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Abstract

The design of gaits for robot locomotion can be a daunting process that can be
addressed by data-driven gait optimization. In this paper, we propose a novel
approach to efficiently learn a wide range of locomotion tasks with walking robots.
This approach formalizes locomotion as a contextual Bayesian optimization task to
collect data, and subsequently uses that data to learn multi-objective locomotion
primitives that can be used for planning. As a proof-of-concept, we demonstrate on
a simulated micro-hexapod that without any prior knowledge about the robot used
(e.g., dynamics model), our approach is capable of learning locomotion primitives
within 250 trials and then use them to successfully navigate through a maze.

1 INTRODUCTION

Substantial progress has been made in developing fully autonomous
microrobots [17,22]]. However, the design and implementation of gaits
for enabling locomotion at the sub-centimeter scale remains a non-trivial
task. Our primary contribution is to introduce a novel approach that
allows for efficient learning of gaits and motor primitives from scratch
without prior knowledge. This is accomplished by collecting data on
various motor primitives using contextual Bayesian optimization and
using those evaluations to reformulate the problem into a multi-objective
optimization task, giving us a model that can map any set of parameters
to a predicted trajectory. Using this model, we are able to optimize our

parameters on various trajectories for subsequent use in path planning.

To evaluate our approach, we used a simulated hexapod microrobot
modeled after a recently developed microrobot [[6]. We first validated
existing techniques on a set of progressively more difficult tasks: learning
single-objective, contextual, and multi-objective gaits. Following, we
evaluated our approach by learning motor primitives from 250 trials, and
used them to successfully navigate a maze.

2 RELATED WORK

Figure 1: The six-legged
micro walker considered
in our study (top) and its
simulation (bottom).

For controllers with many parameters, manually tuning controller parameters can require both
an immense amount of domain expertise and time. As such, automatic gait optimization is an
important research field which has been studied with a wide variety of approaches in both the
single-objective [19, 15| [12] [10} 20, [13] [14} 2] and multi-objective setting [4, (13} [14} 21]. A more
data-efficient approach used in the past to learn gaits for snake and bipedal robots is Bayesian
optimization [10}[20,2]]. Bayesian optimization has also been applied to contextual policy search in the
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context of robot manipulation [11]. Our contribution builds off of this work by applying and extending
the contextual framework to learning movement trajectories and path planning. Another extension
of Bayesian optimization related to our work is Multi-objective Bayesian optimization, which has
also been previously applied in the context of robotic locomotion [21]. Our main contribution
demonstrates an entirely novel application of multi-objective optimization from past work by using a
multi-objective model to learn over an area of possible trajectories for path planning.

3 BACKGROUND

Central Pattern Generators Central pattern generators (CPGs) are neural circuits found in nearly
all vertebrates, producing periodic outputs without sensory input and can reproduce a variety of
gaits [24]. Benefits of using a CPG controller are lack of computational intensity and drastic reduction
in number of optimization parameters 8;. The 4 parameters we consider during optimization are
0 = [w, X, R;, R,] where w is frequency of the oscillators and X is phase difference between each
of the vertical-horizontal oscillator pairs. In order to allow for directional control, R; and R, are the
amplitudes of the left and right side oscillators respectively. We built our controller using a network
of 12 coupled phase oscillators (1 per motor) and implemented four gaits — tripod, ripple, wave, and
four-two. For more information about gaits we refer the reader to [3]].

Bayesian Optimization To automate the CPG network’s parameters tuning, we use Bayesian
optimization (BO) [9, [7| 2]]. We formulate the tuning of the CPG parameters as the optimization
0" = arg max, f (@) , where 0 are the parameters to be optimized w.r.t. the chosen objective

function f (e.g., walking speed, which we investigate in Section . BO learns a model f : 0 — f (8)

at each iteration, and the model f is then optimized using a Gaussian Process [16]. The resulting set
of parameters 8* from the optimized model is then evaluated on the real system and together with
f(07) is added to the data set. For more information regarding BO, we refer the readers to [[7, [18].

Multi-objective Bayesian Optimization A special case of the optimization task is multi-objective
optimization (MOO) [1]]. Often in robotics, multiple conflicting objectives need to be optimized simul-
taneously, causing design trade-offs (e.g., walking speed vs energy efficiency which we investigate in
Section [5). When multiple objectives are accounted for, there is no single optimum solution, but a set
of Pareto optimal solutions [[15], known as the Pareto front (PF). MOO often requires a significant
number of experiments, so we turn to ParEGO, a multi-objective Bayesian optimization algorithm
that addresses this issue [8]. For more information about multi-objective Bayesian optimization we
refer the reader to [23]].

Contextual Bayesian Optimization Another case of the optimization task is contextual optimiza-
tion, where we assume there are multiple correlated, but different tasks identified by context variable c.
An example (which we investigate in Section [5) is walking on inclines, where the context variable is
the slope angle. We can formalize this as 8 = arg max, f (0, ¢) , where for each context ¢, a set of
parameters 0™ exists. We can exploit the correlation between the tasks to generalize and quickly learn
to solve new contexts. Here we consider contextual Bayesian optimization (cBO) [11]] which extends
the BO framework from Section |3} Utilizing cBO, we will show in Section E] that our microrobot can
learn to walk uphill and curve.

4 LEARNING LOCOMOTION PRIMITIVES FOR PATH PLANNING

We now present our novel approach to learn motor primitives for path planning by re-using the
evaluations collected using cBO to convert the task into a MOO problem. Let us consider a cBO task
where we want to optimize the parameters 6 to reach different target positions ¢ = [AZges, AYges)
(this setting is evaluated in Section [3]). The objective function is defined as the Euclidean distance

= \/ (Azges — Axobs)2 + (AYges — Ayobs)2 where Azops, Ayops are the actual positions mea-

sured after evaluating a set of parameters. The cBO model maps f : [0, Axqes, Ayaes] — f(0).
However, to compute f it needs to measure Axqps, Ayops, effectively generating data of the form
[0, AZges, AYdes] — [AZobs; AYobs, f (6)]. We can re-use the data generated from cBO to learn a
motor primitive model in the form g : @ — [Axps, Ayops]- The purpose of this learned model g is to
provide an estimate of the final displacement obtained for a set of parameters independently from
the optimization process that generated it. Once such a model is learned, we can use it to compute
parameters that lead to a desired displacement Az}, Ay’ by optimizing the parameters w.r.t. the
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Figure 2: Learning curve for the four gaits (median and 65th percentile). We can see how, for all the
gaits, BO learns to walk from scratch within 50 iterations. After the optimization, Wave and Ripple
are the fastest gaits at ~ 1 cm/s.
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Figure 3: Performance measured for the four gaits, and the corresponding PFs. ParEGO is able to
quickly explore the PF for each of our four gaits.

output of the model 8* = arg max, z(g(8)), where z is a scalarization function of our choice (e.g.,
the Euclidean distance). These paraemters are optimized over a series of multiple displacements to
obtain a path planning optimization. In Section 5} we employ a simple shooting method optimization
which randomly samples multiple candidate parameters and selects the best outcome.

S EXPERIMENTAL RESULTS

Here we discuss the performance of our simulated microrobot on various locomotive tasks. Videos of
tasks are available athttps://sites.google.com/site/learninglocomotorprimitives/.

Learning to Walk Straight We optimized the four gaits considered using as our objective function
the robot’s walking speed (measured as distance traveled after 1s). The optimization used the 4
parameters outlined in Section [3]and was repeated 20 times for each gait, as seen in Figure 2] Results
show that the optimizer learned to walk from scratch within 50 iterations. Moreover, we note that the
optimized wave and ripple are the fastest gaits at ~ 1 cm/s.

Multi-objective Gait Optimization We now consider a multi-objective optimization setting and
compare the different gaits w.r.t. the microrobot’s walking speed and motor energy consumption. We
optimized the four gaits using multi-objective Bayesian optimization with the same 4 parameters
as before on a budget of 50 iterations. In Figure [3] we can see the Pareto fronts obtained for the
different gaits. From these results, we observe that the tripod gait dominates other gaits in speed
< 0.6 cm/s, while Ripple dominates when speed is > 0.6 cin /s, hence a clear indication of which
gait is preferable under different circumstances.

Discovering New Gaits with Multi-objective Optimiza-
tion We also tested multi-objective optimization on the .

walker without using predefined gaits. The resulting multi- s _° toe IR
objective optimization task has 8 parameters (frequency, o, ¢ AN %, e

phase difference between horizontal and vertical motors, e
and the six gait coupling parameters). In Figure [ we can
see the Pareto front for the resulting gaits. Even while penal-
izing curved paths, the fastest discovered gait outperformed
Ripple (the fastest nature-inspired gait we found) by almost
50%. o
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Learning to Walk on Inclined Surfaces We now con-

sider cBO, specifically gait optimization for walking on Figure 4: PF of the unrestrained

inclined terrain, where the angle of the inclination is the —gait optimization versus the best per-

context. Sampling randomly over a continuous interval of for.mance of the four nature-inspired
gaits.
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Figure 7: Comparison of the performances of cBO and our ap- Figure 8: Path constructed us-
proach for learning motor primitives (using the same data). Darker ing the locomotion primitives
color indicates better target accuracy. learned with our approach.

inclines is time-consuming, so we trained on: 5, 10, and 15 degrees. After optimizing Dual Tripod for
these three inclines over 50 iterations, we tested cBO’s generalization across a wider context space.
In Figure 5] we see good performance in intermediary inclines and smooth interpolation between
the training inclines. As shown in Figure [6a] cBO converged on optimal performance much faster
than normal BO. This demonstrate cBO’s ability to use data accumulated in other contexts to quickly
reach optimality in unseen contexts.

Learning to Curve Another useful task that can be framed as contextual optimization is learning
motor primitives to walk curves for use in path planning. In addition to the 4 parameters used in
our initial experiments, our 2 context parameters here were target displacements along both the x
and y axes from point of origin. To train trajectories, we selected five evenly spaced target points in
the field of vision. The objective is to reach the desired destination, so our objective function is the
distance of the final position to the target position. Over 10 repetitions, the walker could accurately
move and turn towards all of the target points within 250 iterations.

Learning Motor Primitives for Path Planning In the previous experiment we learned motor
primitives capable of walking curved trajectories. We now demonstrate how our approach presented
in Sectiond]can be used to significantly improve movement accuracy (compared to ¢cBO using the
same data), as well as how such motor primitives can be used in path planning. First, we reused
the data from the previous experiment to reformulate the task as a multi-objective optimization as
described in Section[d] Then, we used our trained model to randomly sample 10,000 trajectories
from the parameter space. Out of these trajectories, we selected the one with smallest expected
error. Evaluating the resulting sequence of motor primitives on the real system (i.e., the simulator)
demonstrated that the expected trajectory was capable of navigating the maze.

6 CONCLUSIONS

Designing controllers for locomotion can be daunting. In this paper, we demonstrated on a simulated
microrobot that this process can be much automated using BO. Our main contributions are two-fold:
1) we introduced a coherent curriculum of increasing challenging tasks, which we use to evaluate
our microrobot using existing BO techniques. 2) we presented a new approach that enables walking
robots to efficiently learn motor primitives from scratch. By using the data collected from cBO we
reformulate the problem into a MOO task, and learn a model that maps any set of parameters to a
predicted trajectory. Our experimental results demonstrate using this approach the microrobot can
successfully navigate a maze.
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