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This work-in-progress presents a parameterizable     

compact model of a microelectromechanical system      
(MEMS) beam element that includes mechanical contact       
and electrical current flow upon gap closure. Quasistatic        
electromechanical simulation analyses include the initial      
onset of pull-in followed by an increase in surface contact          
as voltage and current continue to increase. The traditional         
beam element without contact is a key building block for          
many types of MEMS. However, by adding mechanical and         
electrical contact physics to the beam model, then the         
computationally-efficient design and simulation of many      
other types of MEMS that experience contact may be         
explored. Prior efforts by others include closed-form pull-in        
analytical models and simulations of pull-in and lift-off        
without electrical contact. We describe our compact model        
and simulate the characteristic behaviors of a simple        
gap-closing actuator and a zipper actuator with dimples.  
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The compact model of the beam element has been used          

to model a large variety of MEMS devices that do not           
experience contact [1-3]. However, there are plenty of        
MEMS devices that undergo contact. Examples include RF        
MEMS switches or relays, analog to digital converters,        
low-power potential energy stores, mechanical memory,      
gap stops, high-acceleration impact, torsional switches or       
micromirror (e.g. digital light processing (DLP)), vertical       
diffraction gratings, zipping actuators, lateral comb drive       
instability, etc.  

Prior efforts to model contact include closed-form       
pull-in analytical models [4-6], simulations of pull-in and        
lift-off without electrical contact [7-9], and the modeling of         
separate gate/drain pull-in switches [10-11]. A      
comprehensive review of electrostatic pull-in instability is       
given in [12]. To our best knowledge, a compact model of           
contact current of the gate electrode upon pull-in has not          

been reported. Our parameterized compact model includes       
an electrostatic attractive force for pull-in, a short-range        
repulsive force to prevent beam elements from passing        
through each other, the spring force, and a simple current          
source that is switched on when the gap closes. Once          
closed, current flows between the pair of touching beam         
elements.  

In Section 2, a description of our compact model and          
simulation method are presented; and in Section 3, the         
characteristic behaviors of a gap-closing actuator and a        
zipping actuator with dimples are simulated as test cases.  
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In this section we present our mechanical contact model         

followed by our electrical contact model. The three types of          
forces considered for pull-in are the attractive capacitive        
force, repulsive spring force, and repulsive contact force: 
 

               
 
where  K is the stiffness of the spring supporting the gap           
plate,  x is the displacement of the plate,  gap 0 is the initial            
gap distance between the two plates of the capacitor at zero           
state,  ε is the permittivity of the medium,  Lh is the facing            
area of the plate, and  V is the voltage difference between           
the plates. Our contact force is similar to Lennard-Jones         
repulsion. We have chosen to set the constant  B using the           
boundary condition at gap closure. Gap closure is at a          
displacement of  x 0 =  gap 0 -  h R , where  h R  is the thickness of             
a resistive layer on the plate. Upon closure, the net force           
goes to zero as x → x 0 . Therefore, the constraint on  B  is  
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Figure 1: The configuration of the canonical pull-in model in (1).           
The arrows indicate the positive sense for the respective quantities          
of force and displacement.  
 

 
Figure 2:  Force vs. displacement from zero-state to gap-closure of          
Equation (1). A positive net force is attractive here. Due to (2), the             
net force is zero at gap closure,  x  = 1.9μm . 
 
This constraint enables the plate to achieve a consistent         
contact position upon pull-in, independent of voltage.  

Figure 1 shows the configuration of the canonical        
model in (1), where a pair of conductive plates are          
separated by a gap. The upper conductive plate is supported          
by a conductive spring, and a resistive layer has been          
deposited on the lower conductive plate.  

To examine how contact works in this model, let’s use          
the following quantities:  gap 0 = 2μm,  x 0 = 1.9μm,         
K = 0.094N/m,  Lh = 100μm ⨯ 20μm, ε = 8.854⨯10 -12  F/m.            
Given a variety of applied voltages ranging from 0V to 5V,           
as seen in  Figure 2 , the net force is attractive at all gap             
locations for voltages at or above the pull-in voltage of          
3.553V. For verification, the pull-in formula gives       
V PI  = = 3.547V, having a 0.1% error that  √8Kg (27εLh)3

0/         
is likely due to iteration step-size error. For voltages below          
the pull-in voltage, the net force changes from being         
attractive near zero-state, repulsive at intermediate states,       
attractive near gap-closure, and repulsive beyond      
gap-closure. Locations of zero net-force correspond to       
equilibrium states as shown in  Figures 3 . Verification of         
mechanical contact is shown in  Figure 4 , where the gap          
remains closed as voltage continues to increase beyond        
pull-in. 

 

 

  
Figure 3:  Potential energy  U capacitor  +  U spring  +  U contact of (1), plotted            
as a function of displacement and applied voltage. The minima are           
stable points of equilibrium. For V > 0, the stable equilibrium at            
closure are all located at  x  = 1.9μm.  

 

 
Figure 4:  Quasi-static simulation of the pull-in and mechanical-         
contact of (1) as voltage is increased from 0V to 5V. Pull-in occurs             
at 3.55V, and the equilibrium displacement remains at  x = 1.9μm           
as voltage increases. 
 

We model contact current as a multi-stage switch that         
depends on contact orientation. Our compact beam element        
model consists of lumped electromechanical end nodes [1],        
where forces, moments, voltages, displacements, and      
currents are accounted for. Due to this limitation, lumped         
models do not contain the finer details of distributed         
models. Each beam element is mechanically flexible and        
electrically conductive. Depending on the structural      
behavior, a beam element may make partial or full contact,          
affecting contact resistance. This situation is depicted in        
Figure 5 , where an initial edge contact is followed by full           
contact. The type of contact abruptly affects both voltage         
and current. 

Our quasi-static algorithm solves a system of the form 
 

    
 
where  K is the stiffness matrix [1],  G is the conductance           
matrix,  x  is the displacement at each node,   V   is the voltage  
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Figure 5:  (a) Prior to contact: voltages at nodes a1, a2, and e are              
equal, and no current flows. (b) Edge contact: minimal current          
flows from the upper plate to the lower plate. (b) Full contact:            
maximal current flows between the plates. 
 
at each node,  F (electrostatic and contact) is the externally          
applied force vector depending of node displacements and        
voltages, and  I  (contact) is the externally applied current         
vector, being a discrete function of node displacements and         
voltages. That is, upon edge contact ( x a2 →  x 0 ), the applied           
current at node a2 is  I a2  =  V a2 G edge .  At full contact, the            
applied current is  I a2  =  V a2 G full , where  G full is the full           
conductance for all nodes opposite and contacting across        
the gap . Otherwise, when the gap is open, no current flows           
across the gap. Within our quasi-static (Newton solver)        
loop, the solution vector and sources  F ( x , V ) and  I ( x , V ) are          
updated for each applied voltage step. 
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In this section we use a compact model based on (1) to            

demonstrate the instability of pull-in, mechanical contact,       
and electrical contact. The model for the gap-closing        
element has the added ability to rotate as well as translate as            
the gap closes.  

As shown in  Figure 6 , a  simple gap closing actuator is           
simulated with an anchor, a supporting cantilever element,        
and a gap-closing element. The progression of three states         
is shown as increasing voltage is applied at the anchor          
node e to close the gap. A continuum of quasi-static states           
is shown in  Figure 7 , where the displacements of nodes a1           
and a2 are plotted as a function of applied voltage at node e. 

 
Figure 6:  Progression of states through pull-in using our compact          
model.  The node voltages and displacements are given for each          
state, where a source voltage is applied at node e. State A: a state              
of deflection immediately prior to partial pull-in at  V PI = 2.14V..           
State B: partial pull-in where current flows through the elements.          
State C: after full pull-in as more current flows across the gap.  
 

 
Figure 7:  Simulation of deflection vs. input voltage. A continuum          
of quasi-static states for the device from Figure 6 is shown. An            
input voltage ranging from 0V to 8V is applied at node e. The             
deflections of nodes a1 and a2 are plotted from before to after gap             
closure. The locations of states A, B, and C in Figure 6 are circled. 
 

 
Figure 8: Simulation of output voltage at nodes a1 and a2 versus            
input voltage at node e. Abrupt voltage drops occur upon edge and            
full contact events. The slopes of input to output voltages change           
from 1 to lower ratios after contact current begins to flow. 
 
The most flexible node a2 pulls in at 2.14V, followed by           
node a1 at 7.31V. If the gap element was constrained from           
rotation, the pull-in voltage would be 3.3V. 
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Figure 9: Progression of states through dimple-contact and zipper         
pull-in. Applied voltages at node e are indicated. Gap 0  = 4μm.  
 

 
Figure 10: Plot of deflection at nodes a1, a4, and a7 versus input             
voltage at node e of the structure shown in Figure 9.  
 

As the node a2 makes contact, the resistive element         
causes a voltage drop across the gap, accompanied by a          
flow of current. As node a1 is pulled in, full contact is            
achieved, causing a larger voltage drop and greater current         
flow. The trajectory of voltage ramps and drops are plotted          
in  Figure 8 , with three indicated states corresponding to         
those in  Figures 6 and 7 . The modeling parameters of the           
device are: cantilever length  L = 100μm, width  w = 2μm,           
layer thickness  h = 2μm, sheet resistance  R s = 10 Ω/sq; and            
gap length  L = 100μm,  w 1 = 10μm,  w 2 = 5μm,  h = 2μm,              
gap  = 2μm,  R s  = 10Ω/sq; and gap resistance  R gap  = 100Ω. 

As a second example, the gap model is extended to          
represent a dimple that does not conduct upon closure by          
eliminating the gap model’s contact current source. A        
distributed electrode is formed by connecting six gap        
elements in series (node a1 to a2, a2 to a3 etc.). Five            
simulated states are shown in  Figure 9 for increasing         
voltages at node e. The dimples make contact at States 2           
and 3 with no current flow. Between States 4 and 5 the            
electrode pulls in, increasing its surface contact area and         
current across the gap. The zipped pull-in is asymmetric         
because voltage is higher on the cantilever side. Deflections         
of nodes a1, a4, and a7 are plotted as a function of applied             
voltage at node e in  Fig. 9 . 
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This work-in-progress explored the modeling and      

quasi-static simulation of a gap-closing element. The       
compact model demonstrated an ability to achieve stable        
mechanical contact upon gap closure, with and without        
electrical conductivity. At the point of contact, spring        
(~gap) and electrostatic (~gap -2 ) forces were balanced       
against contact forces (~gap -7 ), while a finite-state current        
source (~ V ) operated across the gap to model current flow.  
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