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Preface

By 2020 the International Federation of Robotics (IFR) estimates that
more than 1.7 million new industrial robots will be installed in factories
worldwide and robots for domestic could reach almost 32 million units
in the period 2018-2020, with an estimated value of about €10 bn
($11.7 bn).

Industrial robots offer many benefits, including cost reduction, increased
rate of operation and improving quality, along with improved
manufacturing efficiency and flexibility. The demand for industrial
robotics is majorly observed in industries such as automotive, electrical
& electronics, chemical, rubber & plastics, machinery, metals, food &
beverages, precision & optics, and others. In its turn, industrial
automation control market will witness considerable growth during the
same period with the growing demand of products such as sensors, drives
and various robots.

The first volume of the Advances in Robotics and Automatic Control:
Reviews, Book Series started by IFSA Publishing in 2018 contains ten
chapters written by 32 contributors from 9 countries: Belgium, China,
Germany, India, Ireland, Japan, Serbia, Tunisia and USA.

Chapter 1 discusses the electrostatic inchworm motors with low energy
consumption using a small size power source. The leg of the microrobot
is designed to allow reciprocal motions and powered by Si photovoltaic
(hereafter PV) cells.

Chapter 2 describes an adaptive trajectory tracking control for
nonholonomic mobile manipulators under modeling uncertainties and
external disturbances. One feature of the proposed controller is its
model-independent control scheme that can avoid the knowledge of the
dynamic parameters and the bound of the external disturbances.
Furthermore, the control law is formulated in task space and the
redundancy problem is resolved by an extended approach.

Chapter 3 presents a fast approximate nearest neighbor search tree based
novelty filter for mobile robotic and video surveillance applications.

Chapter 4 describes control algorithms for the centrifuge flight
simulator/spatial disorientation trainer, calculate their kinematic and

11
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dynamic parameters in each interpolation period to predict their dynamic
behaviour.

Chapter 5 presents state-of-the-art review in the area of continuous hard
turning. The various wear mechanisms of polycrystalline cubic boron
nitride tool materials are discussed with a view to identifying the critical
factors that determine their behaviour in application.

Chapter 6 discusses an approach, which involves factorization of the
SLAM posterior over the robot’s path, in which each individual particle
follows a constant time stereo SLAM approach and the particle
distribution is harnessed by the algorithm to estimate the optimal
trajectory.

Chapter 7 reports topics in Systems, Control and Optimisation and their
evolution through recently funded projects, since about 2013, as well as
the EU (e.g. H2020, ERC), National and other Programmes vis-a-vis
broader developments.

Chapter 8 summarized a real time switching-model detection Innovation
Squared Mismatch (ISM) strategy is presented to enable closed loop
control of the switched systems.

Chapter 9 reports H., tracking adaptive fuzzy sliding mode design
controller for a class of non square nonlinear systems.

Chapter 10 discusses two formulations of the optimal control problem
associated with the optimization of the energy consumed by the
induction motor under vector control. The emphasis was placed on the
advantage of limiting the control quantities during a real application in
order to protect the actuators and the machine.

I hope that readers will enjoy this book and it can be a valuable tool for
those who involved in research and development of various robots and
automatic control systems.

Sergey Y. Yurish

Editor Barcelona, Spain
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Chapter 1. Electrostatic Inchworm Motors Driven by High-Voltage Si Photovoltaic
Cells for Millimeter Scale Multi-Legged Microrobots

Chapter 1

Electrostatic Inchworm Motors Driven
by High-Voltage Si Photovoltaic Cells
for Millimeter Scale Multi-Legged
Microrobots

Ken Saito, Daniel S. Contreras, Isao Mori, Daisuke Tanaka,
Satoshi Kawamura, Taisuke Tanaka, Minami Kaneko, Fumio
Uchikoba, Yoshio Mita, Liwei Lin and Kristofer S. J. Pister

1.1. Introduction

Several microrobot systems from the micrometer to centimeter scale
have been demonstrated [1-12]. Among these demonstrations, the
micrometer scale ones have potential usages in special environments
such as surgery inside the narrow blood vessel of a human brain or micro
assembly for the small size mechanical system [4, 8] but it is difficult to
add power sources and controllers into the microscale system. Therefore,
passive control schemes by external electrical or magnetic forces are
commonly implemented. On the other hand, a lot of centimeter-size
robots have been constructed by the miniaturizations of electrical
components with integrated sensors, actuators, power sources and
controllers [6, 9]. Despite the fact that multiple bio-inspired robots have
been proposed, millimeter scale robots do not perform like insects due to
the difficulty in integrating power sources and actuators onto the robot
[13-14]. In particular, the locomotion mechanisms of insects attract the
attention of researchers [5, 7]. In seeking further miniaturization, some
researchers use micro fabrication technology to fabricate small sized
actuators [15-16]. For example, piezoelectric actuators, shape memory
alloy actuators, electrostatic actuators, ion-exchange polymer actuators,
and so on are a few examples. These actuators have different strengths,
such as power consumption, switching speed, force generation,
displacement, and fabrication difficulty. In general, an actuator can only

Ken Saito
Nihon University, Tokyo, Japan
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generate either rotary or linear motion and mechanical mechanisms are
necessary to convert the movements generated by the actuators to
locomotion.

Previously, the authors have shown a millimeter scale hexapod-type
microrobot to perform the tripod gait locomotion of an ant [17], and a
quadruped-type microrobot to replicate the quadrupedal gait locomotion
of an animal [18] by using shape memory alloy actuators for large
deformation and large force. This chapter discusses the electrostatic
inchworm motors [19-21] with low energy consumption using a small
size power source. The leg of the microrobot is designed to allow
reciprocal motions and powered by Si photovoltaic (hereafter PV)
cells [22].

1.2. Multi-Legged Microrobot

Fig. 1.1 (a) shows the previous multi-legged microrobot using shape
memory alloy type actuator [18]. A previous multi-legged microrobot
using shape memory alloy actuator is changed to electrostatic inchworm
motors in this work, where each leg of the robot can perform the stepping
motion via a single actuator. The leg is fixed on both sides of the body
and the microrobot can increase the number of the legs easily. In this
chapter, the actuator connection part has been redesigned to
accommodate the electrostatic inchworm motors. Fig. 1.1 (b) shows the
mechanical parts of the leg made from a silicon wafer except for the shaft
and the steady pin. The shapes of the mechanical parts are machined by
the inductively coupled plasma dry etching process with
photolithography technology. The authors have manual assembled the
mechanical parts of the robot because microfabrication technology is
hard to construct the complicated three-dimensional structure. In the
process, 200 um-thick silicon wafers were used for the mechanical parts
except for the washer which used 100 um-thick silicon wafers. The shaft
was constructed by using 0.1 £ 0.002 mm in diameter cemented carbide.
The washer was mounted to the end of a shaft to fix the silicon parts. To
keep the parts rigidly connected, the washer and the shaft were glued
using cyanoacrylate. All silicon parts have a clearance of a 10 um gap
with respect to the other fitted parts. Since these actuators can only
generate the rotary motion or linear motion, linkage assemblies are
needed for a microrobot to move using the stepping pattern. The stepping
pattern realized by two sets of four-bar linkages. Bar 1, bar 2, bar 5 and
bar 6 are the primary (top) four-bar linkage. Bar 3, bar 4, bar 5 and bar 6
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are the secondly (bottom) four-bar linkage. The primarily four-bar
linkage and secondly four-bar linkage are combined with each other with
bar 5 and bar 6 (Fig. 1.1 (¢)).

Fig. 1.2 shows the leg motion and trajectory of the leg. The inflection
point of the trajectory has four points such as (x1, y1), (x2, y2), (x3, ¥3) and
(x4, y4). The steady pin and the hole of bar 5 cause the inflection of the
trajectory. The four points can be expressed by the difference of angles
of 64 and ... The difference of 64 and Gr..; can perform the reciprocal
movement of point P. In other words, Fig. 1.2 shows that the designed
leg can perform the stepping motion by the reciprocal movement of
point P.

(b)

Bar 6

Fig. 1.1. (a) Previous multi-legged microrobot using shape memory alloy type
actuator [18]. Mechanical parts of the leg for microrobot with (b) individual
parts; (c) assembled structure.
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2 yz)
(a) (b) (©) (d)

. ¥,)

Fig. 1.2. Leg motion and trajectory of the leg. (a) (xi, y1) at 6:=90°,
9]?007:100; (b) (X2, y2) at 9A=90°, HFO()]‘:OO; (C) (X3, y3) at 9A=80°, 917007:00;
(d) (X4, y4) at 9A=80°, 9]:00]:100.

The authors design the mechanical parts of the leg according to the
mathematical equations. Fig. 1.3 and Table 1.1 show the conditions to
describe the point of the leg (x,, y»). The (xo, o) is the origin coordinate
which is the only fixed point of the robot. The upper case alphabet A, B,
C,D, E, F, G, H and I show the name of each lengths. L1 and L3 show
the auxiliary lines from (xo, yo) to bar 4 which is the bar contains the point
of the leg. 6, &5, 67, Op and G are described as Fig. 1.3 (b).

: (x3= y3)
(X ¥s)
(a) (b)

(X, ¥,

Fig. 1.3. Name of each bars, coordinates and angles of the leg.
(a) Length and coordinates; (b) Angles and auxiliary lines.
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Table 1.1. Length between the node points.

Name of bar Name Length (um)
Bar 1 A 1800
Bar 2 B 1556
Bar 6 C 800
Bar 5 D 1500
Bar 5 E 1000
Bar 4 F 700
Bar 3 G 1000
Bar 6 H 800
Bar 4 I 700

The (x4, yn) (n=1, 2, 3, 4) can describe by the Equation (1.1):
(xn = L3 c0s(=90° = 07 — Oroor) » Yn = L3 sin(=90° — 0; — Opoor)),  (1.1)

where &, L3, L1, 65, 65, 65 and O are the following Equation (1.2), (1.3),
(1.4), (1.5), (1.6), (1.7) and (1.8), respectively.

_1 L?+D?%—E? 1 L% +L3%—(F+1)?
1LTHDTET -1kl (D (1.2)

6, = cos
211D 2L1L3

Ly = \/le + (F+1)2—2L,(F +)cos(85 + 65), (1.3)

L, =VDZ + EZ — 2D% cos 135°, (1.4)
B 1 E—H cosfp
05 = cos (\/E2+H2_2EHCOS 93)

+COS_1 (EZ+H2_GZ+F2_25HCOSQB) (1 5)
2F\JE?+H?-2E cos fp .
B o o ~1 L *+D%-E?
9, = 180 (135 + cos LD ) (1.6)
6, = 360° — (6,9 + 135° + 50°), 1.7)
3 o 1 D—-Acos@y
HAO - 180 (COS <\/D2+A2_2DA Ccos 9A>
1 D2+A2-B24+C2-2DA cos 9,4))
+eos ( 2¢/DZ+A2-2DAcos8, /) 49
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Table 1.2 shows the derived coordinates of the each foot point using the
above equations and conditions. This result shows the designed leg can
perform the stepping motion which is needed to move the multi-legged
microrobot.

Table 1.2. Coordinates of each foot point.

Foot point O and G-oot Coordinates
(1, y1) 90° and 10° (-1248.6, -3440.3)
(062, y2) 90° and 0° (-632.3,-3604.9)
(3, y3) 80° and 0° (227.2,-3249.4)
(x4, y4) 80° and 10° (-340.5, -3239.5)

Fig. 1.4 shows the measurement method for the required force Fys to
actuate the leg. The required force can describe by the Equation (1.9):

where My is the mass of the weight and g is the gravity acceleration. The
authors vary the mass of the weight to find the minimum weight to
actuate the leg. Fig. 1.4(a) is the required force for the push motion.

Neredle Wire Needle Wire Pin

0,780°, 0,05, 70° \yaight 0790°, 000 =10°  6,290°, 0, =10° Weight 0,=80°, 0
(a) ()

0°

FoOT

Fig. 1.4. Measurement method for the required force to actuate the leg
for (a) push motion; (b) pull motion.
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The weight was attached to point P of bar 1 using a wire. The required
force of 542 uN is measured in order to move the leg to the regular
position under the lightest weight of 55.3 mg. Fig. 1.4 (b) shows the
required force for the pull motion. The weight was attached to the point
P of bar 1 using a wire through the pin and the lightest weight was
36.2 mg, while the force for this pull motion was 355 uN.

1.3. Electrostatic Inchworm Motors

As an alternative low-power means of actuation, electrostatic inchworm
motors can be used to drive the legs of the microrobot. MEMS
electrostatic inchworm motors are based on capacitively driven gap-
closing actuators (GCA) working in tandem to displace a shuttle linearly
at over 100 uN force output without any static current [19].

The authors used an angled-arm design based on work from [20]. In this
design, the GCAs use an attached angled-arm to impact a central shuttle
and move it in a preferential direction. The motors have a gap size of
2.1 um and each step of the motor moves the shuttle by 1 um. Each GCA
has 70 fingers, totalling 140 fingers for each actuation step. The
inchworm motor chiplet measures a total area of approximately 2.2 mm
x 2.5 mm. The electrostatic inchworm motors are fabricated in a 3-mask
silicon-on-insulator (SOI) process. The SOI wafers had a 40 um device
layer, 2 um buried oxide and 550 pm handle wafer. A layer of 100 nm-
thick aluminium is deposited on the device-layer silicon to define the
contact pads. The device layer silicon is etched to form the structure of
the motors using DRIE. A backside etch is then performed to reduce the
mass and release the singulated chiplets from the substrate.

Fig. 1.5 shows the force output of an electrostatic inchworm motor. Force
measurements are taken using a serpentine spring assembly attached to
the motor shuttle. The serpentine assembly has a spring constant of
18.5 N/m. By measuring the displacement of the inchworm shuttle, we
can relate this to the force output of the motor. The solid line highlights
the analytical calculation of the force output. We can see that at 60 V we
get an average force output of over 1 mN from 5 measured devices. The
original angled-arm inchworm motors shown in [20] were able to
generate 1.88 mN at 110 V. Previous work has shown 500 uN of force
at 60 V [21] while the newly fabricated devices have demonstrated 1 mN
of force at 60 V. Discrepancies between the analytical model and the
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measured values can be attributed to unaccounted lateral etching of the
silicon sidewalls. This can increase the effective finger gap size and
change the spring constants of the springs.

6.0

° Measured data
S0f - Analytical model

4.0
3.0
2.0

Force mN

'0'++-u

1.0

r++

030 40 50 60 70 80 @0 100
Voltage V

Fig. 1.5. The raw force output of the inchworm motor used
in these experiments.

1.4. High-Voltage Si PV Cells

Fig. 1.6 shows the fabricated high-voltage Si PV cell array. The PV cell
array was designed in an area of about 3 mm square. The device was
made by CMOS post-process dry release and device isolation method.
The array consists of 125 PV cells connected in series and each cell has
a p-diffusion layer on n-well. The details of the design and process
method are shown in reference [22].

In the reference [22], the light source of the PV cell array was a red LED
with 30 mA current. The open circuit voltage (VOC) was 57.9 V, from
which we can deduce that the open circuit voltage of each cell was about
0.46 V on average. The short circuit current (ISC) was 976 nA. The
maximum power (Pmax) was 43.3 uW, where the voltage was 53.2 V
and the current was 683 pA. The fill factor (FF; FF = Pmax/VOC ISC)
was 76.7 %. The FF generally indicates the quality of the pn-junctions (a
high fill factor means a high quality of the junction) and the value 76.7 %
is relatively high. This high value was achieved by using a commercial
CMOS process performed by a foundry. However, the maximum power
in the reference [22] was not high enough to actuate the electrostatic
inchworm motors. The authors changed the light source to a xenon lamp
with 5 A current to achieve VOC=60.0 V and ISC=105 pA. Fig. 1.7
shows the [-V characteristics of the PV cell array lighted with the xenon
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lamp. The xenon lamp irradiated the PV cell from a distance of 10 cm.
This result shows that the xenon lamp can produce 30 times the power

shown in the reference [22], large enough to actuate the electrostatic
inchworm motors.

Series-connected 125 PV cell

Suspended Bridge structure for wiring

= PV cell

Groove for insulation

(b)

Fig. 1.6. Fabricated PV cell array [22]. (a) Whole view; (b) Magnified view.

40
L]

30 .-a.....'
< - .
= 0| A .
£ Ps=1.3 MW
© 10t

voc=65v\A.

0 10 20 30 40 50 B0 7O
Voltage V

Fig. 1.7. I-V curve of 125-cell PV array (Light source: xenon lamp).

1.5. Experimental Results

Fig. 1.8(a) shows an inchworm motor chip. The image highlights the ring
meant to engage to a complimentary post on the leg, the gap closing
actuators, the reset spring, and the signal pads that receive signals from
the drive circuit. The inchworm motor is fabricated in the 3-mask process
described in Section 1.3. This motor has the force profile shown in
Fig. 1.5. Fig. 1.8 (b) highlights the methodology of integration of the
inchworm chip with the leg. The motor is taped onto a platform off of a
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micromanipulator stage. This is because aligning the ring with the post
and interfacing the parts require careful precision. Once the leg
engagement ring is in place on the leg post, a set of probes are dropped
onto the motor contact pads to provide the electrical signals from the
circuit needed to drive the motor. This circuit is powered by the
solar cell.

Leg engagement nng
Leg engagement post

Leg engagementring

W
Springs  Gap closing actuators .
(a) (b)

Fig. 1.8. Details of the inchworm motor chip integration (a) A micrograph
of the motor chip highlighting the leg engagement ring, gap closing actuators,
shuttle, spring, and the electrical contact pads. The pads are driven with probes
that are connected to the circuit that is driven by the solar cells; (b) A diagram
of the experimental setup showing the leg engagement post, meant to interface
with the leg engagement ring. The motor chip is held on a platform on a
micromanipulator stage and the ring is maneuvered around the post. Once the
motor is in place, the probes are dropped onto the motor chip to drive the leg.

Fig. 1.9 shows the actuation experimental setup of the electrostatic
inchworm motors using PV cell array (Fig. 1.9 (a)). The anode-side of
PV cell array was connected to the solid resistor at the collector of the
transistor. In other words, the generated voltage by the PV cell, Vpy, was
used as the voltage source of the circuit. The Arduino was used for
switching the transistor for generating the driving waveform vp; and vp;
for the electrostatic inchworm motors (Fig. 1.9(b)). The driving
waveforms were two offset 60 V amplitude 500 Hz square waves, one
for each of the GCAs of the motor.

Fig. 1.10 shows the generated force of the electrostatic inchworm
motors. The force gauge system was attached on the shuttle and the scale
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of the force gauge was characterized as 1 dot = 0 uN, 2 dot = 370 uN,
3 dot = 740 uN. The guideline is attached to the shuttle to point the dot.
The result in Fig. 1.11 shows that the guideline points the 3 dot. This
result shows the generated force was 740 uN according to the gauge
system, which is high enough to actuate the leg of the microrobot.

Xenon lamp  Driving circuit Probe station

Power source of xenon lamp

Multimeter

Arduino

Fig. 1.9. Actuation experimental setup: (a) Whole setup;
(b) Circuit diagram of driver circuit.

Fig. 1.11 shows the actuation of the leg using electrostatic inchworm
motors. The ring structure was attached to the shuttle of the electrostatic
inchworm motors using the method described above. The electrostatic
inchworm motors was connected to the leg through the shaft of point P.
The result in Fig. 1.11 shows that the electrostatic inchworm motors
produced about 250 um in displacement to move the leg of the
microrobot. However, the pull motion was not enough to actuate the leg
from (x4, y4) to (x1, y1). This is because spring was designed to generate
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the 250 uN pull motion. The pull motion needs 355 uN to complete the
motion. The strength of the spring needs for the future examination.

Prc&be 1dot 3dot Force gauge
P | L =
e e s ‘ "1?“;

c bR

Spring Shuttle Electrostatic motors

Fig. 1.10. Generated force measurement of the electrostatic inchworm motors.

Fig. 1.11. Actuation of leg: (a) Pull motion; (b) Push motion.
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1.6. Conclusions

In this chapter, the electrostatic actuator with low energy consumption is
powered by a 3 mm x 3 mm Si photovoltaic cells with an output voltage
of 60 Volts. The generated force of the electrostatic inchworm motors
was 740 uN to actuate the leg of the microrobot. The leg of the
microrobot could move using the electrostatic inchworm motors with
proper driving waveforms for large displacements. In the future, the
authors will design the millimeter scale locomotive robot with Si PV cell
driven electrostatic inchworm motors.
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loop closure, 187, 189, 191, 194, 228

M

machine learning, 62, 66
mammograms, 63
Map Building, 212
Mapping Projects, 235
Marie Sktodowska-Curie Actions
(MSCA), 250
matrix on the inertia, 113
Maximum a-posteriori probability
(MAP), 324
maximum likelihood, 195
Maximum Likelihood Sequence
Detection, 330
MES (Manufacturing Execution
System), 243
Metacognitive Systems, 273
metric, 62, 65, 73, 80
micro fabrication technology, 17
microrobot, 17, 18, 20, 23, 24, 29, 31,
32
minimal energy control, 396, 398
minimum
pontryaguin, 392
spanning tree (MST), 71, 79
Minkowski power formula, 70
Mixed criticality Systems, 265
Mobile
Manipulators, 36
robotics, 63
Model-checking, 301
Modelling (Systems), 266
MPC, 266
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N

Nano-structure Control, 264
National R&D Programmes, 253
nearest neighbor search
approximate nearest neighbor
search, 61, 65, 71-76, 80, 90,
101
neural network, 36, 62-64, 66, 82, 83,
100
Newton-Euler
equation, 115
recursive method, 108
NIST, 258
nodes of a graph, 191
Nonholonomic, 36
nonlinear systems, 345
Non-linear Systems (projects), 292
nonparametric modeling, 62
normal (i.e., radial), tangential and
vertical acceleration forces, 148
normal (radial), tangential and vertical
acceleration force G components,
119
normal acceleration, 105
normality, 62, 78
novelty
novelty filter, 61-66, 73, 74, 76, 77,
81-85, 88, 89, 91-93, 96, 97,
100
NSF, 258

Q)

ODE (Ordinary Differential
Equations), 241, 291
odometric link, 191
optimal
control, 387-389, 393-397, 399, 401,
404,411,413, 415, 418, 421, 424
control problem, 387, 389, 393,
394, 424
control value, 395
control variable, 397, 399, 413, 415
lux, 410, 417,418
value, 392, 395
VECTOR CONTROL, 420, 421,
423
optimisation, 234, 239, 241, 243, 244,
252,259-268, 270, 272, 274, 275,
304

400

Optimisation (Projects), 267

problem, 387, 424
optimum trajectory, 413
outdoor environment, 61, 66
outlier, 202, 207

P

parametric modeling, 62

particle
filters, 187, 189, 190, 196, 197, 228
weight, 193, 195, 199

patch, 61, 65-69

PCBN Tool Wear, 178
Mechanisms, 174

PDE (Partila Differential Equations),
241, 305-308

PDEs, 305

penalty function, 396

perceptual learning, 61, 66

PID controllers (revisiting), 274

pitch angle of the SDT, 150

pixel, 67, 68, 74

point-to-point movements, 151

Pose error, 218

posterior distribution, 197, 198

power sources, 17

preimage, 64

principal moments of inertia, 113

Principle Component Analysis, 64

Proportional Integral (PI) controller,
355

Q

quantization, 72

R

R&D space, 236

Rail Signaling, 265

RAMI (Reference Architecture-
Industry 4.0), 270

Rao-Blackwellized, 189, 190

receptive field, 67, 69

Redundancy, 36, 41

Refactoring, 275

Refactoring Methods (Projects), 299

regression, 47, 48, 63

regressor, 43

relative entropy, 197



Index

re-projection, 192, 195, 199
resolution, 67
RGB color space, 68
rigorous Systems-Control-
Optimisation (SCO) methods, 261
robot vision system, 66, 78, 89
Robot’s
environment, 216
path, 187, 190, 218
Robotics (platform, EU), 268
Robotics (projects), 309
robust, 37, 50, 58
adaptive control, 353
control, 264
roll angle of the SDT, 150
roll, pitch and yaw angular velocities,
121
roll, pitch, and yaw angular velocity
components, 106
root, 72
rotation, 67
rotor flux, 387, 400, 404, 409, 410,
412-417, 420, 421, 424
RSLAM, 187, 189, 190, 195, 212,
221-223, 227
Run Time Verification, 301

S

SAE J3016 (Standardisation), 240

safety, 265

Saturation, 68

SCADA (Supervisory Control & Data
Aquisition System), 242

Scalable Vocabulary Tree (SVT), 71

SCO (Systems, Control,
Optimisation), 234

score
novelty score, 62

Self Organisation (projects), 314

self-organizing learning mechanism,
63

Sensitivity (control systems), 263

sensor networks, 63

sensors, 247, 267

Sensors design, 265

servo errors, 125

shape memory alloy, 17, 18, 20

Si photovoltaic cells
PV cells, 18, 31

SIFT, 201

silicon wafer, 18
similarity measure, 70, 72
simple cell
V1 simple cell, 67, 69
Simulation, 267
sliding mode, 37
Smart Anytime Everywhere (SAE),
254
sparse vector, 69
spatial disorientation trainer, 106
state
variables, 387, 390, 391
vector, 393, 394
stationary condition, 395
Stem Cells Systems (projects), 315
stereo pair, 187, 189, 201, 202
Super-Intelligence, 277
Super-Intelligence (views), 277
support vector data description, 61,
64,92
SUREF, 188, 201, 202, 206, 208, 213,
227
Symbolic Control, 308
symmetric, 39, 42, 45, 47
System(s) of Systems (SoS), 240
Systems Thinking, 241, 281, 295

T

tangential acceleration, 105

task space, 36, 38, 42, 43, 58

Taylor theorem, 394

Taylor's expansion, 411

Technology Readiness Level (TRL),
251

Temporal Logic, 264

Testing, Standardisation &
Certification, 267

threshold
novelty threshold, 62, 65, 66, 73-

76, 81-83, 86, 87, 89, 91, 93, 95,
98-101

Tools (Software), 266

Topographic Labelling, 203, 216-218

Tracking, 36, 51, 55

traffic intersection, 88, 92

trajectory, 36, 50, 54, 187, 190, 217,
219

Transient Regime, 387

transverse, lateral and longitudinal
acceleration force components, 119
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transverse, lateral and longitudinal
acceleration force G components,
106

U

Ultra Large-Scale Systems (ULSS),
241

uncertainties, 36, 38, 46-48, 50, 51,
53-55,58

Underwater Vehicles, 253

\%

Variable geometry thrusters, 264
VDMA, 257

vector control, 415, 416, 420, 422
Verification, 253, 274, 299
Verification (projects), 296

402

video, 61, 63, 65, 68, 71, 78, 79, 83,
89, 92, 93, 98, 101
video surveillance, 61, 63, 65
Virtualisation, 267
visual percept, 61
vocabulary
percept, 65
tree (VT), 65

W

wavelength, 69

weight function, 195, 196, 198, 199,
200

weighting factors, 393, 413

winner, 73, 82

X

xenon lamp, 26, 27



EISA

Advances in Robotics
and Automatic Gontrol: Reviews
Volume 1

Sergey Y. Yurish, Editor

ISBN 978-84-697-3467-4

9

7884691734674



http://www.sensorsportal.com/HTML/IFSA_Publishing.htm



