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Learning Flexible and Reusable Locomotion
Primitives for a Microrobot

Brian Yang, Grant Wang , Roberto Calandra , Daniel Contreras, Sergey Levine, and Kristofer Pister

Abstract—The design of gaits for robot locomotion can be a
daunting process, which requires significant expert knowledge and
engineering. This process is even more challenging for robots that
do not have an accurate physical model, such as compliant or micro-
scale robots. Data-driven gait optimization provides an automated
alternative to analytical gait design. In this letter, we propose a
novel approach to efficiently learn a wide range of locomotion
tasks with walking robots. This approach formalizes locomotion as
a contextual policy search task to collect data, and subsequently
uses that data to learn multiobjective locomotion primitives that
can be used for planning. As a proof-of-concept we consider a sim-
ulated hexapod modeled after a recently developed microrobot,
and we thoroughly evaluate the performance of this microrobot
on different tasks and gaits. Our results validate the proposed
controller and learning scheme on single and multiobjective loco-
motion tasks. Moreover, the experimental simulations show that
without any prior knowledge about the robot used (e.g., dynamics
model), our approach is capable of learning locomotion primitives
within 250 trials and subsequently using them to successfully nav-
igate through a maze.

Index Terms—Learning and adaptive systems, micro/nano
robots, legged robots.

I. INTRODUCTION

SUBSTANTIAL progress has been made in recent years
towards the development of fully autonomous micro-

robots [1], [2]. However, gait design for robot locomotion at the
sub-centimeter scale is not a well-studied problem. Completing
more complicated locomotion tasks like navigating complex
environments is even more challenging. These issues become
exacerbated when dealing with legged locomotion, where even
walking straight is still an active area of study for normal-sized
robots. In this letter, we present a novel approach for the au-
tonomous optimization of locomotion primitives and gaits.

While locomotion on larger-scale robots has been thoroughly
investigated, transferring many of these proven approaches to
the millimeter scale poses many unique challenges. One such
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Fig. 1. The six-legged micro walker considered in our study as a CAD model
(left) and an assembled prototype (right).

obstacle is the lack of access to sufficiently accurate simulated
models at the millimeter scale. Even simulation environments
designed to simulate dynamics at this scale are generally un-
equipped for usage in robotics contexts. Additionally, working
with microrobots can place severe limitations on the number
of iterations as trials become much more time-consuming and
expensive to run.

While microrobot locomotion has been addressed in the past,
much of the work is primarily concerned with the mechanical
design and manufacturing of microrobots. Accomplishing more
sophisticated locomotion tasks on the sub-centimeter scale re-
mains an open area for research. Analytical implementations
of various gait behaviors have worked on microrobots [3], [4],
but these solutions can become unwieldy for robots with higher
DOF such as legged walkers (e.g., our micro-hexapod). Data-
driven automatic gait optimization is a viable alternative to ana-
lytical gait design and optimization, but using these techniques
can be challenging due to the high number of trials that might
be necessary to perform in order to learn viable gaits.

Our contributions are two-fold: 1) we validate the use of both
CPG controllers and Bayesian optimization for microrobots on a
wide range of single and multi-objective locomotion tasks. 2) we
introduce a novel approach to efficiently learn gaits and motor
primitives from scratch without the need for prior knowledge
(e.g., a dynamics model). This is accomplished by collecting
data on various motor primitives using contextual policy search
and using those evaluations to reformulate the problem into a
multi-objective optimization task, providing us a model that can
map any set of parameters to a predicted trajectory. Using this
model, we can optimize our parameters on various trajectories
for subsequent use in path planning. This approach is not tied ex-
clusively to microrobots, but can be used for any walking robot.

To evaluate our approach, we used a simulated hexapod mi-
crorobot modeled after a recently developed microrobot [5]
shown in Fig. 1. We first validate the use of a CPG controller
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on our microrobot to reduce the number of parameters during
optimization. Then, we validate the use of Bayesian optimiza-
tion and existing techniques on a curriculum of progressively
more difficult tasks including learning single-objective, contex-
tual, and multi-objective gaits. As a proof of concept, we evalu-
ated our approach by learning motor primitives from 250 trials
and subsequently using them to successfully navigate through a
maze.

II. RELATED WORK

There has been an abundance of work published on the de-
sign and development of walking [6] and flying millimeter-scale
microrobots [7]–[9]. Much of this work focuses on hardware
considerations such as the design of micro-sized joints and ac-
tuators rather than control. To our knowledge, no previous work
has implemented a CPG-based controller for on-board control
of a walking microrobot, nor has learning been used for loco-
motion on a microrobots.

While hexapod gaits have been thoroughly studied and
tested [10], [11], much of the work did not easily transfer to
our microrobot due to the drastically different leg dynamics.
Most hexapods make use of rotational joints with higher DOF
while our walker uses only two prismatic spring joints per leg,
resulting in less control and unique constraints on leg retraction
and actuation.

While sufficient for simple controllers with few parameters,
manually tuning controller parameters can require an immense
amount of domain expertise and time. As such, automatic
gait optimization is an important research field that has been
studied with a wide variety of approaches in both the single-
objective [12]–[19] and multi-objective setting [17], [18], [20],
[21]. Evolutionary algorithms have been successfully used to
train quadrupedal robots [13], [17], but this approach often re-
quires thousands of experiments before producing good results,
which is unfeasible on fragile microrobots.

A more data-efficient approach used before to learn gaits for
snake and bipedal robots is Bayesian optimization [15], [16],
[19], [22]. Bayesian optimization has been applied to contex-
tual policy search in the context of robot manipulation [23]. Our
contribution builds off of this work by applying and extend-
ing the contextual framework to learning movement trajectories
and path planning. Another extension of Bayesian optimiza-
tion related to our work is Multi-objective Bayesian optimiza-
tion, which has also been previously applied in the context of
robotic locomotion [21]. However, past work is only concerned
with using multi-objective optimization to balance the trade-
off between various competing goals. Our main contribution
demonstrates an entirely novel application of multi-objective
optimization to learning motor primitives that does not involve
the trade-off between various goals, but instead uses a multi-
objective model to learn over an area of possible trajectories for
path planning.

III. THE HEXAPOD MICROROBOT

We now introduce the hexapod microrobot considered in this
letter. This robot is of particular interest due to the unique chal-
lenges that arise when attempting traditional gait design tech-
niques. The micro-scale of the walker makes it very challenging

Fig. 2. Diagram of the robot leg showing the actuation sequence (active motors
are shown in red). Each leg has 2 motors, each one independently actuating a
single DOF.

to obtain an accurate dynamics model. Moreover, the robot is
subject to wear-and-tear, and therefore any learning approach
employed must be capable of learning gaits within a limited
number of trials.

A. Physical Description

The hexapod microrobot is based on silicon microelec-
tromechanical systems (MEMS) technology. The robot’s legs
are made using linear motors actuating planar pin-joint link-
ages [24]. A tethered single-legged walking robot was previ-
ously demonstrated using this technology [5]. The hexapodal
robot is assembled using three chips. The two chips on the side
each have 3 of the leg assemblies, granting six 2 degree-of-
freedom (DOF) legs for the whole robot. The top chip acts to
hold the leg chips together for support, and to route the signals
for off-board power and control. Overall, the robot measures
13 mm long by 9.6 mm wide and stands at 8 mm tall with an
overall weight of approximately 200 mg.

B. Actuation

Each of the robot’s legs has 2-DOF in the plane of fabrication,
as shown in Fig. 2. Both DOFs are actuated, thus the leg has 2
motors, one to actuate the vertical DOF to lift the robot’s body
and a second to actuate the horizontal DOF for the vertical stride.
The actuators used for the legs are electrostatic gap-closing
inchworm motors [25]. During a full cycle, each leg moves
0.6 mm vertically with a horizontal stride of 2 mm. For more
details on the actuation mechanism used on our microrobot, we
refer readers to [26].

C. Simulator

In our experimental simulations, we used the robotics simu-
lator V-REP [27] for constructing a scaled-up simulated model
of the physical microrobot (see Fig. 3). Since V-REP was not
designed with simulation of microrobots in mind, it was not ca-
pable of simulating the dynamics of the leg joints accurately and
would produce wildly unstable models at the desired scale. We
chose to scale up the size of the robot in simulation by a factor of
100 in order to account for the issues with scaling in simulation
(all the experimental results are re-normalized to the dimensions
of the real robot). We believe that this re-scaling still allows
meaningful results to be produced for several reasons. First, the
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Fig. 3. The simulated micro walker.

experiments performed in this letter are meant to demonstrate
the validity of the proposed controller, and the learning approach
for training an actual physical microrobot. The policies trained
are not meant to work on the real robot without any re-tuning
or modification. Second, the simulator still allows to test the
basic motion patterns we want to implement on the microrobot.
Finally, our contribution lends credibility to the potential appli-
cation of Bayesian-inspired optimization methods to a setting
where evaluations can be costly and time consuming.

IV. BACKGROUND

A. Central Pattern Generators

Central pattern generators (CPGs) are neural circuits found
in nearly all vertebrates, which produce periodic outputs with-
out sensory input [28]. CPGs are also a common choice for
designing gaits for robot locomotion [29]. We chose to use
CPGs for our controller because they are capable of reproduc-
ing a wide variety of different gaits simply by manipulating the
relative coupling phase biases between oscillators. This allows
us to easily produce a variety of gait patterns without having
to manually program those behaviors. In addition, CPGs are
not computationally intensive and can have on-chip hardware
implementations using VLSI or FPGA. This makes them well
suited to be eventually used in our physical microrobot, where
the processing power is limited. CPGs can be modeled as a net-
work of coupled non-linear oscillators where the dynamics of
the network are determined by the set of differential equations

φ̇i = ωi +
∑

j

(ωij rj sin(φj − φi − ϕij )) , (1)

r̈i = ar

(ar

4
(Ri − ri) − ṙi

)
, (2)

ẍi = ax

(ax

4
(Xi − xi) − ẋi

)
, (3)

where φi is a state variable corresponding to the phase of the
oscillations and ωi is the target frequency for the oscillations.
ωij and ϕij are the coupling weights and phase biases which
change how the oscillators influence each other. To implement
our desired gaits, we only need to modify the phase biases
between the oscillators φij . ri and xi are state variables for
the amplitude and offset of each oscillator, and Ri and Xi are
control parameters for the desired amplitude and offset. The
constants ar and ax are constant positive gains and allow us
to control how quickly the amplitude and offset variables can
be modulated. A more detailed explanation of the network can

be found in Crespi’s original work [30]. One of the foremost
benefits of using a CPG controller is a drastic reduction in the
number of parameters θi we need to optimize. Overall, the
parameters that we consider during the optimization are θ =
[ω,R,Xl,Xr ] where ω is the frequency of the oscillators and R
is the phase difference between each of the vertical-horizontal
oscillator pairs. In order to allow for directional control, Xl

and Xr are the amplitudes of the left and right side oscillators
respectively.

B. Bayesian Optimization

Even with a complete CPG network, some amount of pa-
rameter tuning is necessary to obtain efficient locomotion. To
automate the parameter tuning, we use Bayesian optimization
(BO), an approach often used for global optimization of black
box functions [19], [31], [32]. We formulate the tuning of the
CPG parameters as the optimization

θ∗ = arg maxθ f (θ) , (4)

where θ are the CPG parameters to be optimized w.r.t. the ob-
jective function of choice f (e.g., walking speed, which we
investigate in Section VI-B). At each iteration, BO learns a
model f̃ : θ → f (θ) from the dataset of the previously eval-
uated parameters and corresponding objective values mea-
sured D = {θ, f (θ)}. Subsequently, the learned model f̃ is
used to perform a “virtual” optimization through the use of
an acquisition function which controls the trade-off between
exploration and exploitation. Once the model is optimized, the
resulting set of parameters θ∗ is finally evaluated on the real sys-
tem, and is added to the dataset together with the corresponding
measurement f (θ∗) before starting a new iteration. A common
model used in BO for learning the underlying objective, and
the one that we consider, is Gaussian processes [33]. For more
information regarding BO, we refer the readers to [32], [34].

C. Multi-Objective Bayesian Optimization

A special case of the optimization task of (4) is multi-objective
optimization [35]. Often times in robotics1, there are multiple
conflicting objectives that need to be optimized simultaneously,
resulting in design trade-offs (e.g., walking speed vs energy
efficiency which we investigate in Section VI-C). When mul-
tiple objectives are taken into consideration, there is no longer
necessarily a single optimum solution, but rather the goal of
the optimization became to find the set of Pareto optimal so-
lutions [37], which also takes the name of Pareto front (PF).
Formally, the PF is the set of parameters that are not dominated,
where a set of parameters θ1 is said to dominate θ2 when

{∀i ∈ {1, . . . , n} : fi(θ1) ≤ fi(θ2)
∃j ∈ {1, . . . , n} : fj (θ1) < fj (θ2)

(5)

Intuitively, if θ1 � θ2 , then θ1 is preferable to θ2 as it never
performs worse, but at least in one objective function it performs
strictly better. However, different dominant variables are equiv-
alent in terms of optimality as they represent different trade-offs.

1As well as in nature [36].
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Multi-objective optimization can often be difficult to perform
as it might require a significant amount of experiments. This
is especially true with our microrobot where large number of
experiments can wear-and-tear the robot. As a result, the num-
ber of evaluations allowed to find the Pareto set of solutions
is limited. Luckily for us, there exist extensions of BO which
address multi-objective optimization. In particular, the multi-
objective Bayesian optimization algorithm that we consider is
ParEGO [38]. The main intuition of ParEGO is that at every it-
eration, the multiple objectives can be randomly scalarized into
a single objective (via the augmented Tchebycheff function),
which is subsequently optimized as in the standard Bayesian
optimization algorithm (by creating a response surface, and
then optimizing its acquisition function). For more informa-
tion about multi-objective Bayesian optimization we refer the
reader to [39].

D. Contextual Bayesian Optimization

Another special case of the optimization task of (4), is con-
textual optimization. In contextual optimization, we assume that
there are multiple correlated, but slightly different, tasks which
we want to solve, and that they are identified by a context vari-
able c. An example (which we investigate in Section VI-E)
might be walking on inclined slopes, where the contextual vari-
able is the angle of the slope. The contextual optimization can
hence be formalized as

θ∗ = arg maxθ f (θ, c) , (6)

where for each context c, a potentially different set of param-
eters θ∗ exists. The main advantage compared to treating each
task independently is that, in contextual optimization, we can
exploit the correlation between the tasks to generalize, and
as a result quickly learn how to solve a new context. Specif-
ically, in this letter we consider contextual Bayesian optimiza-
tion (cBO) [23] which extends the classic BO framework from
Section IV-B. Contextual Bayesian Optimization learns a joint
model f̃ : {θ, c} → f (θ), but now, at every iteration the ac-
quisition function is optimized with a constrained optimization
where the context c is provided by the environment. However,
because the model jointly model the context-parameter space,
experience learned in one context can be generalized to similar
contexts. By utilizing cBO, we will show in Section VI that
our microrobot can learn to walk (and generalize) to different
environmental contexts such as walking uphill and curving.

V. LEARNING LOCOMOTION PRIMITIVES FOR PATH PLANNING

We now present our novel approach to learn motor primitives
for path planning. This approach relies on the possibility of re-
using the evaluations collected using cBO to convert the task
into a multi-objective optimization problem. We specifically
consider a cBO task where we want to optimize the parameters
θ to reach different target positions c = [Δxdes,Δydes] (this
setting is evaluated in Section VI-F). The objective function in
this case can be defined as the Euclidean distance

f =
√

(Δxdes − Δxobs)
2 + (Δydes − Δyobs)

2 , (7)

where Δxobs,Δyobs are the actual positions measured after
evaluating a set of parameters. The cBO model would map
f̃ : [θ,Δxdes,Δydes] → f (θ). However, in order to compute f
it would need to measure Δxobs,Δyobs, effectively generating
data of the form

[θ,Δxdes,Δydes] → [Δxobs,Δyobs, f (θ)] (8)

We can now re-use the data generated from this contextual
optimization to learn a motor primitive model in the form
g : θ → [Δxobs,Δyobs]. The purpose of this learned model g
is now to provide an estimate of the final displacement obtained
for a set of parameters independently from the optimization pro-
cess that generated it. Once such a model is learned, we can use
it to compute parameters that lead to the desired displacement
Δx∗

obs,Δy∗
obs by optimizing the parameters w.r.t. the output of

the model

θ∗ = arg maxθ z(g(θ)) , (9)

where z is a scalarization function of our choice (e.g., the
Euclidean distance). This is equivalent to learning a continuous
function that generates motor primitives from the desired dis-
placement. It should be noted that this optimization is performed
on the model g and therefore does not require any physical
interaction with the robot. Moreover, we can optimize the pa-
rameters over a series of multiple displacements to obtain a path
planning optimization. In Section VI-G, when performing path
planning using the learned motor primitives we will employ a
simple shooting method optimization which randomly samples
multiple candidate parameters and selects the best outcome.

VI. EXPERIMENTAL SIMULATION RESULTS

In this section, we discuss our controller implementation as
well as the performance of our simulated microrobot on various
locomotion tasks. The code used for performing the simulation
and videos of the various locomotion tasks are available online at
https://sites.google.com/view/learning-locomotion-primitives.

A. Controller Implementation

We built our controller following the setup described in
Section IV-A, using a network of 12 coupled phase oscillators
(one per motor). In order to translate the output of each of the
oscillators into motor actuation, we calculate the oscillator out-
puts for each vertical-horizontal motor pair using the piecewise
function

⎧
⎪⎪⎨

⎪⎪⎩

xi + ri cos (φi), xj + rj cos (φj ) if φi > π, φj > π ,
xi + ri, xj + rj cos (φj ) if φi ≤ π, φj > π ,
xi + ri, xj + rj if φi ≤ π, φj ≤ π ,
xi + ri cos (φi), xj − rj if φi ≤ π, φj > π ,

(10)

where the ith oscillator outputs to its respective vertical motor
and the jth oscillator outputs to its respective horizontal motor.
This allows us to discard the parts of the oscillator output that are
not consistent with the physical constraints of the physical robot,
since the actual leg actuators cannot partially retract (see Fig. 4).
We choose to mutually couple all six of the vertical oscillators
(with a coupling weight of 4 to ensure quick convergence on
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Fig. 4. Output of one vertical-horizontal oscillator pair in the CPG network,
which corresponds to one leg on the robot. The retraction phase of both motors
occurs concurrently and rapidly in order to simulate the physical constraints on
the actual physical microrobot.

Fig. 5. Contact/swing patterns for different gaits.

stable limit cycles). We refer the reader to [30] for a more
comprehensive discussion of oscillator coupling in CPGs. Each
of the horizontal oscillators are also coupled with their respective
vertical oscillator in order to encapsulate the dynamics of each
leg. We chose to implement four different gaits with the CPG
– tripod, ripple, wave, and four-two (see Fig. 5). For a more
detailed description of these gaits we refer the reader to [40].
We use the same frequency and phase difference for the whole
network in order to reduce the number of parameters and speed
up the rate of convergence. We use two separate parameters
for amplitude, each controlling the left and right set of legs
respectively. This choice of parameters allows us to control the
turning of the robot which is necessary for path planning and
corrections for not walking straight.

B. Learning to Walk Straight

We optimized the four gaits considered (i.e., dual tripod, rip-
ple, wave, and four-two) using as our objective function the
walking speed of the robot (measured as the distance traveled
after 1 s). Since some gaits result in curved motions, we also
penalized the speed objective with a term proportional to the
drift from the axis of locomotion. The optimization used the 4
parameters outlined in Section IV-A and was repeated 50 times
for each of the gaits. In Fig. 6, we show the median and 65th
percentiles of the best solution obtained so far in the trials. The
results show that the optimizer was able to learn to walk from
scratch within 50 iterations. Moreover, it can be noted that the
optimized tripod and ripple are the fastest gaits at ∼1.1 cm/s
and ∼1.2 cm/s respectively.

Fig. 6. Learning curve for the four gaits (median and 65th percentile). We can
see how, for all the gaits, BO learns to walk from scratch within 50 iterations.
After the optimization, Dual Tripod and Ripple are the fastest gaits at ∼1.1 cm/s
and∼1.2 cm/s respectively. (a) Dual Tripod. (b) Ripple. (c) Wave. (d) Four-Two.

C. Multi-Objective Gait Optimization

In the previous simulation we only considered walking speed
as our objective. However, for practical gait design, energy ef-
ficiency is another objective of great interest, particularly when
it comes to designing gaits for a microrobot with real energy
restrictions. For this reason, we now consider a multi-objective
optimization setting and compare the different gaits w.r.t. both
walking speed, and energy consumption. The energy consump-
tion of the robot was computed by measuring the forces exerted
by each of the 12 motors along the axis of actuation and calcu-
lating the power used to actuate the motors. Since the retraction
of the legs is spring powered, the energy input in the cycle is
only during motor extension. Hence, we only consider the cost
of extending the legs. With the mass of the robot and the time of
each trial being held constant, we quantify the energy efficiency
of a gait and estimate the cost of transport.

We optimized the four gaits again with the same 4 parameters
as the previous optimization, but this time using multi-objective
Bayesian optimization with a budget of 50 iterations.

In Fig. 7 we can see the performance measured and Pareto
fronts obtained for the different gaits. To better compare the PF
from the different gaits, we also visualized just the PFs together
in Fig. 8. From these results, we can see how the tripod gait dom-
inates the other gaits for speed 0.6 cm/s, while Ripple dominates
when the speed is >0.6 cm/s, hence giving a clear indication of
which gait is preferable under different circumstances.

D. Discovering New Gaits With Multi-Objective Optimization

In addition to optimizing the four nature-inspired gaits, we
also tested multi-objective optimization on the walker without
constraining to using predefined gaits. To parametrize the oscil-
lator couplings, we thus discretized each gait into intervals of
constant length. Within each of these intervals, we assume that
each leg steps exactly once, keeping each of the oscillators in
the CPG in phase with each other. This allows us to parametrize
gaits by assigning each leg a point during each interval where
it begins stepping. While this parametrization excludes certain
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Fig. 7. Performance measured for the four gaits, and the corresponding PFs.
ParEGO is able to quickly explore the PF for each of our four gaits. (a) Dual
Tripod. (b) Ripple. (c) Wave. (d) Four-Two.

Fig. 8. Comparison of the PFs obtained for the different gaits.

gaits that cannot be expressed in this form, we leave the study
of more sophisticated gait parameterizations for gait discovery
to future works.

The resulting multi-objective optimization task had 8 param-
eters (frequency, phase difference between horizontal and ver-
tical motors, and the six gait coupling parameters). Due to the
higher parameter dimensionality, and because this training was
not intended for on-line training, we ran the optimization for 250
iterations in order to allow a more comprehensive exploration of
the optimization space. We also repeated the optimization five
times for a total of 1250 trials. In Fig. 9 we can see the Pareto
front for the resulting gaits. We found that the fastest discovered
gaits were actually able to outperform the four nature-inspired
gaits implemented by a substantial margin. Even while penal-
izing curved paths, the fastest discovered gait outperformed
Ripple (the fastest nature-inspired gait we found) by almost
50%. However, for low-speed gaits, the nature inspired gaits

Fig. 9. PF of the unrestrained gait optimization versus the best performance of
the four nature-inspired gaits. The faster solutions outperform the fastest nature-
inspired gaits, albeit with more energy expenditure. However, the inability of
the optimizer to match the performance of the gaits at lower speeds within 1250
trials shows that the gait parametrization can help limit the search space to find
better solutions easier. (top) Pattern for two of the discovered gaits.

out-perform the gaits produced by the unconstrained optimiza-
tion, indicating the optimization did not yet fully converged to
the optimal PF.

E. Learning to Walk on Inclined Surfaces

We now consider the case of contextual optimization and
specifically the task of gait optimization for slopes with differ-
ent inclinations. We framed learning to walk on inclined terrain
as a contextual policy search, where the angle of the inclina-
tion is the context. In this simulation, we decided to use Dual
Tripod for our gait with mostly the same open parameters as
the previous simulations. We used a single parameter to repre-
sent the amplitude for the entire network in order to keep the
number of parameters low with the addition of a contextual
variable, leaving us with 3 parameters and 1 contextual param-
eter. To respect real world constraints, where testing randomly
sampled incline angles over a continuous interval can be ex-
cessively time-consuming, we chose at training time to perform
simulations only from a small number of inclines: 5, 10, and 15
degrees.

After optimizing the gaits for these three inclines over 50
iterations, we studied how the contextual optimizer is able to
generalize across the context space by testing the performance
of the contextual policy for a wide range of inclines. In Fig. 10
we can see that the policy performs well on intermediary inclines
and seems to smoothly interpolate between the training inclines
as is desirable. The gradual decrease in performance as the
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Fig. 10. Performance of the contextual policy (median and 65th percentile)
for a wide range of inclines. The policy was trained only at 5, 10 and 15 degrees,
but it was capable of generalizing smoothly to unseen inclinations.

Fig. 11. Comparison between the optimization performance of a contextual
optimizer and a normal optimizer for two different tasks: (a) walking on inclines
(b) walking curved trajectories. In both cases, the contextual optimizer can
leverage prior simulations to obtain high-performing gaits in fewer simulations.
(a) Inclined surface. (b) Curved trajectory.

inclines get steeper can be attributed to the increasing physical
difficulty for climbing up steeper inclines. We also compared
cBO against using standard BO to train the robot for an untested
incline. As shown in Fig. 11(a), the contextual optimization was
able to converge on optimal performance significantly faster
than standard BO. This result demonstrate the ability of cBO to
efficiently use data accumulated in previous contexts to quickly
reach optimize gaits in new unseen contexts.

F. Learning to Curve

Another useful task that can be framed as contextual opti-
mization is learning motor primitives to walk curved trajecto-
ries for use in path planning. We used the same parameters as in
Section VI-B and the contextual parameters in this case were
the target displacements along both the x and y axes from the
point of origin. In order to train particular trajectories, we se-
lected five evenly spaced target points along the front quadrant
of the field of vision. Since the primary objective was to reach
the desired destination, we chose to use the distance of the final
position to the target position as our sole objective function.
We found that over 10 repetitions, the walker was able to ac-
curately move and turn towards all of the target points within
250 iterations. In Fig. 11(b), we compared the performance of
cBO against standard BO on a previously unseen target posi-
tion (4cosπ/16, 4sinπ/16). We found that, as in the case of
inclinations, the contextual policy was able to learn the optimal
parameters for a novel trajectory within very few iterations.

Fig. 12. Comparison of the performances of cBO and our approach for learn-
ing motor primitives (using the same data). With the robot having an initial
position of (0, 0), we evaluated the error between the desired position (indi-
cated by the element of the grid) and the reached position. Darker color indicates
better target accuracy. While cBO accurately learned trajectories near the train-
ing targets, it did not generalize well to unseen targets. In contrast, our approach
had a more comprehensive coverage as it could leverage better information
about the environment to improve generalization.

Fig. 13. Path constructed using the locomotion primitives learned with our
approach.

G. Learning Motor Primitives for Path Planning

In the previous simulation we learned motor primitives ca-
pable of walking curved trajectories. While the model handled
trajectories near and between the targets quite well, the perfor-
mance on trajectories well within the physical capabilities of the
robot but not in proximity to the targets left much to be desired,
as shown in Fig. 12. We now demonstrate how our approach
presented in Section V can be used to significantly improve the
movement accuracy (compared to cBO using the same data), as
well as how such motor primitives can be used to perform path
planning. First, we reused the data from the previous simulation
in order to reformulate the task as a multi-objective optimization
as described in Section V. Then, we used our trained model to
sample 10,000 trajectories by randomly sampling from the pa-
rameter space. Out of all these trajectories, we selected the one
with the smallest expected error subject to not walking through
the wall. Evaluating the resulting sequence of motor primitives
on the real system (i.e., the simulator) demonstrated that the ex-
pected trajectory was capable of navigating the maze, as shown
in Fig. 13.

VII. CONCLUSION

Designing controllers for locomotion is a daunting task. In
this letter, we demonstrated on a simulated microrobot that
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this process can be significantly automated. Our main contri-
butions are two-fold: 1) we introduced a coherent curriculum
of increasing challenging tasks, which we use to evaluate the
CPG controller of our microrobot using Bayesian optimization.
2) we presented a new approach that enables walking robots
to efficiently learn motor primitives from scratch. By using the
data collected from contextual optimization we reformulate the
problem into a multi-objective optimization task, and learn a
model that can map any set of parameters to a predicted trajec-
tory. This model can subsequently be used for path planning.
Our experimental simulation results demonstrate that using this
approach a microrobot can successfully learn accurate locomo-
tion primitives within 250 trials, and subsequently use them to
navigate through a maze, without any prior knowledge about
the environment or its own dynamics.

The gaits obtained on the simulated microrobot might
not yield good results when applied to the real microrobot,
due to the low-fidelity of the simulator used. However, the
methodology used to obtain them is realistically applicable to
real microrobots, and is uniquely able to address concerns that
exist on the sub-centimeter scale (e.g., lack of a precise physics
simulator and budgeting of physical experiments). In future
work, we plan to evaluate our approach and findings on the
physical hexapod microrobot.
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