
 

 
 

Analyzing the Prediction Accuracy of Trajectory-Based Models with 
High-Dimensional Control Policies for Long-term Planning in MBRL 

 
by Howard Zhang 

 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 

Committee: 
 

 
 

Professor Kristofer S.J. Pister 
Research Advisor 

 
5/10/2021 

(Date) 
* * * * * * * 

 
 

Professor Sergey Levine 
Second Reader 

 
5/10/2021 

(Date) 



Analyzing the Prediction Accuracy of

Trajectory-Based Models with High-Dimensional

Control Policies for Long-term Planning in

MBRL

Howard Zhang

April 2021

1 Acknowledgment

Thank you to Nathan Lambert and Roberto Calandra for providing so much
help and guidance throughout the year. I also want to express my gratitude
towards Professor Kristofer Pister, whose insights and advice benefited not only
my research, but my academic career as a whole. Lastly, I wanted to thank my
family and my friends Leon Idelchik, Varan Nimar, Michael Wang, and Andre
Yu for supporting me in a year that was difficult for all of us.

2 Abstract

Learning effective policies with model-based reinforcement learning is highly de-
pendent on the accuracy of the dynamics model. Recently, a new parametriza-
tion called the trajectory-based model was introduced, which takes in an initial
state, a future time index, and control policy parameters, and returns the state
at that future time index [3]. This new method has demonstrated improved pre-
diction accuracy in long horizons, increased sample efficiency, and ability to pre-
dict the task reward. However, this model has limited transferability to MBRL
due to the limited expressivity of its low-dimensional control policy parameter
inputs. In this work, we look at the effectiveness of the trajectory-based model at
predicting environment dynamics with higher-dimensional and expressive neural
network control policies. The trajectory-based model has demonstrated some
capability in learning from these neural network policies, and still outperforms
the traditional state-action one-step model due to less compounding error.

1



3 Introduction

In this section, we will take a look at the current landscape of reinforcement
learning, and where trajectory-based models fit into that landscape. Then, we
will take a look at the formalization of the reinforcement learning objective as
a Markov Decision Process (MDP), which will be used in future sections to
describe the different RL algorithms, control policies, and dynamics models.

3.1 Reinforcement Learning

Reinforcement learning is a form of machine learning that is concerned with the
maximization of a reward of an agent in an environment. In recent years, it has
been used extensively for finding optimal policies for robotic control. There are
two primary branches of reinforcement learning: model-free and model-based.
Model-free reinforcement learning procedures typically directly interact with the
environment to find the optimal policy [9,10,11]. However, these methods typi-
cally require copious amounts of trajectory data to find an optimal policy. This
data collection step can sometimes be limited, especially when performing exper-
iments on actual hardware rather than simulation. Model-based reinforcement
learning is structured on the idea of first learning the dynamics of a particular
environment, then using this dynamics model to find the optimal control policy
[2,1]. The benefit of this method is that it is much more sample efficient, since
we can use the model to generate more samples. However, policies that are
learned from model-based reinforcement learning are highly dependent on the
accuracy of the learned model. Often, this means that the learned policies are
handicapped by this prediction accuracy. This is why it is extremely important
to develop high-accuracy dynamics models.

3.2 Trajectory-based Dynamics Models

A majority of dynamics models used in model-based reinforcement learning are
made to learn state transitions. In other words, these models typically take a
current state and action distribution, and output the distribution of the next
state [2,1]. However, these methods often suffer from the issue of compounding
errors [5,6], and have also been shown in the past to have objective mismatch
with the reinforcement learning objective of learning an optimal controller [4].
Both of these issues will be expounded upon further in the “Related Works”
section. Lambert et al. [3] has introduced a new parametrization on the model-
based reinforcement learning problem: a “trajectory-based model” that takes in
an initial state, a future time index, and control policy parameters, and outputs
the state at that future time index. This new time-dependent trajectory-based
model seeks to learn from the entire trajectory, rather than independent state-
action pairs. These models have been shown to have higher prediction accuracy
at longer horizons and improved sample efficiency compared to the traditional
one-step model. However, due to the control policy input, the network has
limited expressivity. In this paper, we aim to test the prediction accuracy and

2



learning potential of the trajectory-based model on simulated gym environments
with high expressivity, complex neural network control policies.

3.3 Markov Decision Processes

The Markov Decision Process (MDP) was first formalized by Bellman [7], and
is a mathematical framework used to describe decision-making based on prob-
abilistic distributions. It is commonly used in reinforcement learning literature
to formulate common objectives and problems. In Figure 1, we see a typical
Markov Decision Process with 3 time steps. In the MDP formulation, we use
states s ∈ RDs and actions a ∈ RDa , with Ds and Da equal to the sizes of
the state dimension and action dimension, respectively. We get the action from
a control policy πθ(at|st) : RDs 7→ RDa , which gives a distribution over the
action space given a state. The control policy itself is also dependent on pa-
rameters θ. This control policy can be anything from PID or LQR with very
few θ parameters to a complex neural network with hundreds of θ weight and
bias parameters. Each next state is gotten from the state transition distribu-
tion p(st+1|st, at) : RDs+Da 7→ RDs , which gives a distribution over the next
state given the current state and action. In reinforcement learning, there is also
commonly a reward associated with each time step that we get from a reward
function r(st, at) : RDs+Da 7→ R. It should be noted that, when running in real
environments, we frequently do not have access to the state st, only an observa-
tion, in which case we have a Partially Observed Markov Decision Process. In
this case, we would need to use a model representing the probability distribu-
tion over the observation given the state, and the control policy πθ would be a
distribution over actions given the observation, not the state. For the purposes
of this paper, we will be assuming that we have full access to the state for sim-
plicity. Additionally, we will assume the Markov Property, which means that
each next state can be fully determined by the current state and action, and
will not be dependent on any previous states.

3



Figure 1: A diagram depicting a typical Markov Decision Process used for
reinforcement learning.

4 Related Work

In this section, we will discuss a few of the popular model-free and model-based
reinforcement learning methods. Additionally, we will discuss how common
model-free RL algorithms deal with the issue of sample efficiency, and how the
different model-based methods work with the one-step model.

4.1 Model-free Reinforcement Learning

4.1.1 Proximal Policy Optimization

As discussed previously, model-free reinforcement learning aims to learn a con-
trol policy directly from the agent interacting with the environment. Proximal
Policy Optimization uses a variant of the vanilla policy gradient method [11].
The vanilla policy gradient method optimizes the control policy by running gra-
dient ascent on the objective function in equation (1), with the optimization
parameter being the θ parameters of the control policy πθ(at|st). Ât is known
as an advantage function, and is a measure of the expected cumulative reward
from that time step onward. The expected value means that this advantage
function is estimated using an average over some finite batch of samples using
the policy πθ(at|st). Simple models for the advantage function include Monte
Carlo estimates, which simply just sum up all of the rewards from that time
step onward for that trajectory. Often, this results in single sample estimates of
the advantage function. This is unless a simulator is involved, in which case you
could simply rewind back to the previous time step and see multiple paths that
the agent could have taken and average together all of the cumulative rewards of
each path. Vanilla policy gradient is on-policy, meaning gradient updates can
only be made when the trajectories used to estimate the advantage function
are gotten with the policy used in that update. In other words, with a single

4



sampled trajectory, we can only make one gradient ascent update on the pol-
icy parameters θ. In practice, multiple updates can be made per trajectory, but
this is not well-justified and making too many updates will result in a bad policy.

This is a major issue for policy gradient algorithms, since complex neural net-
work control policies often require thousands of gradient updates to be trained
properly, and there is often a limitation on the number of trajectories that can be
run on an agent, especially with hardware and not simulation. The way Schul-
man et al. [11] alleviates this issue is with Trust Region Methods [12], which
utilize a modified objective function, seen in equation (2) and (3). Equation
(2) is a measure of the ratio between the current policy πθ and the old policy
πθold . The trajectory used to estimate the advantage function Ât is gotten with
the old policy πθold , and gradient updates are done on the current policy πθ.
To ensure that the current policy does not deviate too far from the old policy
that was used to estimate the advantage function, Schulman et al. [12] uses a
constraint for the KL divergence of the two policies, which can also be modified
to be a penalty in the actual objective function with a tuning hyperparameter.
However, the Proximal Policy Optimization algorithm [11] opts for using (3),
which takes the minimum between the Trust Region Method objective ft(θ)Ât
and a clipped version of that objective to ensure that the ratio ft(θ) does not
venture outside 1 − ε and 1 + ε. This new policy gradient method has proven
that it is able to gain better performance compared to vanilla policy gradient
with traditional Trust Region Methods [12], and many other continuous rein-
forcement learning methods at the time. Using trust region objectives is just
one way that traditional model-free RL methods alleviate the need for extra
sample efficiency.

L(θ) = Êt[logπθ(at|st)Ât] (1)

ft(θ) =
πθ(at|st)
πθold(at|st)

(2)

LCLIP (θ) = Êt[min(ft(θ)Ât, clip(ft(θ), 1− ε, 1 + ε)Ât] (3)

4.1.2 Continuous Deep Q-Learning with Model-Based Acceleration

Another very common model-free RL method is Q-learning. To understand
this, we first need to introduce value functions, Q functions, and advantage
functions (note that these are slightly different than the “advantage functions”
in the previous section). Value functions are a measure of the expected cumu-
lative reward conditioned on a particular state. Q functions are a measure of
the expected cumulative reward conditioned on a particular state and taking a
particular action at that state. Advantage functions are the difference between
the Q function and the value function, and represent the amount of “extra”
reward we get by taking that particular action amongst all possible actions at
that particular state. These terms are summarized in equations (4), (5), and
(6). For infinite time horizon, we use a discount factor γ in order to make

5



the cumulative reward finite. The idea behind Q-learning is that we can simply
choose the action at each time step that maximizes the Q function at that state,
because that represents the action that will maximize our cumulative reward.
In other words, follow the policy from (7). We estimate the Q function using
dynamic programming. This means we train the Q function model towards the
target (8). Note that this is not traditional gradient descent, since we update
the Q function, which is in the target. Because of the moving target, there are
no convergence guarantees and Q-learning is difficult to train. There are other
methods of improving this algorithm, such as keeping track of two Q function
models to improve stability in training, but these will not be discussed as they
are not important to the discussion in this paper.

Vπ(s) = Eπ[

∞∑
t=0

γtrt|(s0 = s)] (4)

Qπ(s, a) = Eπ[

∞∑
t=0

γtrt|(s0 = s, a0 = a)] (5)

Aπ(s, a) = Qπ(s, a)− Vπ(s) (6)

πθ(a|s) = arg max
a

(Qπ(s, a)) (7)

Q(st, at) = r(st, at) +Q(st+1, at+1) (8)

Note that the Q-learning method above is primarily used for discrete action
spaces, since the algorithm requires an argmax over the Q function. For con-
tinuous action spaces, the popular method of choice is called an actor-critic
algorithm, which is essentially policy gradient using a learned advantage func-
tion (6) for the Ât in (1), which performs better than naive Monte Carlo esti-
mates. However, actor-critic algorithms require two neural network models to
be trained, one for the value function Ât, and one for the policy itself πθ(a|s).
Two models require more data to train properly than a single model, and we
again have an issue of requiring too many samples to properly train a model-free
RL algorithm. Gu et al. [10] aims to improve RL in the continuous action space
by creating a new Q-learning algorithm that does not require discrete actions.
It does this by creating a neural network model that outputs the value function
and the advantage function. Together, we can use (6) to get the Q function
estimate Qπ(s, a) = Aπ(s, a) − Vπ(s). The advantage function is parameter-
ized as a quadratic function (9), and the neural network outputs the µ and P
parameters. By doing this, the argmax of the Q function is simply given by
µθ(s). In creating a Q-learning function that is usable in the continuous action
space, we only have to train one neural network model, which drastically de-
creases the amount of samples needed for training. Gu et al. [10] additionally
improves the sample efficiency of the algorithm by using a simple model-based
approach. The agent following a Q-learning procedure often needs to do ex-

6



ploration to learn an accurate Q-function. This is typically done with epsilon
greedy or other exploration schedules that will not be discussed here. However,
these exploration actions can sometimes make the agent move into potentially
dangerous locations in the environment (if done on hardware). To fix this, Gu
et al. [10] employs a simple local linear model to represent the dynamics of the
environment. This not only allows the Q-learning algorithm to explore more
effectively in potentially dangerous areas, but also helps with the sample ef-
ficiency of the algorithm. This paper not only highlights the issue of sample
efficiency in model-free RL methods, but also demonstrates why model-based
approaches solve this issue.

Aθ(s, a) = −1

2
(a− µθ(s))TPθ(s)(a− µθ(s)) (9)

4.1.3 Discussion of Model-Free Reinforcement Learning Algorithms

A common theme shows up in the discussion of these model-free RL algorithms:
the necessity for higher sample efficiency algorithms. Because model-free al-
gorithms solve for an optimal policy directly without prior knowledge of the
environment, a massive number of trajectories are usually needed to train these
policies. The methods in the papers above used to fix this include the use
of trust regions (for more policy updates on the same trajectory) and train-
ing less models (Q-learning over actor-critic). Many modern methods also now
have “pseudo-model-based” approaches by incorporating simple dynamics mod-
els such as locally linear models to improve sample efficiency and help agents
explore in potentially dangerous environments.

4.2 Model-Based Reinforcement Learning

4.2.1 PILCO

Deisenroth et al. [2] developed the PILCO algorithm, which is a model-based
RL algorithm that uses Gaussian Processes to capture the uncertainty in dy-
namics estimation. Gaussian processes are a different type of model to classic
neural networks. Gaussian processes use different Gaussians and the covariances
between a new input and these Gaussians to make a prediction on where the out-
put is. The covariances are captured by kernel functions. The PILCO algorithm
uses a squared exponential kernel. We will not go in-depth into the explanation
of these models. The important thing about these Gaussian processes is that
because they use the covariances of Gaussian distributions to model the input,
output relations, the uncertainties of whatever function they are representing
are captured. For the purposes of the PILCO algorithm, the Gaussian process
represents the state transition dynamics. So the inputs are the current state
and action, and the output is the delta state, which is the difference between the
next state and current state. The Gaussian Process model captures the inherent
uncertainty in the environment’s state transitions p(st+1|st, at), and outputs a
probability distribution for st+1. The use of delta state outputs (st+1 − st)

7



rather than simple next state outputs (st+1) increases the stability of the state
transition dynamics model. The controller πθ(at|st) in PILCO is directly tied
to the Gaussian Process dynamics model (which takes in actions as an input).
These controllers can also have many different parameterizations. For example,
in the cartpole environment, the algorithm used a nonlinear RBF state feed-
back controller. The loss function for PILCO is simply the difference between
the target state and the predicted state from the world model. For each data
point, we then do standard backpropagation to learn the parameters θ for the
controller.

4.2.2 Probabilistic Ensembles with Trajectory Sampling

The PETS paper by Chua et al. [1] recognized that, while the Gaussian pro-
cesses in the PILCO algorithm [2] learned much faster and therefore had higher
sample efficiency, Gaussian processes tend to fall off in predictive accuracy
with more complex environments, due to their lower expressive power. Neu-
ral network models, however, have much higher expressive power compared to
Gaussian processes. In order to incorporate the uncertainty-aware predictions
of the Gaussian process dynamics model with the expressive power of neural
networks, Chua et al. [1] used neural networks that output probability distri-
butions. These probabilistic networks also model the state transition dynamics
of the environment, similar to the Gaussian processes. They take in as input
the current state and action and output a mean and variance for the delta state
st+1 − st. The use of probabilistic networks instead of traditional deterministic
ones capture the aleatoric uncertainty in the model, which is the uncertainty
tied to the random processes in the environment. Chua et al. [1] also use en-
semble training to capture the epistemic uncertainty in the model, which is the
uncertainty tied to the variance in the model parameters themselves. Ensem-
ble training is the training of multiple neural network models, each with their
own set of model parameters. Averaging the outputs of these models together
decreases the variance of the output without biasing it.

The full algorithm uses model predictive control (MPC) to optimize the control
policy. It trains the probabilistic ensemble model on an initial dataset, then
uses a cross-entropy method on the model to optimize for the best set of actions
to take to maximize the cumulative reward function. Cross-entropy methods
(CEM), select random actions from a candidate distribution, then these distri-
bution parameters are updated based on the actions that generated the best
cumulative reward [13]. Once we have a set of actions that are optimized, we
take one step in the environment with the first action, then re-optimize from
the new state. This is done to correct for any mistakes arising from inaccurate
dynamics, since “one-step” models that model the state transition dynamics
usually have compounding error that lead to inaccurate predictions in horizons
far away from the initial [5,6]. After finishing a trajectory, we add all of the
state-action pairs from running this trajectory into the training dataset, and
retrain the probabilistic ensemble model. This alleviates the distributional shift

8



issue, which arises when the trajectory we are predicting is not in the training set
of the dynamics model. This is because the initial training dataset is generated
using completely random policies, but the trajectory that we are following (and
therefore generating predictions from the dynamics model) follows an optimal
policy we get from MPC. If the random policy and the optimal policy are very
different from each other, the predicted trajectory will fall outside of the dis-
tribution of training trajectories, and the prediction accuracy will drop greatly.
By re-training after each trajectory, we train on additional trajectories that es-
sentially help the model “explore” new parts of the environment and increase
its prediction accuracy in those domains. Overall, this PETS algorithm led to
results that are on par with popular model-free approaches such as Proximal
Policy Optimization [11], but required much less samples to reach this point.
For the Half-Cheetah simulated environment, it required roughly 125 times less
samples to reach the same results as Proximal Policy Optimization.

4.2.3 Trajectory-Based Models

Lambert et al. [3] describes a new parameterization of the model-based RL
problem. The previous methods described above both use models that represent
the state transition dynamics, or the “one-step” dynamics. This model has been
shown in the past to result in compounding errors [5,6]. Xiao et al. [5] notes
the issue of compounding errors traditional one-step models, and mitigates the
issue by adapting the planning horizon depending on the state. The reasoning
behind this is that certain states in the environment have simple dynamics
that can be learned easily at longer horizons without much compounding error,
while other states have more complex dynamics, and the compounding error
issue leads to much lower predictive accuracy. Asadi et al. [6] also notes the
error magnification effects when the one-step model is composed onto itself
(feeding the output of the network back into the input). It attempts to resolve
this using multi-step models that can output the resulting state after taking a
particular sequence of actions. Besides the compounding error issue, one-step
networks have also been shown in the past to have an objective mismatch issue
[4]. That is, the objective of improving the prediction accuracy of a one-step
model is not correlated with the objective of finding the optimal control policy
for an environment. Lambert et al. [3] expands upon previous attempts to fix
compounding errors by introducing the “trajectory-based” model, which trains
a time-dependent network from the entire trajectory as a whole. As seen in
Figure 2, the model takes in the initial state s0, a time index into the future
t, the parameters θ that determine the control policy πθ(at|st). It outputs the
state at that future time index: st. Lambert et al. [3] has already demonstrated
that with simple πθ(at|st) control policies like PID or LQR, the trajectory-
based model has higher prediction accuracy especially at longer horizons and
increased sample efficiency. However, simple control policies like LQR have
fewer parameters (4 for the cartpole environment). By training the model with
an LQR control policy, we constrain the model to only be able to predict for
trajectories that use LQR control policies. This severely limits the expressivity

9



Figure 2: A diagram showing the architecture, inputs, and outputs of the
Trajectory-Based Model.

of the model and the types of control policies that it can be used to optimize.
In order to use this trajectory-based model to optimize a control policy with
a similar algorithm as PETS [1], we need to train the model with much more
complex and expressive policies, like neural networks, which can have upwards
of 100 weight and bias parameters even for smaller architectures. In this paper,
we look into the prediction accuracy of trajectory-based dynamics models with
complex neural network policies of varying architectures and sizes, along with
some of the issues that arise when training these networks.

10



Figure 3: A diagram depicting the cartpole environment and its important
parameters. The goal of the environment is to balance the pole at 90 deg to the
cart.

5 Experimental Framework

In this section, we will give a description and analyze the Cartpole and Reacher
gym simulation environments in which we will run these tests. Then, we will
diagram and describe the methods used to generate training and evaluation
trajectories, as well as the equations used to generate the evaluation metrics
used.

5.1 Environment

5.1.1 Cartpole

While the Inverted Pendulum is a traditional control problem, the use of its
dynamics in the cartpole environment for machine learning purposes was first
introduced by Barto et al. [8], and consists of a cart on a track attempting to
balance a pole. As we can see in Figure 3, the cartpole environment’s important
parameters include the mass of the cart M , the mass of the pole m, and the
length of the pole L. The control input into this environment is a force pushing
the cart u. The environment’s state vector include the cart position x, the cart
velocity ẋ, the pole angle θ, and the pole angular velocity θ̇. For our simulation,
we use M = 1kg, m = .1kg, L = 1m, and a time step of τ = .02s. These
parameters lead to a time constant of .319s.

We will now take a look at the dynamics of the cartpole system to gain a
better understanding of the unstable or stable modes of the cartpole system.
We will first solve for the nonlinear dynamics of the system using Lagrangian

11



Dynamics. In order to do this, we first calculate the kinetic energy and potential
energy of the cartpole system. The cart’s kinetic energy is defined by equation
(10). The pole’s kinetic energy is defined by equation (11). The pole’s potential
energy is defined by (12). We then use L = KEtotal − PEtotal and (13) with
q = [x, θ] to calculate the nonlinear dynamics of the cartpole system (14). We
can linearize these dynamics around

[
0 0 0 0

]
, which results in the state

space representation ṡ = As + Bu where s is the state vector
[
x ẋ θ θ̇

]
.

The A and B matrices are defined by (15) and (16).

KEcart =
Mẋ2

2
(10)

KEpole =
m(θ̇2L2 + 2cos(θ)θ̇ẋL+ ẋ2)

2
(11)

PEpole = mgLcos(θ) (12)

d

dt
(
δL

δq̇
) =

δL

δq
(13)

ẋ
ẍ

θ̇

θ̈

 =


ẋ

−mLsin(θ)θ̇2+u+mgcos(θ)sin(θ)
M+m−mcos(θ)2

θ̇
−mLcos(θ)sin(theta)θ̇2+ucos(θ)+mgsin(θ)+Mgsin(θ)

L(M+m)−mcos(θ)2

 (14)

A =


0 1 0 0
0 0 mg

M 0
0 0 0 1

0 0 mg+Mg
ML 0

 (15)

B =


0
1
M
0
1
ML

 (16)

We take these continuous dynamics, discretize them with zero-order hold with
a time step of τ = .02s, and then plot the poles and zeros using Matlab. Figure
4a displays these poles and zeros. For discrete systems, poles are unstable if
they are outside of the unit circle, and are stable if inside the unit circle. In
Figure 4a, we can see that the cartpole system has one stable, one unstable, and
two marginally stable poles. The unstable pole corresponds to the pole angle.

We can also take a look at these poles and zeros when the discrete cartpole
system is under an LQR policy. The LQR policy aims to use state feedback
control to minimize the cost function J defined by (17). This is done by solving
the Algebraic Ricatti equation (20) for the matrix P . Then, we use (19) to get
the state feedback gain K, which gives our state feedback input u from (18). For
our purposes we use a Q matrix that is a diagonal matrix where the diagonal
is
[
.5 .05 1 .05

]
and R = 1. Using matlab, we can generate a pole zero

12



(a) Open loop
(b) LQR closed loop control

Figure 4: Maps of the poles and zeros of the discretized cartpole system, gener-
ated with Matlab. The left is the open loop system, and the right is under an
LQR control policy.

plot of the system under this control policy. Figure 4b shows us that with LQR
control, we stabilize all poles, as in all poles are now within the unit circle. This
essentially tells us that the LQR policy balances the pole on top of the cart. We
can see from the graph in Figure 5a that both the pole angle and cart position
are stabilized by the LQR policy.

J =

∫ ∞
0

(sTQs+ uTRu) (17)

u = −Ks (18)

K = R−1(BTP ) (19)

0 = ATP + PA− (PB)R−1(BTP ) +Q (20)

5.1.2 Reacher

The Reacher environment is a five-jointed arm moving in a 3d space. It is
reaching towards a 3d coordinate goal g ∈ R3. The states are determined by
the joint angles θ ∈ R5 and the target goal g ∈ R3: cosines of the joint angles
cos(θ), sines of the joint angles sin(θ), the 3d coordinates of the goal g, the
velocities of the joint angles θ̇, and the difference between the goal and current
coordinates g − x where x is the current 3d coordinate position. The actions
of this environment are a ∈ R5 and represent the torques of the 5 joint angles.
We use a PID control policy as one of the tests in this environment, which uses
the difference between the target goal and the current position to do feedback
control on the five joint angle torques.

13



(a) LQR Control Policy
(b) CMA-ES optimized neural network pol-
icy with default cartpole reward

Figure 5: Above are two plots showing the states of the cartpole system under
different control policies. The left shows an LQR control policy. The right
shows a neural network policy optimized with CMA-ES with the default cartpole
reward, which results in an unstable trajectory.

5.2 System for Training and Evaluating the Dynamics Net-
work

In this section we will be detailing the system used to generate stable trajectories
for the training and test set. Then, we describe the system used for generating
the evaluation metrics used. There are two key neural networks maintained in
these systems: one neural network control policy (depicted in blue in Figure 6),
and one dynamics model (depicted in green in Figure 7). The neural network
control policy πθ(at|st) is used to get actions at for our trajectory. The dynamics
model is the model used to predict the dynamics and is a trajectory-based model
as depicted in Figure 2.

5.2.1 Generating Stable Trajectories

We want to use asymptotically stable trajectories, example shown in Figure
5a, to train the dynamics model. This is because the space of all stable (espe-
cially asymptotically stable) trajectories have lower variance than the space of
all trajectories. There is an argument to be made that constraining the space of
trajectories like this makes the model ineffective for MPC control policy training
like in the PETS algorithm [1] due to the distributional shift issue. The dynam-
ics model will be trained on only stable trajectories, and will be inaccurate when
predicting unstable trajectories. However, the purpose of this experiment is to
determine the prediction accuracy of the trajectory-based model when looking
at trajectories run using complex neural network control policies compared to
trajectories run using LQR control policies. Since LQR control policies are in-
herently stable as shown in Figure 5a, the most fair way to make a comparison
is to train and predict on stable trajectories from neural network policies. It

14



Figure 6: A flow chart showing the process we use to generate stable trajectories
with neural network control policies to train and evaluate the trajectory-based
dynamics model.

should be noted, however, that because of the above reason, the prediction accu-
racy of the trajectory-based model when trained and evaluated on both unstable
and stable trajectories should be looked into, and will be discussed later, though
it is not a central point of this paper.

We find neural network control policy parameters that lead to asymptotically
stable trajectories by using the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [14]. This is a method commonly used to optimize non-linear
non-convex objective functions. It employs an evolutionary strategy, where
each iteration “parents” generate “children” stochastically (the parent vector
plus some random vector perturbation). Then, we select the children that be-
come the new parents based on which child produced the best values for the
objective function. In doing so, with each iteration, we move closer to an op-
timal objective function value. In the case of our problem, we are trying to
find policy weight and bias parameters θ that will lead to a high cumulative
reward. Since this objective function includes optimizing through a neural net-
work, it is highly non-convex and non-linear, which is why we choose to use
CMA-ES for this problem. The CMA-ES optimizer uses the environment sim-
ulation dynamics directly to find asymptotically stable policy parameters θ. At
each iteration, from the “parent” it generates random “child” weight and bias
parameters θrand, then run a simulation with that control policy πθrand

(at|st),
and selects the best the cumulative reward to be the new parents. After we get
the asymptotically stable policy parameters θopt, we use these as the weight and
bias parameters for the neural network control policy πθopt , then run through
the environment simulation to generate a trajectory. We then save pairs of
the parameters θopt and the states of the trajectory. We do this for multiple
trajectories, which are then split up into training sets and test sets. For each
dynamics model we train and evaluate, we have 100 different policies generating

15



Figure 7: A flow chart showing the process we use to evaluate the prediction
accuracy of the Dynamics Model Neural Network. We predict trajectories using
the trained dynamics model, normalize the states, then calculate the MSE.

100 different trajectories in the training set and similarly 100 policies for 100
trajectories in the evaluation set.

The choice of reward function used for the objective function in the CMA-
ES optimizer is important. Initial tests were done using the default cartpole
reward, which is simply equal to the number of time steps before the simulation
ends. The simulation ends when the cart fails to balance the pole. Specifically,
it is when the pole angle exceeds 24 deg, or the cart position moves more than
9.6m. So, if the pole angle and cart position stay within that threshold for the
full run (250 time steps), then the objective function would be maximized at
250. However, this does not generate asymptotically stable trajectories due to
plateaus in the reward surface. It only guarantees trajectories that are within
a threshold for the full run of 250 time steps. The state plot of a trajectory
generated using a control policy optimized with this reward function is shown
in Figure 5b. We changed this reward function to be the LQR cost function
(17), where Q is

[
.5 .05 1 .05

]
and R = 1.

5.2.2 Training and Evaluating the Dynamics Model

As we can see from Figure 2, we use control policy parameters θ and an initial
state s0 as inputs into the network. From the last step, we have saved pairs

16



of control policy parameters θ and a list of states for the trajectory generated
using the corresponding control policy πθ(at|st). We train the dynamics model
by inputting the first state (the initial state s0) for the trajectory, control pol-
icy parameters θ, and varying the time index t from 1 to the horizon, for this
experiment, 250. The target output we use to train the model against is the
rest of the trajectory from s1 to s250.

As seen from Figure 7, we take a trained dynamics network and evaluate against
a test set to get the prediction accuracy in the form of a mean-squared error.
We use a similar process as the training process, except with a test set. We
use the asymptotically stable policy parameters θ and the initial state s0 from
the corresponding trajectory. We vary the time index t from 1 to 250 to gen-
erate a predicted trajectory from s1 to s250. We then compare this against the
ground truth trajectory. For a fair comparison where one particular state is not
weighted more than the other, we normalize the state vectors in the predicted
and ground truth trajectories between 0 and 1. We then use the standard MSE
formula shown in (21), where N is the number of trajectories we have evaluated.
We take the mean with respect to all N trajectories evaluated. In (21), sgt,i is
the ground truth state of the ith trajectory, and spred,i is the predicted state of
the ith trajectory. In the end, we get a vector of length 250, which includes the
MSE at each time step. Included in most of our result graphs are also error-
bars depicting the 66th percentile of errors amongst all trajectories (transparent
highlighted area), and a baseline showing MSE prediction accuracy compared
to a naive prediction of all 0s (solid line with no markings).

MSEt =
1

N

n∑
i=1

‖(sgt,i − spred,i)‖2 (21)

5.3 Problem Formulation

In the following results, we will be comparing the MSE prediction accuracy of
the dynamics model with various control policies. We will test LQR policies in
the Cartpole environment, PID policies in the Reacher environment, and neural
network policies of varying depths.

17



Type Number of Parameters MSE

One-step - 3.97e11
Trajectory-based with NN control 61 1.30

LQR 4 0.0125
LQR(train) 4 0.0132

Table 1: Table detailing the MSE of four different evaluations. The trajectory-
based models (rows 2 through 4) perform much better than the one-step, which
suffers from compounding error. The two LQR policy trained models (one
evaluated on a test set and the other the training set) perform better than the
neural network policy trained models.

6 Results and Discussion

6.1 Comparison of One-step, LQR, and Neural Network
Control Policies

We first take a look at the MSE prediction accuracy of the one-step network
(with delta state st+1 − st outputs), the trajectory-based network with LQR
control policy, and the trajectory-based network with a neural network control
policy (1 hidden layer, width 5). Note that for the one-step network, we directly
fed each next-state back into the input, which led to serious compounding error.
The results are listed in Table 1. The one-step models performed the worst
due to compounding error. In Figure 8, we can see that after time step 50,
the network reached an unexplored part of the state transition dynamics (the
network was not trained for this part of the environment), and began giving
outputs which were wildly inaccurate. Notice that this is not an issue with
the trajectory-based models. However, the less complex LQR policy with less
policy parameters not only had a lower MSE error, but also did not vary greatly
between the evaluations on the training set and the test set, which suggests no
overfitting. As we will see in later sections, overfitting is an issue with more
complex neural network policies. It is likely not an issue with the LQR policy
because it only has 4 parameters, and therefore varies less, and the training set
of 100 trajectories can more accurately capture the entire space of trajectories
and control policy parameter inputs.

6.2 Neural Network Control Policies of Varying Depths

We now take a look at the MSE prediction accuracy when varying the number
of layers in the neural network control policy. More layers in the policy means
more weight and bias parameters to be input into the dynamics model. For
these networks, we use neural network control policies of hidden layer width
5. As we can see from both Figure 9 and Figure 10, there is a general trend
of more policy parameters leading to more error. Another important thing to

18



Figure 8: A plot comparing the MSEs of the One-step dynamics model, the
trajectory-based dynamics model with an LQR control policy (both evaluated
on test and training sets), and the trajectory-based dynamics model with a NN
control policy (1 hidden layer, width 5). The one-step model’s error compounds
after 50 time steps. Both LQR policy models perform better than the neural
network policy model. We have also included in this graph 66th percentile errors
as well as baseline predictions (solid lines).

19



Network Depth Number of Parameters Evaluation Set MSE

0 31 Test 0.839
1 61 Test 1.30
3 121 Test 1.54
5 181 Test 1.32
0 31 Training 0.00820
1 61 Training 0.00654
3 121 Training 0.00978
5 181 Training 0.0177

Table 2: The table details the MSE results from neural network policies of 4
different depths. We see a general trend that more parameters used (the more
layers used), the higher the MSE.

note is the difference between evaluations on the training set (Figure 10) and
evaluations on the test set (Figure 9). This big difference suggests overfitting
to the training set. We hypothesize that this is because the training set did not
accurately capture all the different types of trajectories there could be. This
could be because with neural network control policies, there is a higher variance
due to the higher number of input parameters. This issue could be potentially
alleviated by training on a higher number of trajectories (1000 instead of 100).
These same trends can be seen in Chart 2, which show the MSEs summed across
the 250 time steps.

6.3 Testing with Control Policy Inputs as Zero

We now look a different type of evaluation where we zero out the θ control
policy parameters before inputting them into the dynamics model. This is
so we can see exactly how much the network is learning from the policy. As
we can see in Figure 11 and Chart 3, the model learns more from the policy
parameters the less policy parameters there are. For the LQR policy (with
only 4 policy parameters), the MSE drastically increases when zeroing out the
policy parameters θ. For the 0 hidden layer neural network (with 31 policy
parameters), it made a minimal difference. For the 5 hidden layer neural network
(with 181 policy parameters), it made no difference at all. Therefore, we can
conclude that the more complex the control policy we use, the less the dynamics
model itself learns from the control policy parameters θ.

6.4 Reacher Environment

6.4.1 Reacher: Comparison of One-step, PID, and Neural Network
Control Policies

For the Reacher environment, we see in Figure 12 and Table 4 that the one-
step model, similar to the Cartpole environment, performs worse than both

20



Figure 9: A plot comparing the MSEs of different neural network control policy
depths in the Cartpole environment. This evaluation is done on test sets. We
can see the general trend that more parameters means higher MSE. We have
also included in this graph 66th percentile errors as well as baseline predictions
(solid lines).

Policy Type No-Policy Number of Parameters MSE

LQR False 4 0.0125
LQR True 4 0.478

NN 0 hidden layers False 31 0.839
NN 0 hidden layers True 31 0.965
NN 5 hidden layers False 181 1.32
NN 5 hidden layers True 181 1.25

Table 3: The table details the tests with three different policies: LQR, neural
network with 0 hidden layers, and neural network with 5 hidden layers. We
do tests with the control policy parameters zeroed out. We can see that the
difference between the “no-policy” and normal tests are biggest in the LQR
tests.

21



Figure 10: A plot comparing the MSEs of different neural network control policy
depths in the Cartpole environment. This evaluation is done on the original
training set. We can see the general trend that more parameters means higher
MSE. We have also included in this graph 66th percentile errors as well as
baseline predictions (solid lines).

22



Figure 11: This graph shows the LQR policy, the NN policy with 0 hidden layers,
and the NN policy with 5 hidden layers with the policy parameter inputs zeroed
out. We can see that the dynamics model trained on the LQR policy suffers
more from losing the control policy parameter inputs. We have also included in
this graph 66th percentile errors as well as baseline predictions (solid lines).

23



Policy Type Number of Parameters MSE

One-step - 144
Trajectory-based with NN control 146 11.8

PID 15 23.7

Table 4: The table above displays the MSE results of evaluations on a one-step
dynamics model, a trajectory-based model trained on trajectories with neural
network control policies, and one with PID control policies. We can see that the
two trajectory-based model have better accuracy, and that the neural network
control policy is slightly more accurate.

trajectory-based models. However, unlike the Cartpole environment, the sim-
ple PID control policy performs worse than the neural network control policy.
We can see, however, from the baselines, that the small error between the two
policies could be attributed to differences in the ground truth trajectories used
to train them. It seems that with the PID policy generated ground truth tra-
jectories that were further away from the environment origin than the neural
network control policy. To discover why this is would require further looks into
the workings of the PID policy in the Reacher environment, and is left for future
work.

6.4.2 Reacher: Neural Network Control Policies of Varying Depths

For the Reacher environment, we see from Figure 13 and Table 5 that there is
still a general trend that a higher number parameters means lower prediction
accuracy. There is also still a drastic difference between the training set and
test set, suggesting overfitting. However, we see in Figure 14, for the training
set evaluations, there is no prediction accuracy trend present whatsoever. We
hypothesize that overfitting to the training trajectories set has caused this, and
further work into fixing the overfitting issue is needed to look into this.

6.4.3 Reacher: Testing with Control Policy Inputs as Zero

We see in the Reacher environment “no-policy” tests the same trends we saw in
the Cartpole environment. In Figure 15 and Table 6 that there is a big difference
between “no-policy” and original evaluations for the PID policy, but less of a
difference the more parameters we add to the control policy. This suggests that
the dynamics model has a more difficult time learning from the control policy
parameters the more parameters there are.

24



Figure 12: This graph shows the one-step dynamics model, the trajectory-based
dynamics model with a neural network control policy, and with a PID control
policy on the Reacher environment. The one-step model still suffers from com-
pounding error, while the trajectory-based models perform better. The PID
policy, however, ends up worse than the neural network control policy. We have
also included in this graph 66th percentile errors as well as baseline predictions
(solid lines).

Network Depth Number of Parameters Evaluation Set MSE

0 116 Test 10.6
1 146 Test 11.8
3 206 Test 14.9
5 266 Test 13.3
0 116 Training 0.144
1 146 Training 0.103
3 206 Training 0.0989
5 266 Training 0.123

Table 5: The table above shows results for evaluations of a trajectory-based
dynamics model with control policies of varying depths on the Reacher envi-
ronment. We can see that, while for the evaluations on a test set, the accuracy
generally decreases with the number of parameters, this is not true for the eval-
uations on a training set.

25



Figure 13: The graph above shows results for evaluations of a trajectory-based
dynamics model with control policies of varying depths on the Reacher envi-
ronment. We can see that there is a general trend that the accuracy decreases
when increasing the number of parameters. We have also included in this graph
66th percentile errors as well as baseline predictions (solid lines).

Policy Type No-Policy Number of Parameters MSE

PID False 15 23.7
PID True 15 32.3

NN 0 hidden layers False 116 10.6
NN 0 hidden layers True 116 13.2
NN 5 hidden layers False 266 13.3
NN 5 hidden layers True 266 13.7

Table 6: The table above shows the the PID policy, the 0 hidden layer neural
network policy, and the 5 hidden layer neural network along with tests where
the control policy parameter inputs into the trajectory-based dynamics model
are zeroed out. We can see the biggest difference between the “no-policy” and
original evaluations for the PID policy compared to the other policies.

26



Figure 14: The graph above shows results for evaluations of a trajectory-based
dynamics model with control policies of varying depths on the Reacher envi-
ronment. These evaluations are done on the original testing sets. There is no
general trend in the training set evaluations. We have also included in this
graph 66th percentile errors as well as baseline predictions (solid lines).

27



Figure 15: The graph above shows the the PID policy, the 0 hidden layer neural
network policy, and the 5 hidden layer neural network policy. It also includes
tests with the control policy parameter inputs into the trajectory-based dynam-
ics model zeroed out. We can see the biggest difference between the “no-policy”
and original evaluations for the PID policy compared to the other policies. We
have also included in this graph 66th percentile errors as well as baseline pre-
dictions (solid lines).

28



7 Future Work

7.1 Overfitting

Due to the length of the research period, there are still many avenues to go
down to discover more about the workings of the trajectory-based model and
how it interacts with control policies with a high-dimensional parameter space.
One particularly interesting one is the overfitting issue. It seems from this
research that there is a positive correlation between the number of parameters
used in a control policy and the variance of the trajectories generated by that
control policy. This makes sense because the higher the dimension of the control
policy parameter space, the more the control policy can vary for each trajectory.
Higher variance training trajectories can lead to overfitting to the training set
and loss of generalizability to a test set. This issue can be alleviated with the
use of more training trajectories, or perhaps ensemble training, which is the
training of multiple dynamics models to average together their outputs for a
non-biased, lower-variance output.

7.2 Testing with Control Policies with More Parameters

Due to the time constraints of generating these trajectories, we were unable
to run tests with massive neural networks, with over thousands of parameters.
However, pushing this boundary could be very useful in solidifying our hypothe-
ses on the prediction accuracy of the dynamics model. We believe that more
parameters means less prediction accuracy, due to the dynamics model having
difficulty learning from the control policy if it has too many parameters. Train-
ing a dynamics model with trajectories with control policies that have thousands
of parameters could show us if this trend continues.

7.3 Uncertainty

Similar to the PETS algorithm [1], we want to test these dynamics models with
the added benefit of uncertainty-aware predictions. We can account for the
aleatoric uncertainty of the environment by using probabilistic loss functions
for the trajectory-based dynamics model. We can account for the epistemic
uncertainty of the model itself by implementing ensemble training, where we
train multiple dynamics models, run an input through all of the models, and
average together the outputs to get the final uncertainty-aware output. We
would like to test the prediction accuracy of these uncertainty aware models on
trajectories with neural network control policies with many parameters.

7.4 MBRL

The end goal of this research is to apply the trajectory-based model to model-
based reinforcement learning algorithms. We could use a system similar to the
one described by Chua et al. [1]. We use a trained dynamics model to simulate

29



the dynamics of the environment for an optimizer to determine the best control
policy in an MPC algorithm. Then, we can test this optimized control policy to
see how it compares to other MBRL algorithms such as PILCO [2] or a similar
MPC algorithm with the one-step model. We can test this MPC approach with
re-optimizing the control policy at each time step, and re-training the model
after each trajectory similar to PETS [1]. This paper looks into the prediction
accuracy of the trajectory-based model on trajectories using neural network
control policies. This is necessary for future applications in MBRL, since we
would like to optimize for expressive neural network control policies in these
algorithms, rather than only simple (low number of parameters) control policies
like LQR or PID.

30



References

[1] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement
learning in a handful of trials using probabilistic dynamics models,” in
Neural Information Processing Systems, pp. 4754–4765. 2018.

[2] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-Based and Data-
Efficient Approach to Policy Search,” in International Conference on Ma-
chine Learning, pp. 465–472. 2011.

[3] Lambert, N.O., Wilcox, A., Zhang, H., Pister, K.S. and Calandra, R.,
Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning. arXiv preprint arXiv:2012.09156. 2020.

[4] N. Lambert, B. Amos, O. Yadan, and R. Calandra, “Objective mismatch
in model-based reinforcement learning,” arXiv preprint arXiv:2002.04523,
2020.

[5] C. Xiao, Y. Wu, C. Ma, D. Schuurmans, and M. Muller, “Learning to
¨combat compounding-error in model-based reinforcement learning,” arXiv
preprint arXiv:1912.11206, 2019.

[6] K. Asadi, D. Misra, S. Kim, and M. L. Littman, “Combating the
compounding-error problem with a multi-step model,” arXiv preprint
arXiv:1905.13320, 2019.

[7] R. Bellman, “A markovian decision process,” Journal of mathematics and
mechanics, pp. 679–684, 1957.

[8] A. G. Barto, R. S. Sutton and C. W. Anderson, ”Neuronlike adaptive ele-
ments that can solve difficult learning control problems,” in IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5, pp. 834-846,
Sept.-Oct. 1983.

[9] Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S., Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In International Conference on Machine Learning, pp. 1861-1870.
PMLR. 2018.

[10] Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. ”Con-
tinuous deep q-learning with model-based acceleration.” In International
Conference on Machine Learning, pp. 2829-2838. PMLR, 2016.

[11] Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. ”Proximal policy optimization algorithms.” arXiv preprint
arXiv:1707.06347, 2017.

[12] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust
region policy optimization”. In CoRR, abs/1502.05477. 2015.

31



[13] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer. The cross-
entropy method for optimization. In Handbook of statistics, volume 31,
pages 35–59. Elsevier, 2013

[14] Hansen, Nikolaus. ”The CMA evolution strategy: A tutorial.” arXiv
preprint arXiv:1604.00772. 2016.

32


