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Closing Actuators for Applications

in Inchworm Motors
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Ryan M. Shih, Craig B. Schindler , and Kristofer S. J. Pister

Abstract— We present a nonlinear dynamics model for lateral
electrostatic gap closing actuators (GCAs) operated in air and
underwater. We factor in finger bending and the release phase’s
initial velocity over prior work, and we systematically study the
effect on GCA pull-in and release time by varying both the
finger length and the release spring constant. Simulation results
are then compared to experimental data with good conformity.
We also apply this dynamics model to optimize electrostatic
inchworm motors for drive frequencies up to 40 kHz and speeds
up to 415 mm/s, over 11× faster than what has been previously
reported. [2021-0197]

Index Terms— Gap closing actuators, electrostatic inchworm
motors, MEMS, dynamics.

I. INTRODUCTION

LATERALLY ORIENTED electrostatic gap closing actua-
tors (GCAs) are useful for their low power draw and high

areal force density. Since maximizing force output correlates
with shrinking the size of the gap, these actuators are limited
in the amount of displacement they can achieve, but this can
be overcome by placing multiple actuators in an inchworm
motor configuration [1]–[3]. Combining millimeter-scale dis-
placements, force densities on the order of 1 mN/mm2, and
low power draw, these motors serve an important function in
the microrobotics application space [4], [5].

The force output of GCA array-based inchworm motors
has been well characterized in prior literature with excellent
experimental verification [1]–[3]. However, forming an accu-
rate model for these actuators’ dynamics remains a challeng-
ing problem. Existing analyses of lateral electrostatic GCA
dynamics tend to assume the capacitive fingers don’t bend
to ignore the effects of local deformations [6], [7] or only
simulate resonance instead of the discrete phases of traditional
inchworm actuation [8], [9]. A GCA’s speed should relate
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Fig. 1. The unit cell of an unactuated GCA array. Dimensions of the fingers
and spine used in the model are labeled.

linearly to an inchworm motor’s shuttle speed, and understand-
ing the nonlinear dynamics behind GCAs can enable future
optimization. By achieving faster shuttle speeds, these motors
could drive microrobot legs to rival the speeds of insects.

This paper expands on previously presented work on the
dynamics of GCA pull-in in air [10] and aqueous solu-
tions [11]. We develop a model for the dynamics of GCA
release over prior work, derive an equation for GCA finger
bending, and compare our improved model to experimental
data. We also expand our investigation on device performance
to optimize an electrostatic inchworm motor for driving fre-
quencies of up to 40 kHz and linear speeds of up to 415 mm/s.

II. THEORY

A. Dynamics of an Electrically Actuated Gap Closer Array

Fig. 1 shows the dimensions of the GCA fingers and central
spine. Fingers have a length L, width w f , and out-of-plane
thickness T . The overlap length between fingers is given by
Lol . Before actuation, x0 and xb are the sizes of the front and
rear gaps, respectively, between consecutive pairs of fingers.
A central spine connects a total of N fingers together, and there
are typically tens to hundreds of fingers per GCA. A gap stop
in front of the spine maintains a final finger separation of x f .

The equation of motion for an electrostatic GCA is

mGC Aẍ + b(x)ẋ + kx = Fes (x) (1)

where x is the lateral displacement of the movable finger array
from its nominal position, mGC A is the mass of the movable
finger array, b(x) is the damping coefficient, k is the spring
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Fig. 2. A unit cell of the GCA array, highlighting the components of the dynamics equation. (a) The initial state of the system before pull-in. (b) The initial
state of the system before release. The initial velocity is nonzero because of stored potential energy in the deformed fingers and spine. Our model assumes
only the spine’s fingers bend, explained further in the Appendix.

constant of the support spring, and Fes(x) is the electrostatic
actuation force. Once the finger array is pulled in, the central
spine contacts the gap stop.

Release of the fingers is unactuated (Fes = 0) and relies on
two support springs to reset the fingers’ position. The initial
velocity upon release is nonzero due to stored potential energy.

B. Gap Closer Dynamics in Air

Fig. 2 shows a unit cell of the GCA array during pull-in and
release, highlighting the components of the dynamics equation.

The mass mGC A in Eq. 1 comprises the full GCA array,
including the central spine and support springs. This mass is

mGC A = ρSi T Ae f f (2)

where ρSi is the density of silicon, T is the device silicon
thickness, and Aef f is the area of the movable finger array
after accounting for the lateral etch of the silicon during
the DRIE step. This undercut significantly reduces the mass.
Unfortunately, undercut tends to be highly process dependent
and can vary from run to run. For our process, it varies between
0.2μm − 0.5μm, averaging around 0.4μm [4], [11], [12].

1) Electrostatic Force: The electrostatic force is found from
the changing capacitance as the GCA’s fingers move and
bend. Traditional models use a parallel plate approximation
for capacitance, which results in deviations of up to 14%
compared to FEM simulations at pull-in [12]. We derive a
model for finger bending in the Appendix.

2) Damping: Between approximately rectangular plates,
the squeeze-film damping coefficient is given by [13], with
adjustments for the proximity of substrate below the fingers
made in [14]. Accounting for both the front and back gaps:

bs f, f =
�

μN S1 S3
2β(η)

(x0 − x)3

��
4(x0 − x)3w f + 2T 3

ox T

(x0 − x)3w f + 2T 3
ox T

�
(3)

bs f,b =
�

μN S1 S3
2β(η)

(xb + x)3

��
4(xb + x)3w f + 2T 3

ox T

(xb + x)3w f + 2T 3
ox T

�
(4)

b = bs f, f + bs f,b (5)

where μair is the medium’s dynamic viscosity (18.5 μNs/m2

for air and 888 μNs/m2 for water at STP), N is the number
of fingers in the array, S1 = max(Lol, T ), S2 = min(Lol , T ),
η = S2

S1
is the fingers’ aspect ratio, β(η) = 1 − 0.58η is a

correction factor for the aspect ratio, and Tox is the separation
between the movable finger array and the substrate.

Previous work also includes shear-film Couette flow damp-
ing between the finger array and substrate [10]. Because of a
GCA’s small surface area, however, we find that squeeze-film
damping is several orders of magnitude larger than shear-film
damping along the fingers’ trajectory, so we ignore the latter
for this model. Shear-film damping would be more relevant
for larger parts, such as the shuttle of an inchworm motor.

3) Spring Force: The movable fingers are supported by two
parallel fixed-guided beams. The spring constant is determined
from Euler beam theory to be

k = 2E∗w3
spr T

L3
spr

(6)

where E is the Young’s Modulus of silicon (169 GPa),
wspr is the width of the beam, and Lspr is the length of
the beam. E∗ = E

1−ν2 is the effective Young’s Modulus,
as recommended by [15] since wspr � T . However, since
we fabricated our devices for this paper on a (100) silicon
wafer with structural components along the [110] or [110]
directions, ν = 0.069 so E∗ = 170 GPa ≈ E [16].

C. Release Dynamics Including Finger and Spine Deflection

Although the effect of voltage on GCA pull-in is well-
documented [10], [11], since most dynamics analyses to date
have focused on resonance instead of the discrete phases of
traditional inchworm actuation [8], [9] the general intuition
was that the drive voltage had little effect after it was released.
In preliminary experiments, however, it was observed that
the release time of GCA arrays noticeably changed based on
the drive voltage during pull-in, but the cause was not well
understood [10]. Here, we formulate a dynamics model that
includes an initial velocity imparted from electrostatic finger
bending and the compression of the central spine.

From the Appendix, at pull-in the fingers feel a distributed
load from the electrostatic force. From Eq. 28, the stored
potential energy of an N-finger array is NUes before release.

The force from the GCA array also places axial strain on
the spine, as shown in Fig. 3. This compresses the spine and
stores potential energy, which is then imparted onto the array
once the fingers are released. The spine’s axial spring constant
is given by

kspine = E Aspine

Lspine
(7)
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Fig. 3. Model diagram for the axial deflection of the spine. The spine has a
cross-sectional area Aspine . The dotted line represents the exaggerated axial
deflection of the spine.

where Aspine is the cross-sectional area of the spine and Lspine

is the length of the spine.
The axial deflection of the spine is given by N times the

electrostatic force at the final position, divided by kspine:

xspine = N Fes,x f

kspine
(8)

The stored energy at the time of release will then be

Uspine = 1

2
kspinex2

spine (9)

The initial velocity of the entire array at release time can
be found via energy conservation to be

vinit =
�

2NUes + 2Uspine

mGC A
(10)

We assume the fingers and spine transfer their stored energy
to the full array very quickly (<1 μs), allowing us to ignore
the losses or dynamics of this energy transfer. We also assume
that the spine compression doesn’t significantly affect the gaps
between fingers at pull-in, i.e., that xspine � x f .

For a GCA with nominal dimensions as in Table I and
pulled in at 60 V, the fingers contribute an estimated 105 pJ
via our finger bending model and the spine contributes an
estimated 49 pJ, highlighting how both factors are important to
the release phase. If we had instead modelled Fes as a uniform
load with the parallel plate approximation, the fingers would
contribute only 62 pJ upon release, showing the significance
of finger bending in release dynamics.

D. Gap Closer Dynamics in a Liquid

The dynamics of GCA arrays are similar in liquids but
with significant modifications to the mass and damping terms.
While the mass of air moved in a GCA array is negligible
compared to the mass of the spine and fingers, the inertia of
liquid moved during submerged actuation cannot be ignored.
This additional mass can be found from continuity of flow.

From incompressible fluid mechanics,

Acẋc = Aw ẋw = A f ẋ f (11)

where Ac = 2(x0 − x)(Lol + T ) is the effective area through
which liquid is squeezed out of the closing gap, ẋc is the
average velocity of liquid squeezed out of that gap, Aw =
2(xb + x)(Lol + T ) is the effective area through which liquid
enters the widening adjacent gap, ẋw is the average velocity of
liquid passing into that gap, A f = Lol T is the finger overlap
area, and ẋ f is the finger’s velocity (we assume ẋ f ≈ ẋ).

Using substitution, the average velocity of liquid moving out
of the closing gap and into the widening gap is, respectively,

ẋc = Lol T ẋ f

2(xc − x)(Lol + T )
(12)

ẋw = Lol T ẋ f

2(xw + x)(Lol + T )
(13)

The mass of liquid in these gaps is given by

mc = ρl Lol T (xc − x) (14)

mw = ρl Lol T (xw + x) (15)

where ρl is the density of the liquid. Considering the inertia
associated with the mass and velocity of liquid in the closing
and widening gaps for each finger, the inertial term of the
dynamics model in Eq. 1 must be modified accordingly for
actuation in liquid. This term is given by

mGC A,e f f ẍ = d

dt

�
mGC Aẋ + N

�
mc

ẋc

2
+ mw

ẋw

2

��
(16)

where the new effective mass is given by

mGC A,e f f = mGC A + Nρl L2
ol T

2

2(Lol + T )
(17)

III. MODELING

A. Model Setup

A dynamics model was developed in Python. The model
takes the equations and initial conditions in the previous
section and uses an ordinary differential equation (ODE)
solver (RK45) to solve the displacement over time for the
GCA array. Defining a state vector X = [x, ẋ]T , the system
dynamics for Eq. 1 are simulated for the initial conditions
X (tpull−in = 0) = [0, 0]T for pull-in, and X (trelease = 0) =
[x0 − x f , −vinit ]T for the release phase (Fes = 0). The
simulation is terminated for pull-in time when x = x0 − x f

and for release time when x = 0. All code can be found at
https://github.com/ahadrauf/gca_dynamics.

B. Pull-In and Release Times

We first run a parameter sweep over our simulation model
to understand how the different GCA dimensions influence the
pull-in and release times. Results are shown in Fig. 4. Finger
length, finger width, initial front gap, and support spring width
are varied for a GCA with nominal dimensions as in Table I.

The biggest influence on pull-in time is x0, with a 25%
decrease yielding a 30% decrease in pull-in time. Interestingly,
Lol is predicted to make minimal contribution to pull-in time
near the nominal value due to its linear effect on both electro-
static force and damping, although it makes an larger impact
for Lol < T due to the damping equation’s β(η) nonlinearity.
In order, the biggest influences on release time are wspr ,
with a 25% increase yielding a 47% decrease in release time;
x0, with a 25% increase yielding a 46% decrease in release
time; Lol , with a 25% decrease yielding a 22% decrease in
release time; and w f , with a 25% decrease yielding a 22%
decrease in release time. Notably, release time is expected
to increase as x0 decreases, highlighting the importance of
the support springs’ force relative to damping. This analysis
presents several options for optimizing motor performance.
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Fig. 4. Pull-in and release times are simulated while varying the finger
overlap length, finger width, initial front gap, and support spring width.
Nominal dimensions are listed in Table I, undercut is assumed to be 0.4μm,
and the drive voltage is 60 V. We also assume all experiments are conducted
at STP.

TABLE I

NOMINAL DIMENSIONS (AS DRAWN IN LAYOUT) OF THE

GCA ARRAYS USED IN THESE EXPERIMENTS

Fig. 5. The GCA test structure layout.

IV. METHODS

A. Detecting Gap Closure in Air

Fig. 5 shows the fabricated test structure. All devices are
fabricated in a silicon-on-insulator (SOI) process as described
in [10]. These SOI wafers have a 40μm device layer, 2μm
buried oxide, and 550μm substrate. The experimental array
varies the fingers’ overlap length and the support springs’
width, with nominal dimensions in Table I. The sense pads are
tied to a 4V source through a pull-up resistor of order 1 M�.
When the grounded spine makes contact with these pads, the
sense signal drops, signaling the time of gap closure. The
release sense structure is manually pushed left and held at
x = 0 via a probe tip during experiments.

Fig. 6 shows a sample of the pull-in signals used for
detection. The pull-in time is measured from the start of the
pull-in voltage on the actuation signal (measured at 10% above
the minimum) to the beginning of the signal drop on the
sense signal (measured at 10% below the maximum). The
sense signal slightly rises together with the actuation signal,
attributed to either capacitive coupling or conductance through
the substrate. Switch bounce was also noticeable upon contact.

Fig. 6. A sample scope trace of the signals used to measure the pull-in time.

Fig. 7. A sample scope trace of the signals used to measure the release
time, and a zoomed out image of the same sense signal trace showing obvious
switch bounce.

Similarly, Fig. 7 shows a sample of the release signals. The
release time is measured from the start of the release voltage
on the actuation signal to the beginning of the signal drop
on the sense signal. On the release signal trace, ringing is
noticeable at the time of actuation signal drop, attributed to
coupling in the measurement phase. Switch bounce is also
present, shown in the zoomed out figure. The time interval
between the first few bounces match our simulation results for
an elastic collision between the sense pad and spine. However,
the real system’s half-period seems to decrease as its amplitude
decreases for pull-in and release, likely because of unmodeled
contact forces like the Van der Waals force or the air spring
effect in the nonlinear squeeze-film damping equation [13].

B. Detecting Gap Closure in Water
A similar test structure was also fabricated to measure

performance in deionized water. The main challenges of
electrostatic MEMS operation in liquid are surface tension,
electrolysis, and electrical conductivity [17]. Surface tension
can create trapped gas bubbles and cause stiction if devices are
dried, and is best addressed by submerging devices slowly to
prevent bubble trapping and storing them in sealed containers
to minimize evaporation losses. Electrolysis also creates gas
bubbles and may lead to other chemical reactions that alter
the electrodes or liquid medium, but can be prevented using
a high-frequency AC drive signal instead of a DC drive sig-
nal [18]. Finally, liquids with high electrical conductivity will
dissipate power, reducing the electrostatic actuator’s efficiency.
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Fig. 8. Pull-in and release time measured and modelled while varying voltage
for different overlap lengths in air.

In this work, we highlight results measured in deionized
water to avoid this issue, but we have also previously shown
successful operation of gap closing actuators in a 10mM
sodium dodecyl sulfate (SDS) solution [11]. For fabrication,
Cr/Ru was selected for the metal layer over Au/Pd because
of its strong adhesion to silicon in submerged devices and its
conductive oxide [19]. Each device was tested using a 1 MHz
AC square wave with zero-to-peak amplitudes from 0V to 6V.

V. RESULTS

A. Measurements in Air

1) Pull-in Time: Fig. 8 and Fig. 9 show the measured
and modelled pull-in time as a function of voltage for vary-
ing overlap lengths and for varying support spring widths,
respectively. Each measurement was tested across 4 dif-
ferent devices. We see the data matches reasonably well
to our model - averaging across all devices, for Fig. 8,
RMSE = 4.76μs and mean absolute percentage error
(MAPE) = 5.6%; and for Fig. 9, RMSE = 5.18μs and
MAPE = 4.8%. The simulated undercut process parame-
ter is fit to each device via least squares (combining pull-
in and release data) from the range 0.2μm−0.5μm, and
despite individual device variation the average fit of 0.38μm
(σ = 0.07μm) matches well with the 0.4μm seen in prior
studies [4], [10].

2) Release Time: Fig. 8 and Fig. 9 also show the measured
and modelled release times during the aforementioned para-
meter sweeps. The simulated undercut for release time is the
same as the one for pull-in time for each device. We see the
results also match our model fairly well - averaging across all
devices, for Fig. 8, RMSE = 1.79μs and MAPE = 3.4%; and
for Fig. 9, RMSE = 6.27μs and MAPE = 6.3%. Notably, the
pull-in and release times also follow our trend predictions in
Sec. III-B (although specific values in Fig. 4 vary somewhat
from the simulations here due to the fitted undercut).

B. Measurements in Water

Fig. 10 shows the pull-in time underwater as a function of
voltage for varying overlap length. Compared to operation in
air, GCAs submerged in deionized water have slower pull-in

Fig. 9. Pull-in and release time measured and modelled while varying voltage
for different spring constants in air.

Fig. 10. Pull-in time measured and modelled while varying voltage for
different overlap lengths in deionized water. The 55 μm device was damaged
before testing up to 6 V.

times in exchange for higher force output, caused by water’s
relative permittivity of �r = 80. Data was taken from [11] with
authors’ permission, although the simulation model is specific
to this work. In simulation, our only change was to modify the
medium’s relative permittivity, density, and viscosity to water’s
standard values at STP. The results match our model well for
small voltages and finger lengths but deviates a little otherwise,
with RMSE = 0.559ms and MAPE = 20.6%. We predict this
stems from our model underestimating water’s damping force.

C. Inchworm Motor Speed

When integrating lateral GCAs into electrostatic inchworm
motors, one practical application of decreasing pull-in and
release times is increasing the max frequency with which the
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Fig. 11. The layout used for inchworm motor speed tests.

inchworm motor can still output its maximum force. We can
apply the above GCA dynamics model to estimate this max
frequency. We run our inchworm motors using the driving
scheme in [2] with a 75% duty cycle; in other words, for a full
period τ , the drive voltage is high for 0.75τ and low for 0.25τ .
Fig. 3 in [2] provides a good pictorial depiction of the driving
scheme. The structures are metallized with 60 nm sputtered
TiN to lower the resistivity of sidewall contacts and to test
the effect on motor longevity. Sidewall contact resistance was
reduced from over 10 M� without TiN to 6-7 k� with TiN.
The highest lifetime of a motor observed was 28 hours without
TiN, and TiN did not noticeably improve device lifetime.

Denote tP as the pull-in time when the GCA hits the gap
stop, tR as the release time when the GCA returns to zero
position, tPT as the time when the pawl first touches the
shuttle during pull-in, and tRT as the time when the pawl
first releases the shuttle on release. Denoting the two actuators
as A and B, there are four potential limits on the motor’s
maximum ideal frequency: we desire (1) having pawl A come
in contact with the motor’s shuttle before pawl B releases
contact (tPT < tRT + 0.25τ ); (2) having pawl A fully pull-in
before releasing its drive voltage (tP < 0.75τ ); (3) having
pawl B release the shuttle before its drive voltage is toggled
again (tRT < 0.25τ ); and (4) having pawl A fully settle
before pawl B returns again (tP − tPT < 0.5τ ). We can define
the maximum drive frequency for which we can expect full
output force as fideal,max = 1/tmax , where tmax is the largest
time constraint defined by (1)-(4). Given the accuracy of our
simulations for tP and tR above, we choose to estimate tPT

and tRT by shifting the endpoint of our simulation.
The testing structure (based on dimensions in Table I) is

shown in Fig. 11 based on the similar layout in [10]. The pawl
arm attached to each GCA at angle α = 65◦ makes contact
with the inchworm motor shuttle at x = x f −0.8μm (factoring
in an undercut of 0.2 μm for small feature sizes [12]). While
the pawl is in contact with the shuttle, the GCA support spring
constant in Eq. 6 is added to the pawl arm’s spring constant,
which is given via Euler beam theory to be

kpawl = 3E∗ Ipawl

L3
pawl cos(α)

(18)

Fig. 12. Velocity data measured for various voltages. The red line indicates
the slope from the 4 lowest frequency data points. The vertical dotted line
represents the maximum ideal frequency, described in Sec. V-C.

The trace parasitics also affect the dynamics by adding an
RC time constant when switching the drive voltage. Traces
were not metallized in order to assess in the importance of
RC effects on velocity. The device layer silicon we used has
a resistivity of 10 �-cm, which means the high voltage traces
should possess a resistance of 200 k� and the ground traces
a resistance of 220 k�. The high voltage traces also have an
estimated capacitance of 0.80 pF with the substrate.

We programmed our motor to take 10 steps at a specified
frequency. Fig. 12 shows the resulting velocity, calculated by
dividing the measured distance traveled by the time elapsed.
As shown, inchworm motor performance begins to degrade
from its linear improvement once f > fideal,max . Prior work
at lower frequencies highlights expected velocity curves with
slopes of 4μm/s/Hz [10]. As we push our motors to higher
speeds, however, the linear fits trend 2-3 times as much of a
slope. Indeed, we achieved a maximum speed of 415 mm/s at
40 kHz, over 11× faster than the 35 mm/s reported previously
at 8 kHz [10]. It was observed visually for low velocities that
pawls will often push past the currently engaged pawls due
to inertia, leading to larger step sizes. The parasitic RC factor
only slightly reduced fideal,max in simulation, highlighting that
this driving scheme is relatively robust to parasitics.

Another influence from the parasitics is on power consump-
tion. We can calculate the power consumption simply as

P = CV 2 f (19)

where f is the drive frequency. Prior experiments have mea-
sured the pull-in capacitance of a finger array with nominal
dimensions to be 2.1 pF [12], so at 65 V we get an estimated
power consumption of 9 nW/Hz for the actuator alone versus
12 nW/Hz with parasitics. This analysis continues the opti-
mization discussion in Sec. III-B - shorter finger lengths, for
example, have faster release times and thus can be driven faster
with lower power consumption at the cost of lower output
force. Alternatively, increasing the drive voltage improves tP ,
tR , and output force while increasing power consumption.

We also assume here that the shuttle is unloaded, although
our analysis can easily be extended for a load force FL on the
shuttle by adding an offset FL tan(α) to the GCA’s equation of
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motion when simulating tP , tR , tPT , and tRT . A more rigorous
analysis could add a coupled equation of motion for the shuttle
with its own inertial and damping forces together with the
pawl’s contact friction and spring force (Eq. 18).

VI. CONCLUSION

In this work, we formalize a nonlinear dynamics model for
laterally oriented electrostatic gap closing actuators. We sys-
tematically compare our model to experimental results over a
variety of finger lengths and support spring constants in both
air and deionized water mediums. We also highlight appli-
cations for these gap closing actuators in inchworm motors,
showing that proper device optimization using these nonlinear
models can allow for motors with large displacements, high
force densities, and fast actuation.

APPENDIX

ELECTROSTATIC FORCE MODEL WITH FINGER BENDING

This derivation was inspired by [20], which applied the steps
below to comb drive actuators where x0 = xb. We adapted
the derivation to generalize to cases when x0 �= xb. Although
this derivation is quasistatic, we assume that it holds for our
GCAs because our drive frequency is much less than the radial
resonance frequency of an individual finger (1.0 MHz for a
finger with nominal dimensions and 0.4μm undercut [15]).

Denote x as the lateral deflection of the central spine, y as
the lateral deflection of a single finger relative to the spine,
and ξ as the position along the finger’s length ( with ξ = 0 and
ξ = 1 indicating the finger’s base and tip, respectively). Define
the variables g0 = x0 − x and gb = xb + x as the effective
front and back gaps for which our finger bending takes places.
The transverse equilibrium of this finger is governed by

E∗ I
d4 y

dξ4

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

0 ≤ ξ ≤ L − Lol

1

2
�N Lol T V 2

�
1

(g0 − y)2 − 1

(gb + y)2

�
L − Lol ≤ ξ ≤ L

(20)

where E∗ = E
1−ν2 is the effective Young’s modulus and

I = w3
f T/12 is the second moment of the beam. We ignore

the effect of electrostatic fringing fields in this analysis for
simplicity, instead addressing a simplistic model for it later.
We also assume that only the spine’s fingers bend to make
Eq. 20 tractable, and we show later that this assumption is
indeed close to FEM simulation results given y � g0.

We can rewrite this equation as

d4 ỹ

d ξ̃4
=

⎧⎪⎨
⎪⎩

0 0 ≤ ξ̃ ≤ α

Ṽ 2
�

1

(1 − ỹ)2 − 1

(β + ỹ)2

�
α ≤ ξ̃ ≤ 1

(21)

with the substitutions ỹ = y
g0

, ξ̃ = ξ
L , α = L−Lol

L , β = gb
g0

,

and Ṽ 2 = 6�L4

E∗w3
f g3

0
V 2.

The finger is clamped at its base and is assumed to be free
of loads at its tip (ξ̃ = 1), so the boundary conditions are:

at ξ̃ = 0 : ỹ = ỹ � = 0 (22)

at ξ̃ = 1 : ỹ �� = ỹ ��� = 0 (23)

For small ỹ, we can take the first-order Taylor expansion of
the right side of Eq. 21 to get the linearized finger kinematics:

d4 ỹ

d ξ̃4
≈

⎧⎨
⎩

0 0 ≤ ξ̃ ≤ α

a + bỹ α ≤ ξ̃ ≤ 1
(24)

where a =
�

1 − 1
β2

�
Ṽ 2 and b =

�
2 + 2

β3

�
Ṽ 2.

The ỹ0 term is where the math for a gap closing actuator
deviates from the derivation for a comb drive in [20]. The
solution for Eq. 24 is given by

ỹ1(ξ̃ ) = b0 + b1ξ̃ + b2ξ̃
2 + b3ξ̃

3, 0 ≤ ξ̃ ≤ α

ỹ2(ξ̃ ) = −a

b
+ c0e−λξ̃ + c1eλξ̃ + c2 sin(λξ̃ ) + c3 cos(λξ̃ ),

α ≤ ξ̃ ≤ 1 (25)

where λ = b1/4, and b0:3 and c0:3 are constant parameters.
From the boundary conditions in Eq. 22, we can see that

b0 = b1 = 0. For a continuous curve, we need the deflection
ỹ and its three derivatives to be continuous at ξ̃ = α:

ỹ1(α) = ỹ2(α)

ỹ �
1(α) = ỹ �

2(α)

ỹ ��
1 (α) = ỹ ��

2 (α)

ỹ ���
1 (α) = ỹ ���

2 (α) (26)

The boundary conditions in Eqs. 26 and 23 can be written
in the following matrix (27), as shown at the top of the next
page.

We can obtain the electrostatic force by solving this matrix
equation for the finger curvature parameters and then integrat-
ing the moment equation (20) over L − Lol ≤ ξ ≤ L.

We can also find the energy Ues stored in the bent finger
by integrating the potential energy along 0 ≤ ξ ≤ L using:

Ues =

 L

0

1

2
E∗ Iκ2dξ =


 L

0

1

2
E∗ I

�
(y ��)2

[1 + (y �)2]3

�
dξ

(28)

where κ is the curvature of the equation y(ξ), obtained by
substituting y = g f ỹ and ξ = L ξ̃ in Eq. 25, and y � and y ��
are the first and second derivatives, respectively, of y(ξ) with
respect to ξ .

Note that this derivation doesn’t include the effect of fring-
ing fields. Since the kinematic equations become difficult to
solve incorporating a standard heuristic into the above process,
we computed the final electrostatic force by multiplying the
result of solving Eq. 27 by the heuristic Eq. 29 below. This
heuristic was originally described in [21].

Fes,ad j = 1 + x0 − x

πw

�
1 + t√

th + t2

�
(29)

In Fig. 13, we simulated a GCA finger with nominal
dimensions (Table I) using CoventorWare and compared the
above Fes calculation with both a traditional parallel plate
approximation and a numerical solution to Eq. 20 with bound-
ary conditions in Eq. 22-23. Although the parallel plate model
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 − α3 e−λα eλα sin(λα) cos(λα)

−2α − 3α2 − λe−λα λeλα λ cos(λα) − λ sin(λα)

−2 − 6α λ2e−λα λ2eλα − λ2 sin(λα) − λ2 cos(λα)

0 − 6 − λ3e−λα λ3eλα − λ3 cos(λα) λ3 sin(λα)

0 0 λ2e−λ λ2eλ − λ2 sin(λ) − λ2 cos(λ)

0 0 − λ3e−λ λ3eλ − λ3 cos(λ) λ3 sin(λ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

b2
b3
c0
c1
c2
c3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a/b
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

Fig. 13. CoventorWare was used to simulate the deflection at pull-in of
the finger tip vs. electrostatic force on the finger with nominal dimensions
(Table I) and drive voltages from 20–90 V. The finger bending model and
fringing field multiplier match the FEM data with r2 = 0.9995.

implies a 14% higher spring constant than simulation, a gap
often called “spring softening” in literature for its effect on
the resonance modes [8], the finger bending model and fring-
ing field heuristic accurately model the real finger stiffness.
Interestingly, our linearized kinematics match the FEM better
than the numerical solution even at high voltages, perhaps due
to nonlinearity in the fringing field for large deflections.
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