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Abstract

The design of gaits for robot locomotion can be a daunting process which requires
significant expert knowledge and engineering. This process is even more chal-
lenging for robots that do not have an accurate physical model, such as compliant
or micro-scale robots. Data-driven gait optimization provides an automated al-
ternative to analytical gait design. In this paper, we propose a novel approach
to efficiently learn a wide range of locomotion tasks with walking robots. This
approach formalizes locomotion as a contextual policy search task to collect data,
and subsequently uses that data to learn multi-objective locomotion primitives that
can be used for planning. As a proof-of-concept we consider a simulated hexapod
modeled after a recently developed microrobot, and we thoroughly evaluate the
performance of this microrobot on different tasks and gaits. Our results validate the
proposed controller and learning scheme on single and multi-objective locomotion
tasks. Moreover, the experiments show that without any prior knowledge about the
robot used (e.g., dynamics model), our approach is capable of learning locomotion
primitives within 250 trials and subsequently using them to successfully navigate
through a maze.

1 INTRODUCTION

Figure 1: The six-legged
micro walker considered
in our study (top) and its
simulation (bottom).

Substantial progress has been made in recent years towards the develop-
ment of fully autonomous microrobots [20, 25]. However, the design and
implementation of gaits for enabling locomotion at the sub-centimeter
scale still remains a non-trivial task. Completing more complicated
locomotion tasks like navigating complex environments is even more
challenging. These issues become exacerbated when dealing with legged
locomotion, where even walking straight is still an active area of study
for normal-sized robots. In this paper, we present a novel approach
for the autonomous optimization of locomotion primitives and gaits.
While locomotion on larger-scale robots has been thoroughly investi-
gated, transferring many of these proven approaches to the millimeter
scale poses many unique challenges. One such obstacle is the lack of
access to sufficiently accurate simulated models at the millimeter scale.
Even simulation environments designed to simulate dynamics at this
scale are generally unequipped for usage in robotics contexts. Addi-
tionally, working with microrobots can place severe limitations on the
number of iterations as trials become much more time-consuming and
expensive to run. While microrobot locomotion has been addressed in
the past, much of the work is primarily concerned with the mechanical
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design and manufacturing of microrobots. Accomplishing more sophisticated locomotion tasks on
the sub-centimeter scale remains an open area for research. Analytical implementations of various
gait behaviors have worked on microrobots [7, 8], but these solutions can become unwieldy for
robots with higher DOF such as legged walkers (e.g., our micro-hexapod). Data-driven automatic
gait optimization is a viable alternative to analytical gait design and optimization, but using these
techniques can be challenging due to the high number of trials that might be necessary to perform
in order to learn viable gaits. Our primary contribution is introducing a novel approach that allows
to efficiently learn gaits and motor primitives from scratch without the need for prior knowledge
(e.g., a dynamics model). This is accomplished by collecting data on various motor primitives using
contextual policy search and using those evaluations to reformulate the problem into a multi-objective
optimization task, giving us a model that can map any set of parameters to a predicted trajectory.
Using this model, we are able to optimize our parameters on various trajectories for subsequent use
in path planning. Our approach is not tied to microrobots only, and can be used for any walking
robot. To evaluate our approach, we used a simulated hexapod microrobot modeled after a recently
developed microrobot [6]. We first validated existing techniques on a curriculum of progressively
more difficult tasks including learning single-objective, contextual, and multi-objective gaits. Then,
we evaluated our approach by learning motor primitives from 250 trials and subsequently used them
to successfully navigate through a maze.

2 RELATED WORK

While sufficient for simple controllers with few parameters, manually tuning controller parameters can
require both an immense amount of domain expertise and time. As such, automatic gait optimization
is an important research field which has been studied with a wide variety of approaches in both
the single-objective [22, 5, 15, 13, 23, 16, 17, 2] and multi-objective setting [4, 16, 17, 24]. While
sufficient for simple controllers with very few parameters, manually tuning controller parameters can
require both an immense amount of domain expertise and time. Evolutionary algorithms have been
successfully used to train quadrupedal robots [5, 16], but this approach often require thousands of
experiments before they can produce good results, which is unfeasible on fragile microrobots.

A more data-efficient approach used in the past to learn gaits for snake and bipedal robots is Bayesian
optimization [13, 23, 2]. Bayesian optimization has also been applied to contextual policy search
in the context of robot manipulation [14]. Our contribution builds off of this work by applying and
extending the contextual framework to learning movement trajectories and path planning. Another
extension of Bayesian optimization related to our work is Multi-objective Bayesian optimization,
which has also been previously applied in the context of robotic locomotion [24]. However, past work
is only concerned with using multi-objective optimization to balance the trade-off between various
competing goals. Our main contribution demonstrates an entirely novel application of multi-objective
optimization to learning motor primitives that does not involve the trade-off between the various
goals, but instead uses a multi-objective model to learn over an area of possible trajectories for path
planning.

3 BACKGROUND

Central Pattern Generators Central pattern generators (CPGs) are neural circuits found in nearly
all vertebrates, which produce periodic outputs without sensory input [27]. CPGs are also a common
choice for designing gaits for robot locomotion [9]. We chose to use CPGs for our controller because
they are capable of reproducing a wide variety of different gaits simply by manipulating the relative
coupling phase biases between oscillators. This allows us to easily produce a variety of gait patterns
without having to manually program those behaviors. This makes them well suited for our microrobot,
where the processing power is limited.

One of the foremost benefits of using a CPG controller is a drastic reduction in the number of
parameters θi we need to optimize. Overall, the 4 parameters that we consider during the optimization
are θ = [ω,Rl, Rr, X] where ω is the frequency of the oscillators and X is the phase difference
between each of the vertical-horizontal oscillator pairs. In order to allow for directional control, Rl

and Rr are the amplitudes of the left and right side oscillators respectively.
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Bayesian Optimization Even with a complete CPG network, some amount of parameters tuning
is necessary to obtain efficient locomotion. To automate the parameters tuning, we use Bayesian
optimization (BO), an approach often used for global optimization of black box functions [12, 10, 2].
We formulate the tuning of the CPG parameters as the optimization

θ∗ = arg maxθ f (θ) , (1)

where θ are the CPG parameters to be optimized w.r.t. the objective function of choice f (e.g., walking
speed, which we investigate in Section 5.2). At each iteration, BO learn a model f̃ : θ → f (θ) from
the dataset of the previously evaluated parameters and corresponding objective values measured D =
{θ, f (θ)}. Subsequently, the learned model f̃ is used to perform a “virtual” optimization through
the use of an acquisition function which control the trade-off between exploration and exploitation.
Once the model is optimized, the resulting set of parameters θ∗ is finally evaluated on the real system,
and together with the corresponding measurement f (θ∗) is added to the dataset before starting a new
iteration. A common model used in BO for the underlying objective, and the one that we consider,
are Gaussian processes [19]. For more information regarding BO, we refer the readers to [10, 21].

Multi-objective Bayesian Optimization A special case of the optimization task of Equation (1) is
multi-objective optimization [1]. Often times in robotics, there are multiple conflicting objectives
that needs to be optimized simultaneously, resulting in design trade-offs (e.g., walking speed vs
energy efficiency which we investigate in Section 5.3). When multiple objectives are taken into
consideration, there is no longer necessarily a single optimum solution, but rather the goal of the
optimization became to find the set of Pareto optimal solutions [18], which also takes the name of
Pareto front (PF). Formally, the PF is the set of parameters that are not dominated, where a set of
parameters θ1 is said to dominate θ2 when{

∀i ∈ {1, . . . , n} : fi(θ1) ≤ fi(θ2)
∃j ∈ {1, . . . , n} : fj(θ1) < fj(θ2)

(2)

Intuitively, if θ1 � θ2, then θ1 is preferable to θ2 as it never performs worse, but at least in one
objective function it performs strictly better. However, different dominant variables are equivalent in
terms of optimality as they represent different trade-offs.

Multi-objective optimization can often be difficult to perform as it might require a significant amount
of experiments. This is especially true with our microrobot where large number of experiments
can wear-and-tear the robot. As a result, the number of evaluations allowed to find the Pareto set
of solutions is limited. Luckily for us, there exist extensions of BO which address multi-objective
optimization. In particular, the multi-objective Bayesian optimization algorithm that we consider is
ParEGO [11]. The main intuition of ParEGO is that at every iteration, the multiple objectives can
be randomly scalarized into a single objective (via the augmented Tchebycheff function), which is
subsequently optimized as in the standard Bayesian optimization algorithm (by creating a response
surface, and then optimizing its acquisition function). For more information about multi-objective
Bayesian optimization we refer the reader to [26].

Contextual Bayesian Optimization Another special case of the optimization task of Equation (1),
is contextual optimization. In contextual optimization, we assume that there are multiple correlated,
but slightly different, tasks which we want to solve, and that they are identified by a context variable c.
An example might be walking on inclined slopes, where the contextual variable is the angle of the
slope. The contextual optimization can hence be formalized as

θ∗ = arg maxθ f (θ, c) , (3)

where for each context c, a potentially different set of parameters θ∗ exists. The main advantage
compared to treating each task independently is that, in contextual optimization, we can exploit
the correlation between the tasks to generalize, and as a result quickly learn how to solve a new
context. Specifically, in this paper we consider contextual Bayesian optimization (cBO) [14] which
extends the classic BO framework from Section 3. Contextual Bayesian Optimization learns a joint
model f̃ : {θ, c} → f (θ), but now, at every iteration the acquisition function is optimized with a
constrained optimization where the context c is provided by the environment. However, because
the model jointly model the context-parameter space, experience learned in one context can be
generalized to similar contexts. By utilizing cBO, we will show in Section 5 that our microrobot can
learn to walk (and generalize) to different environmental contexts such as walking uphill and curving.
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Figure 2: Contact/swing patterns for different gaits.

4 LEARNING LOCOMOTION PRIMITIVES FOR PATH PLANNING

We now present our novel approach to learn motor primitives for path planning. This approach
relies on the possibility of re-using the evaluations collected using cBO to convert the task into a
multi-objective optimization problem. We specifically consider a cBO task where we want to optimize
the parameters θ to reach different target positions c = [∆xdes,∆ydes] (this setting is evaluated in
Section 5.6). The objective function in this case can be defined as the Euclidean distance

f =

√
(∆xdes −∆xobs)

2
+ (∆ydes −∆yobs)

2 (4)

where ∆xobs,∆yobs are the actual positions measured after evaluating a set of parameters. The cBO
model would map f̃ : [θ,∆xdes,∆ydes]→ f (θ). However, in order to compute f it would need to
measure ∆xobs,∆yobs, effectively generating data of the form

[θ,∆xdes,∆ydes]→ [∆xobs,∆yobs, f (θ)] (5)

We can now re-use the data generated from this contextual optimization to learn a motor primitive
model in the form g : θ → [∆xobs,∆yobs]. The purpose of this learned model g is now to provide an
estimate of the final displacement obtained for a set of parameters independently from the optimization
process that generated it. Once such a model is learned, we can use it to compute parameters that lead
to the desired displacement ∆x∗obs,∆y

∗
obs by optimizing the parameters w.r.t. the output of the model

θ∗ = arg maxθ z(g(θ)) , (6)

where z is a scalarization function of our choice (e.g., the Euclidean distance). This is equivalent
to learning a continuous function that generates motor primitives from the desired displacement. It
should be noted that this optimization is performed on the model g and therefore does not require
any physical interaction with the robot. Moreover, we can optimize the parameters over a series of
multiple displacements to obtain a path planning optimization. In Section 5.7, when performing path
planning using the learned motor primitives we will employ a simple shooting method optimization
which randomly samples multiple candidate parameters and selects the best outcome.

5 EXPERIMENTAL RESULTS

In this section we discuss our controller implementation as well as the performance of our simulated
microrobot on various locomotion tasks. Videos of the various locomotion tasks are available at
https://sites.google.com/site/learninglocomotorprimitives/.

5.1 Controller Implementation

We built our controller following the setup described in Section 3, using a network of 12 coupled
phase oscillators (one per motor). In order to translate the output of each of the oscillators into
motor actuation, we calculate the oscillator outputs for each vertical-horizontal motor pair using the
piecewise function 

xi + ricos(φi), xj + rjcos(φj) if φi > π, φj > π ,

xi + ri, xj + rjcos(φj) if φi ≤ π, φj > π ,

xi + ri, xj + rj if φi ≤ π, φj ≤ π ,
xi + ricos(φi), xj − rj if φi ≤ π, φj > π ,

(7)

where the ith oscillator outputs to its respective vertical motor and the jth oscillator outputs to its
respective horizontal motor. This allows us to discard the parts of the oscillator output that are not
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Figure 3: Learning curve for the four gaits (median and 65th percentile). We can see how, for all the
gaits, BO learns to walk from scratch within 50 iterations. After the optimization, Wave and Ripple
are the fastest gaits at ∼ 1 cm/s.
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Figure 4: Performance measured for the four gaits, and the corresponding PFs. ParEGO is able to
quickly explore the PF for each of our four gaits.

consistent with the physical constraints of the physical robot, since the actual leg actuators cannot
partially retract. We choose to mutually couple all six of the vertical oscillators (with a coupling
weight of 4 to ensure quick convergence on stable limit cycles). Each of the horizontal oscillators are
also coupled with their respective vertical oscillator in order to encapsulate the dynamics of each leg.
We chose to implement four different gaits with the CPG – tripod, ripple, wave, and four-two (see
Figure 2). For a more detailed description of these gaits we refer the reader to [3]. We use the same
frequency and phase difference for the whole network in order to reduce the number of parameters
and speed up the rate of convergence. We use two separate parameters for amplitude, each controlling
the left and right set of legs respectively. This choice of parameters allows us to control the turning of
the robot which is necessary for path planning and corrections for not walking straight.

5.2 Learning to Walk Straight

We optimized the four gaits considered (i.e., dual tripod, ripple, wave, and four-two) using as our
objective function the walking speed of the robot (measured as the distance traveled after 1 s). Since
some gaits result in curved motions, we also penalized the speed objective with a term proportional
to the drift from the axis of locomotion. The optimization used the 4 parameters outlined in Section 3
and was repeated 20 times for each of the gaits. In Figure 3, we show the median and 65th percentiles
of the best solution obtained so far in the trials. The results show that the optimizer was able to learn
to walk from scratch within 50 iterations. Moreover, it can be also noted that the optimized wave and
ripple are the fastest gaits at ∼ 1 cm/s.

5.3 Multi-objective Gait Optimization
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Figure 5: Comparison of the PFs obtained
for the different gaits.

In the previous experiment we only considered walk-
ing speed as our objective. However, for practical gait
design, energy efficiency is another objective of great in-
terest, particularly when it comes to designing gaits for a
microrobot with real energy restrictions. For this reason,
we now consider a multi-objective optimization setting
and compare the different gait w.r.t. both walking speed,
and energy consumption. The energy consumption of
the robot was computed by measuring the forces exerted
by each of the 12 motors along the axis of actuation
and calculating the power used to actuate the motors.
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Since the retraction of the legs is spring powered, the energy input in the cycle is only during motor
extension. Hence, we only consider the cost of extending the legs. With the mass of the robot and the
time of each trial being held constant, this allows us to quantify the energy efficiency of a gait and
estimate the cost of transport.

We optimized again the four gaits with the same parameters as used previously but this time using
multi-objective Bayesian optimization with a budget of 50 iterations. In Figure 4 we can see the
performance measured and Pareto fronts obtained for the different gaits. To better compare the PF
from the different gaits, we also visualized just the PFs together in Figure 5. From these results, we
can see how the tripod gait dominates the other gaits for speed < 0.6 cm/s, while Ripple dominates
when the speed is > 0.6 cm/s, hence giving a clear indication of which gait is preferable under
different circumstances.

5.4 Discovering New Gaits with Multi-objective Optimization
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Figure 6: PF of the unrestrained gait optimiza-
tion versus the best performance of the four nature-
inspired gaits. The faster solutions outperform the
fastest nature-inspired gaits, albeit with more energy
expenditure. However, the inability of the optimizer
to match the performance of the gaits at lower speeds
within 1250 trials shows that the gait parametrization
can help limit the search space to find better solu-
tions easier. (top) Pattern for two of the discovered
gaits.

In addition to optimizing the four nature-
inspired gaits, we also tested multi-objective
optimization on the walker without constrain-
ing to using predefined gaits. To parametrize
the oscillator couplings, we thus discretized
each gait into intervals of constant length.
Within each of these intervals, we assume
that each leg steps exactly once, keeping each
of the oscillators in the CPG in phase with
each other. This allows us to parametrize gaits
by assigning each leg a point during each in-
terval where it begins stepping. While this
parametrization excludes certain gaits that can-
not be expressed in this form, we leave the
study of more sophisticated gait parameteriza-
tions for gait discovery to future works.

The resulting multi-objective optimization
task had eight parameters (frequency, phase
difference between horizontal and vertical mo-
tors, and the six gait coupling parameters).
Due to the higher parameter dimensionality
than before, and because this training was not
intended for on-line training, we ran the opti-
mization for 250 iterations in order to allow
a more comprehensive exploration of the op-
timization space. We also repeated the opti-
mization five times for a total of 1250 trials.
In Figure 6 we can see the Pareto front for the
resulting gaits. We found that the fastest dis-
covered gaits were actually able to outperform
the four nature-inspired gaits implemented by
a substantial margin. Even while penalizing
curved paths, the fastest discovered gait out-
performed Ripple (the fastest nature-inspired gait we found) by almost 50%. However, for low-speed
gaits, the nature inspired gaits out-perform the gaits produced by the unconstrained optimization,
indicating the optimization did not yet fully converged to the optimal PF.

5.5 Learning to Walk on Inclined Surfaces

We now consider the case of contextual optimization and specifically the task of gait optimization
for slopes with different inclinations. We framed learning to walk on inclined terrain as a contextual
policy search, where the angle of the inclination is the context. In this experiment we decided to use
Dual Tripod for our gait with mostly the same open parameters as the previous experiments. We only
used one parameter to represent the amplitude for the entire network in order to keep the number
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Figure 7: Performance of the contextual policy
(median and 65th percentile) for a wide range of
inclines. The policy was trained only at 5, 10 and
15 degrees, but it was capable of generalizing
smoothly to unseen inclinations.
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Figure 8: Comparison between the optimization
performance of a contextual optimizer and a nor-
mal optimizer for two different tasks: (a) walk-
ing on inclines (b) walking curved trajectories. In
both cases, the contextual optimizer can leverage
prior experiments to obtain high-performing gaits
in fewer experiments.

of parameters low with the addition of a contextual variable, leaving us with 3 parameters and 1
contextual parameter. To respect real world constraints, where testing randomly sampled incline
angles over a continuous interval can be excessively time-consuming, we chose at training time to
perform experiments only from a small number of inclines: 5, 10, and 15 degrees.

After optimizing the gaits for these three inclines over 50 iterations, we studied how the contextual
optimizer is able to generalize across the context space by testing the performance of the contextual
policy for a wide range of inclines. In Figure 7 we can see that the policy performs well on
intermediary inclines and seems to smoothly interpolate between the training inclines as is desirable.
The gradual decrease in performance as the inclines get steeper can be attributed to the increasing
physical difficulty for climbing up steeper inclines. We also compared cBO against using standard
BO to train the robot for an untested incline. As shown in Figure 8a, the contextual optimization
was able to converge on optimal performance significantly faster than normal Bayesian optimization.
This result demonstrates the ability of the contextual optimization to use data accumulated in other
contexts to quickly reach optimal gaits in unseen contexts.

5.6 Learning to Curve

Another useful task that can be framed as contextual optimization is learning motor primitives to walk
curves for use in path planning. We used the same parameters as in Section 5.2 and the contextual
parameters in this case were the target displacements along both the x and y axes from the point of
origin. In order to train particular trajectories, we selected five evenly spaced target points along the
front quadrant of the field of vision. Since the primary objective was to reach the desired destination,
we chose to use the distance of the final position to the target position as our sole objective function.
We found that over 10 repetitions, the walker was able to accurately move and turn towards all of
the target points within 250 iterations. We also compared the performance of cBO against standard
BO on a previously unseen target position (4 cosπ/16, 4 sinπ/16). We found that, as in the case of
inclinations, the contextual policy was able to learn the optimal parameters for a novel trajectory
within very few iterations.

5.7 Learning Motor Primitives for Path Planning

In the previous experiment we learned motor primitives capable of walking curved trajectories. While
the model handled trajectories near and between the targets quite well, the performance on trajectories
well within the physical capabilities of the robot but not in proximity to the targets left much to be
desired, as shown in Figure 9. We now demonstrate how our approach presented in Section 4 can be
used to significantly improve the movement accuracy (compared to cBO using the same data), as well
as how such motor primitives can be used to perform path planning. First, we reused the data from the
previous experiment in order to reformulate the task as a multi-objective optimization as described in
Section 4. Then, we used our trained model to sample 10,000 trajectories by randomly sampling from
the parameter space. Out of all these trajectories, we selected the one with the smallest expected error
subject to not walking through the wall. Evaluating the resulting sequence of motor primitives on the
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Figure 9: Comparison of the performances of cBO and our approach
for learning motor primitives (using the same data). With the robot
having an initial position of (0, 0), we evaluated the error between
the desired position (indicated by the element of the grid) and the
reached position. Darker color indicates better target accuracy. While
cBO accurately learned trajectories near the training targets, it did
not generalize well to unseen targets. In contrast, our approach had
a more comprehensive coverage as it was able to leverage better
information about the environment to improve generalization.

End

Start

Figure 10: Path constructed
using the locomotion prim-
itives learned with our ap-
proach.

real system (i.e., the simulator) demonstrated that the expected trajectory was capable of navigating
the maze.

6 CONCLUSIONS

Designing controllers for locomotion is a daunting task. In this paper, we demonstrated on a simulated
microrobot that this process can be significantly automated using BO. Our main contributions are
two-fold: 1) we introduced a coherent curriculum of increasing challenging tasks, which we use
to evaluate our microrobot and the parametrization of its controller using existing BO techniques.
2) we presented a new approach that enables walking robots to efficiently learn motor primitives
from scratch. By using the data collected from contextual optimization we reformulate the problem
into a multi-objective optimization task, and learn a model that can map any set of parameters to
a predicted trajectory. This model can subsequently be used for path planning. Our experimental
results demonstrate using this approach the microrobot is able to successfully navigate through a
maze.
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