 64,000 proteins, and 240,000 mentions, there are an average of 4 entries in each class,

ranging from a low of 1 entry to a high of 23. All the protein names are transformed to lower

case ASCII for simplification, which does lose some information on UTF-8 encoded characters.

Using the Python package unidecode, we convert any UTF-8 characters to their closest ASCII

approximation to minimize any differences. We divide our dataset two different ways. First

we build a zero-shot dataset, in which our training data will see 60% of the classes, and every

mention representing those classes. The other 40% is divided between validation and test sets.

This dataset is zero shot because the model will not have seen any elements of these classes and

therefore will have no prior on where to embed them. Then we build a few-shot dataset in which

we divide each class into a 75-25 training-test split based on mentions. We discard any classes
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that have fewer than 4 representations. This will train the model to embed based on parts of

classes, and evaluate the model on how well it learned to embed unseen mentions of seen classes.

Levenshtein Distance

Our first normalization method calculates the sequence edit distance between two input

strings using the Levenshtein distance metric [19]. This distance function attributes 1 point of

error for each deletion, insertion and substitution.

Siamese Embedding

Our major contribution to this space is our work in training embedded spaces for normal-

ization. As discussed in chapter 1, this is a widely studied field with many different application

spaces. As far as we are aware, this is the first application of these deep learning embedded

spaces to this problem. We again train a bidirectional LSTM RNN to encode protein mentions

which refer to the same protein class into similar locations. Our architecture is very simple, we

have a layer of 120 LSTM cells feeding into a fully connected layer which outputs into a 100

dimensional vector and then a ReLU function. The resulting vector is our embedding of the

input. The siamese network’s goal is to learn an embedding function such that two elements of

the same class (i.e. two mentions of the same protein) will be a small distance apart, while two

elements of different classes will be a large distance apart. The structure of our contrastive loss

function resembles previous work [1], but we tailor it to our task, training on multiple distance

functions as well as optimizing with hard negative mining techniques.

We train our model with both a Euclidean and a cosine similarity distance function and

evaluate their different performances. Cosine similarity provides simpler and more efficient

implementations, but can lead to poorer performances [25]. As is necessary for all cosine

similarity distance functions, when training we add more more length normalization step to all

embeddings.

Using hard negative mining, we target the poor performers of each batch to ensure that
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the network learns a robust embedding. When using Euclidean distance, we adjust the hardest

negative mining to be what we call harder negative mining. This is a stochastic approach in

which we sample a subset of the batch, and only find the hardest element of that subset. While

this will in practice potentially not create an optimal embedded space, the random nature of it

does well enough, and it significantly improves performance of training.

With each positive and negative example we use a contrastive loss function to improve

performance over time. Once we have an embedded space, we are able to find the nearest

neighbor of an protein mention sequence by running it through the network. If the network has

created a good embedding, then the mention will be close to the other proteins it relates to.

Prototypical Network Embedding

Another approach that we briefly explore to create an embedded space is following

the idea of [25], in which we create a prototype representation for each protein. Then, sim-

ilar to the siamese embedding, we can feed any sequence into the network and attempt to

find the closest prototype. This prototype will correspond to the normalized entry in the

database. We use the open source code accompanying the paper by Snell, accessible at

https://github.com/jakesnell/prototypical-networks, only changing the encoder to

follow suite with our other models, and adapting the dataloader to accept our dataset.

Target Protein Extraction

With the above architectures, we pass a patent document through a few preprocessing

steps and the recognition model to receive a list of probable protein sequences. Using the

DBSCAN clustering algorithm and a Euclidean distance fucntion over the embedded space

of our Siamese network, we cluster the probable sequences into groups of similar mentions

[6]. Then we weigh the clusters based on an average confidence score of its members and

output the best two clusters. We give extra weight to protein mentions in the title, abstract,

and reference sections as well as sections surrounding certain keywords which we identify as
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often correlated with the target protein mention. Currently these sections surround the keywords

“patent,” “invention,” “receptor,” and “inhibitor.”

Other Explored Areas

Throughout this process, we encountered and explored a variety of other approaches

to solve the recognition problem. We find it important to document science in the presence of

failures to allow for the better distribution of ideas and to hopefully provide ideas and guidance

to others attempting to solve the same problem.

TF-IDF

Term Frequency Inverse Document Frequency can be a powerful metric in finding words

that are important in a document. The metric compares how many times a term appears in a

single document relative to the total number of times it appears in a corpora. Thus, a word that

shows up 5 times in a document, and only 5 times in the entire corpora (notably the same 5

appearances in the document we are testing), will have a TF-IDF score of 1.0. Inversely, a term

that is in a document 5 times, but appears 1000 times in the corpora (not uncommon for simple

words), will have a TF-IDF of 0.005. This approximation should give a score of how important a

term is to a given document. Here are some issues we found that occur with TF-IDF.

• The corpora isn’t large enough. This is the most common issue. Without a large set of

words to normalize out slightly uncommon terms, words like ”office” end up with very

high scores as they don’t commonly appear in the text. In the same vein, this issue causes

problems when documents are written by different people. We write very differently based

on geolocation and education and will use very different sets of vocabularies even within

the same language. We have 1515 patents, which is not enough to block out common

words.

• The proteins are rarely similarly mentioned. As discussed in the normalization section,

different groups might refer to the same protein in many ways, and even within the same
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document a protein will be mentioned in different ways. This problem is more general

to include the idea of non-stemmed words. An example is seeing the term ”word” and

”words” as different terms. There exist approaches to stem words, but this can often

cause problems with protein names. Additionally stemming is not a correct normalization

function for proteins, so that problem would persist regardless.

• The proteins are very infrequently mentioned. This might not actually be a problem if

the protein isn’t mentioned in any other documents, however proteins often share pieces

of terms. ”Kinase” for example is a very common suffix term of a protein name. This

leads to a very low score for any terms including ”Kinase” despite the definite importance.

Patents are often focused on the new compounds being invented and aren’t focused on the

proteins, as a side effect the proteins aren’t mentioned as much and might not be unique to

each document.

TF-IDF does provide some interesting insights into the problem but ultimately is not the

best approach. One thing we do consider for future work is an ensemble method including the

TF-IDF score for each term, however the above problems would need to be addressed before

that work would be conducted.

Convolutional Neural Networks

Another logical approach would be a CNN. Given we are already working with a character

based LSTM model, it is not too far a step to experiment with a CNN. This follows the from the

idea that our architectures work for any form of encoding method, however the results will find

some encoders to be better than others. For this reason we do conduct some early experiments,

however we found no significant differences from our LSTM model results, and continued efforts

in developing the LSTM model instead. We do concede that this could be further explored,

however as pointed out in [16], convolutional networks will suffer from lack of sequence ordering

details.
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Chapter 3

Results

We analyze our different models under the usual heuristics of precision, recall and f-

measure in order to assess their correctness. Both the recognition and normalization models are

evaluated individually. After we show a combined evaluation of how well they solve the protein

extraction task on a dataset of patents.

Recognizing Mentions

We compare our results here against other works on the BioCreative V & V.5 protein

tagging competition results. On the GPRO ChemDNER dataset, the best reported results were

an F1-score of 81.2%, with a best precision of 80% and a best recall of 85% on different runs

[13] [11]. These results were generated from various models ranging from CRF LSTMs to

dictionary look-ups. Using the same evaluation metric, our recognition model under performs in

comparison to state of the art. We are achieve an F1-score of 73.08% on the GPRO dataset.

Error Analysis

We find the strict nature of the evaluation to cause a significant number of errors in our

model. The recognizer would, for example, tag the sequence “human p55 TNF” as a single

protein sequence instead of two. This style of error, in which the model is off by a single word or

contains two proteins in one, account for more than 70% of the false positives in our predictions.

Below we perform a more in depth analysis of our model, allowing for these errors to

17



Table 3.1. Results of Protein Entity Recognition

Evaluation Type Precision Recall F1-Score

Our Model 85.10% 89.05% 87.03%
Best Prior 83.95% 78.66% 78.7%

be treated as correct mentions, resulting in a significantly higher F-score. To reiterate the type

of error we allow, for the sentence ”We use human p55 TNF as an inhibitor of compound Z,”

the desired tagging would be proteins = {“human p55”,“T NF”}.Our tagger might produce

proteins = {“human p55 T NF”,“p55 T NF”,“T NF”}.With relaxed matching “p55 TNF” is not

considered a false positive and “human p55 TNF” satisfies the ”human p55” protein name. With

trigram sequences, we will never allow a relaxed match which is more than a single token in

distance away from truth. We could potentially reduce this problem by tagging with the BIOE

system. The results of these two evaluations are shown in table 3.1.

The results of best prior are from the BioCreative V.5 which evaluated the performance

of recognizing normalized and non-normalized protein and gene mentions in abstracts [24].

We evaluate our model by grabbing the matches which are above a 95% confidence score

of being a protein to reduce the number of false positives, at the cost of slightly larger amount

of false negatives. We make this choice because definitely having some proteins is much better

than having to sift through a lot of bad data.

As shown in the table, with relaxed matching, we are able to significantly improve upon

the results of previous work. Under strict matching, we have many more false positive mentions,

as shown in the example above where “p55 TNF” will be considered an erroneous tag causing a

significantly lower precision score. We perform a manual review of these false positives, finding

28/100 to be true false positives while 72/100 fall under the same situation of “p55 TNF” in

that they represent parts of true protein names. We find it more important to tag an approximate

location of a mention over the exact bounds of a protein so we accept the relaxed matching idea.

We acknowledge that other groups could potentially also improve their results when
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using the kind evaluation metric.

Normalizing Proteins

There have been fewer attempts at normalizing protein mentions. As such, we compare

against a couple other methods, and create a new baseline to evaluate our new models.

A New Baseline

The baseline we create is a binary test to check if two protein mentions refer to the same

protein or are different proteins. Due to the binary nature of the test, a random guesser would

perform an even 50%. We use a test dataset containing an even split of positive and negative

pairs. For each test we are optimizing for the highest quantity of correct results.

A naive approach to solving this baseline is to compare the Levenshtein distance between

the two input mentions against a threshold, returning true if the distance is small and false if it is

large. This approach has the advantage of catching small differences between protein mentions

from casing, reordering etc. It suffers on acronyms (since there is a large edit distance between

A1A and A1 Adenosine) and completely different mentions. We perform baseline tests at a range

of different threshold values, and also on a dataset without acronyms. With optimal parameters,

the approach achieves an accuracy of 64.34%. We also evaluate this approach on the dataset

without including any acronyms to better favor the metric, improving accuracy to 67.50%.

Table 3.2 shows common examples of errors when the Levenshtein distance metric fails

to evaluate similarity. When choosing a threshold, there must be a balance between allowing

enough distance between two similar proteins, while minimizing the false positives that will

show up as in the third row of the table. Additionally, as seen in the second row, some protein

mentions are sufficiently different that no linear distance metric would suffice.
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Table 3.2. Examples of Levenshtein Distance Metric Errors

Type Proteins Reason Distance

False Negative nlrr-4 Acronym 34
Leucine-rich repeat neuronal protein 4

False Negative NDBP-4.17 Different Name 27
Antimicrobial peptide UyCT3

False Positive f18 Too short 3
PAP

Siamese Network Performance

The first model we propose to solve this problem is a zero-shot siamese network archi-

tecture. As described in chapter 2, we use the siamese network to create an embedded space.

After embedding both input mentions, we compute the Euclidean distance between them and

compare that distance against a threshold. Similar to Levenshtein distance, we return true if the

distance is under the threshold and false otherwise. We range over many threshold values to

find the optimal threshold of 0.6. At the selected threshold, the siamese network significantly

outperforms the Levenshtein distance, achieving an accuracy of 79.05%.

The errors of the siamese network are less straightforward compared to the Levenshtein

model as it is not clear the model the network learned for the problem. The performance of this

network is evaluated on proteins for which it has seen none of the classes or mentions.

Notably these are zero-shot models. The network trains on an entirely separate dataset

from the test data, meaning it has seen no forms of each test protein.

We additionally train a few-shot siamese network in which we give some examples of

each protein class and mentions. Since each protein has many names, we define one name to be

the standard form, then split the remaining names into training and test. In evaluation we test

against the held out set of mentions which the network has not seen. Our best performance with

this network is 87.43% accuracy. We will use this as a classifier in the future.

It is important to note that all tests are run on valid data. We do not attempt to normalize
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Table 3.3. Normalization Task Results

Model Accuracy

Levenshtein 64.34%
Levenshtein (no acronyms) 67.50%
Euclidean siamese (zero-shot) 79.05%
Euclidean siamese (few-shot) 87.43%
Cosine Sim. siamese (zero-shot) 76.12%
Prototypical (zero-shot) 63.89

erroneously tagged sequences. This is in an attempt to evaluate the normalization processes

instead of the tagging process and not allow for cascading errors as talked about in [16].

Prototypical Network Performance

Finally we attempt to solve the zero-shot normalization task with a prototypical network.

On the same task the network does very poorly, getting at best 63.89% accuracy. In future work,

we would experiment more thoroughly on the parameter space of the network in attempts to

improve this score.

Targeted Protein Results

In order to evaluate the practical results of these models, we use them to predict the target

proteins of 200 patents. The patents were manually annotated with the set of import proteins

mentioned in that patent. Once we tag, normalize and cluster the proteins in each document, we

manually check these 200 patents for accuracy of the top clusters. We find that in 48% of the

patents, the top rated cluster contains one of the target proteins, while 25% more were contained

in the second highest weighted cluster. This level of extraction would still certainly require

human guidance, however it provides a starting point that would potentially help expedite the

processes for domain experts.
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Chapter 4

Conclusion and Future Work

Our performance in both recognition and normalization show that character based models

have a place in protein extraction. Using larger datasets than manually annotated abstracts gives

us a wide scope of learning material from which our normalization model does quite well. The

range of methods and applications covered in this project under the time constraints given lead to

a cursory exploration of many parts in the biochemical natural language processing space. There

are many parts of the project where we would look to improve or expand our work as described

in the following list:

1. Interaction Extraction With strong chemical compound extraction techniques, our pro-

tein extraction techniques and the semantic understanding ability of BioBert, we would

like to build a single pipeline for full relationship extraction. This would be a large task

that would greatly benefit documentation, triage, and exploration of new proteins and

protein relationships.

2. Prototypical Networks The classifier built on a prototypical network performs quite well

on the protein set, however it could be improved on the baseline. There is more work to

be done on fine tuning the parameter space as well as the encoding methodology of the

network.

3. Building a stronger pipeline By no means do we believe any part of this work to be the

final stage in the research of its field. Converting our pipeline into a modular work so that
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we could easily incorporate improvements from other protein recognition, normalization

or targeting steps would make the project more serviceable and usable by researchers.

4. De-noising Protein Mentions Using the same normalization techniques, we would like

to training a network to remove noise in erroneously tagged protein mentions. This would

help solve some of the protein recognition problems we encounter, converting “a TNF” to

“TNF.”

5. Morpheme embedded Networks There has been recent research into training networks

on the morphemes of words rather than the characters or full words themselves. We would

like to take this approach to protein names as well, since the morphemes in a name often

convey useful information.
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