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Wireless Gas Leak Detection and Localization
Fabien Chraim, Yusuf Bugra Erol, and Kris Pister

Abstract—Thousands of industrial gas leaks occur every
year, with many leading to injuries, deaths, equipment dam-
age, and a disastrous environmental effect. There have
been many attempts at solving this problem, but with lim-
ited success. This paper proposes a wireless gas leak
detection and localization solution. With a monitoring net-
work of 20 wireless devices covering 200 m2, 60 propane
releases are performed. The detection and localization
algorithms proposed here are applied to the collected
concentration data, and the methodology is evaluated. A
detection rate of 91% is achieved, with seven false alarms
recorded over 3 days, and an average detection delay of
108 s. The localization results show an accuracy of 5 m.
Recommendations for future explosive gas sensor design
are then presented.

Index Terms—Distributed detection, gas leak detection,
industrial wireless, low power networks, propane.

I. INTRODUCTION

T HE NUMBER of gas leaks that occur every year on
industrial plants is unknown. Most of these leaks, even if

detected, go unreported when they do not directly lead to tangi-
ble accidents. Environmental Protection Agency (EPA) reports
estimate that in the United States alone, these plants emit close
to one billion cubic meters of methane (not taking any other
gas into consideration). Most of these losses (around 80%)
seem to come from leaky compressors, valves, seals, and con-
nectors [1]. In 2012, approximately 2200 million metric tons
of CO2 equivalent were accidentally released from petroleum
systems and other chemical processes necessary for the pro-
duction of plastics, cement, iron, and steel [2]. It is estimated
that around 800 000–900 000 leaks are investigated each year
on refineries, with between 200 and 300 of them having directly
resulted in loss of life, injuries, damaged equipment, or opera-
tional losses [3]. In short, industrial gas leaks present a major
challenge in the quest for safe, environmental-friendly, and
cost-effective plants.

In this paper, we present a distributed wireless sensor
approach to the problem of gas leaks in large industrial
spaces (chemical plants, refineries, oil rigs, etc.). The objec-
tive is to detect and localize “refinery-like” gas leaks within
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seconds of their occurrence. With many corporations upgrad-
ing their facilities with a low-power wireless infrastructure
(WirelessHART) [4], a leak-detection system that simply con-
nects to the wireless umbrella would be a desired addition to the
existing safety framework. Our goal is to study the feasibility of
such an approach, while carefully reviewing some of the detec-
tion challenges in the hope for opening the door for widespread
commercial adoption.

This paper is organized as follows. In Section II, we will
review some of the available solutions to the problem at hand,
both at the academic level and commercially. Our approach is
then presented in Section III, where we look at the system archi-
tecture, the hardware, and the detection/localization algorithms.
Our experimental results are shown in Section IV, in which we
validate our approach using real propane leaks. Future direc-
tions and recommendations are left for Section V where we
conclude.

II. LITERATURE REVIEW AND STATE OF THE ART

The review presented in this section is divided into a sur-
vey of commercial methods for leak detection, and some of the
ideas coming out of academia.

A. Gas Leak Detection Systems

Conventional leak detection methods fall under two cate-
gories: 1) fixed instrumentation; and 2) mobile sensing. In the
former, a sensor is affixed in the general vicinity of equipment
suspected of leaking (valves, compressors, etc.). These instru-
ments are usually connected to a constant power source and
generate alarms based on their sampled data. These alarms can
be visual or audible, or can feed directly into a plant manage-
ment system. Mobile sensors are usually hand-held devices that
a worker has to point at the suspected leak source and evalu-
ate the readings on the spot. Reports of the measurements are
relayed in real time either through a wireless connection or
by direct communication between the worker and other plant
employees. Both these methods have their advantages and dis-
advantages, and most often, a hybrid system of fixed and mobile
sensors is implemented. In particular, a fixed sensor is able to
continuously monitor an area, as opposed to a worker who sam-
ples the same region for a few seconds perhaps before moving
on. Fixed sensors have better instruments by virtue of the fact
that they are less constrained, but mobile sensors allow the oper-
ator to trace a leak to its origin. It is obvious that mobile sensors
put the worker at risk during the sampling process, whereas the
fixed sensors enable safer operation [5].

In this study, we are only interested in fixed instruments
because our proposed solution is static in nature. We now look
at some of the commercially available solutions for compar-
ison. Many solutions have been proposed for the problem of
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leak detection in pipelines [6]. This topic, though relevant, is
not of direct interest here, since leak detection near pipelines
can be accomplished by deploying a series of sensors in a lin-
ear sequence. The solution presented in this paper would not
be very practical for long pipeline installations due to the high
number of sensors it would require.

Perhaps, the most prevalent leak detection methodology is by
concentration measurement. Pellistor, electrochemical, semi-
conductor, and infrared sensors are all used to sample the
ambient gas for particular species. By means of preset threshold
detection, alarms are raised alerting workers and plant opera-
tors [7]. These widely adopted sensors, however, suffer from
one or more of the following: low sensitivity, short lifetime,
high energy consumption, sensitivity to ambient conditions,
high costs, drift, etc. Typically, these sensors are operated inde-
pendently, meaning that no information about the source of the
leak is given. Due to the fact that they consume a considerable
amount of energy, installing them becomes an issue as virtually
always, the cost of laying cables outstrips the cost of the device
itself [7].

Pipeline diagnosis systems gave rise to ultrasonic sensors,
which have recently been adopted in some plants. The principle
of operation relies on the fact that gas leaks sometimes come
from punctured pipes, which emit acoustic “tone” signals in the
ultrasonic band [8]. These sensors, though unaffected by envi-
ronmental conditions, do not measure the intensity of the leak,
and are still unable to determine its origin. They are designed to
work with gases under pressure, and do not represent a general
solution to industrial gas leaks.

In recent years, camera systems have found their way
to the gas leak detection and localization market. These
devices tend to be mounted on elevated towers, often rotat-
ing to cover the entirety of the plant. They operate by taking
snapshots of the environment, then analyzing the sampled
images to detect gas leaks [9]. Most of the available solu-
tions on the market operate in the infrared band, but recently,
more versatile snapshot hyper-spectral instruments are being
utilized.

Energy and cost present challenges for large-scale deploy-
ments of gas sensors. Some studies have focused on improving
the sensing methodology to address these issues [10], [11]. So
et al. [10] present an optically based gas detector for various
species. Their solution is based on commercial off-the-shelf
components, and employs photo-acoustic spectroscopy making
it tunable to various species. Their results are promising, as they
achieve a reduction in power consumption as well as a reduced
manufacturing cost. They validate their sensor experimentally
with CO2, measuring concentrations down to 410 ppb. Their
designs demonstrate a $2000 device with current consumption
on the order of 70 mA [10].

Somov et al. [11] deployment develop a hazardous gas detec-
tion system based on wireless battery-powered devices. Their
methane sensor is a planar catalytic one built on gamma alu-
mina membranes. Their circuitry achieves a reduced power
consumption. Their boiler room deployment consists of nine
wireless methane sensors and a gateway. The average power
consumption of their device is at 2.64 mW, with a sampling
interval of 30 s and a transmission every 5 min. As a result, the

lifetime of their device is at 641 days. Their application targets
gas sensing resolutions of 0.15% volume of methane.

B. Detection and Localization Using Multiple Sensors

Academically, the problem of detecting and localizing leaks
has been addressed in many fields. Under different names,
similar methodologies have been applied in detecting the loca-
tion of a speaker using many microphones, localizing objects
using multiple radar streams, etc. We now list a few relevant
examples.

Nofsinger et al. propose using inverse diffusion modeling
to localize leaks. By assuming a Fickian diffusion model, they
consider a large network of sensors surrounding the source of
the leak. Coupling diffusion with ensemble Kalman filtering
allows them to estimate the location of the source of the leaks.
Their simulated system reports plume origins as numerous
hypotheses each having likelihoods [12].

Huseynov et al. [13] propose a distributed network of micro-
electromechanical systems (MEMS) ultrasonic sensors for gas
leak localization. In their study, a comparison of energy-decay
(ED) and time-difference of arrival (TDOA) methods for local-
ization is presented. With a distributed network of four devices,
they attempt to localize a nitrogen leak from a small orifice.
They employ maximum likelihood (ML) and the least squares
(LS) techniques to find closed-form solutions for the diffusion
differential equations. In their deployment, a 20 ft× 20 ft room
is instrumented with four MEMS microphones (running at 200
kHz). Nitrogen gas was released at 150 psi at four different
locations. They successfully localize the nitrogen leak with an
accuracy lower than 1 ft.

Weimer et al. consider gas leaks in wide and dense wire-
less sensor networks. The problem being addressed is one of
the large-scale leaks, with high concentration of gases (such
as harmful gases in a metropole). In their model, therefore,
they take diffusion and air currents into account. An interesting
idea is presented concerning the subsampling of sensors, which
are in close proximity, to reduce the network-wide energy con-
sumption. A wake-up process ensures that all the devices are
running when needed. Their method combines binary hypoth-
esis testing with Kalman filtering, and is implemented on a
testbed of 30 wireless light sensors [14].

The methods presented in these articles (and more on the
topic of gas leak detection and localization) have merit, as
they present valid and interesting theoretical ideas and sim-
ulations. However, they all leave much to be desired in the
space of experimental validation. In this study, we attempt to
solve the problem of gas leak detection and localization in the
most applied manner possible. We employ some mathematical
and statistical tools, and apply them to real gas concentration
measurements recorded during a series of intentional releases
performed in a typical industrial setting.

III. A WIRELESS DISTRIBUTED SENSING APPROACH

In this paper, we study the problem of gas leak detection
and localization by means of a wireless, distributed network
of sensors. Though such an approach could be viewed as a
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standalone system of sensors, it could also benefit from further
integration. The gas sensors utilized here could be tacked on to
other industrial process control instruments. For example, the
wireless valve positioning solution presented in [15] could be
augmented with a gas leak sensor, as both of these problems are
often linked. Furthermore, a wireless perimeter security solu-
tion [16] could also assist in detecting and localizing plant leaks
as soon as suspicious concentrations leave the enclave of the
plant. In this paper, we consider the leak detection solution as a
stand-alone system.

A. Hardware

As is customary with most wireless sensing applications,
the hardware we developed in this study includes a radio, a
microcontroller, a sensor, and a power source. Recently, the
push for higher integration in the industry resulted in system-
on-chip (SoC) solutions for the microcontroller and radio.
In this project, the Linear Technology LTP5902 SmartMesh
WirelessHART Mote Modules were utilized. They feature a
32-bit ARM Cortex M3 microcontroller, along with a 2.4-GHz,
IEEE 802.15.4, WirelessHART (IEC62591) compliant radio.
Combining the time-synchronized channel hopping protocol
with extremely low transmission and reception power levels (on
the order of 5 mA at 3 V), these modules achieve a 99.999%
network reliability with a sub- 50 µA average currents.

In this project, the focus is on explosive gases. For this rea-
son, all of the studies and releases were performed around
propane, which is a by-product of natural gas processing and
appears in the process of refining petroleum. This gas is the
representative of the family of explosive gases, and was made
available to us for use in the various experimental stages.
Propane is commonly used in commercial and residential appli-
cations, and is in the liquefied petroleum (LP) gases family.
As such, a propane sensor needed to be integrated with the
LTP5902 SoC. The dynament premier infrared hydrocarbon
(propane) sensor (MSH-P/HC/NC/5/V/P) was selected, with a
0%–2% volume measurement range [or 0–20 000 part per mil-
lion (ppm)] and a resolution of 0.01% volume (100 ppm). Our
integrated device is shown in Fig. 1. Though this propane sen-
sor is, at the time of writing, one of the best on the market, its
performance leaves a lot of room for improvement. For starters,
it consumes an average of 80 mA of current (at 3 V), and
possesses a start-up time of 1 min. This certainly represents a
challenge in battery-operated devices. Additionally, the sensor
has a temperature compensation routine to account for changes
in the ambient temperature. However, this feature does not have
a very fast response time. This means that in outdoor installa-
tions especially, small gusts of wind, which lead to temperature
changes, can result in large variations in the concentration mea-
surement (by hundreds of ppms). Although the sensor features
an internal temperature reading, this measurement itself does
not represent the ambient temperature around the housing of
the sensor. Rather, this reading is largely affected by the heating
elements inside the sensor. The response of two identical sen-
sors deployed outdoors in the vicinity of a leak source is shown
in Fig. 2. It is clear that the state-of-the-art propane sensors still

Fig. 1. Hardware platform used in this study: a wireless, battery-
powered propane sensor.

present many challenges, and we hope to demonstrate that they
are the missing link in the productization of this solution.

Considering the average power levels of the communication
module, and with careful application design and network con-
figuration, it is often possible to implement wireless sensing
applications where lifetimes extend beyond the shelf life of
batteries (around 10 years). However, in this wireless gas leak
application, the sensor remains as the limiting factor and a bur-
den on the energy budget. Finally, it is worth noting that the
hardware was powered by an industrial D-size lithium metal
battery, with 19 Ah of charge (with a duty-cycling of 25%,
this battery would hold enough charge for about 40 days). The
device was enclosed in an ABS plastic IP-54 enclosure by
Hammond.

B. System Architecture

The system architecture for the leak detection solution is per-
haps best explained with a picture (see Fig. 3). Taking a refinery
for the sake of example, gas leak detection sensors would be
deployed throughout a refinery. Though a grid distribution is
often easier to manage, it is not a required feature. Indeed,
these easy-to-install sensors can be mounted in seconds to the
existing buildings and poles, and as long as their location is
recorded, the concentration data will be easily processed by the
algorithms presented later. The path from data to decision starts
with concentration measurements at the node side, which are
filtered and transmitted to the gateway (when needed), using
the wireless infrastructure. The gateway algorithms then collect
the concentration data from many sensor devices on the grounds
and generate alarms whenever a leak is detected. Additionally,
periodic reports concerning the concentration gradients of gases
on the refinery can be generated and sent to concerned parties.

In terms of sensor placement, these devices would be spread
throughout the plant. However, it is beneficial to increase the
density in zones susceptible to leaks. For example, an increase
in the number of compressors and valves raises the risk of
leaks. As such, a typical deployment would have a minimum
density necessary for detections, and then certain areas would
be characterized with clusters of sensors (increased density)
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Fig. 2. Sensor SNR and response challenges: in this experiment, two
sensors were positioned 4 m apart, and 4 m away from the source of
the leak. These sensors were observed with an forward looking infrared
(FLIR) camera and validated to be present in a detectable plume.
(a) Sensor 1 response: even with a high noise floor, this sensor was
responsive to the leak. (b) Sensor 2 response: elevated noise and no
apparent response to the same leak. (c) Experimental setup diagram
showing both sensors within the plume boundary during the leak.

based on the risk. To minimize the overall application energy
consumption (for the entire system of sensors), neighboring
devices might take turn in “guarding” a zone, then alerting

Fig. 3. Proposed system architecture: gas leak detection sensors are
deployed extensively across a sensitive industrial area (a refinery in
this case); data travel through the mesh network toward a single col-
lection point (gateway) where the detection and localization algorithms
are applied. The sensors can be duty-cycled spatially and temporally
based on the measured concentrations.

Fig. 4. Semiheuristic sensor model derived from experimental data.
Noncomplementary probabilities accompany each state: ON (leak occur-
ring) or OFF (no leak). This model was obtained by observing various
sensor behaviors during leaks and in their absence (similar to the one
shown in Fig. 2). The concentration counts were then performed and
adjusted heuristically as shown in these histograms. As will be appar-
ent, our detection method is based on the variations in probabilities in a
particular period of time. (a) Sensor model for concentration measure-
ments during a leak (ON Model). (b) Sensor model for concentration
measurements during a leak (OFF Model).

the other devices in case of suspicious increase in measured
concentrations.

Similar to having an adaptive spatial sampling of concentra-
tion, a temporal one would also be beneficial. This means that
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Fig. 5. Observation likelihood at each time step, for both states: as con-
centration measurements are received, the probability of having a leak
versus no leak are computed. In the event of a gas release, one would
expect to see the likelihood of having no leaks drop, while that of having
leaks increase.

Fig. 6. Algorithm described here takes the likelihood time series as input
and returns the instants in time where that plot went beyond the norm
(by a certain percentile threshold).

the mote can decide to increase its sampling frequency when
it detects a sudden surge in gas concentration. The reporting
rate of data to the gateway, which is not very frequent regu-
larly (on the order of one average reading every 10 min), can
also be increased when the device records an unusual concen-
tration of gas. Augmenting this method with a statistical routine
can also get rid of many unnecessary alarms and minimize
energy consumption. The experiments performed in this study
were designed with oversampling. In long-term deployments,
however, this large amount of data would not be necessary.
Instead, sensor would transmit steady-state concentrations to
the gateway in the form of averages and other statistical figures.

Fig. 7. Summing the detections in stage-2 allows for an easier identifi-
cation of leaks. Depending on the window size, the amount of detections
can cross a detection threshold for a considerable time. The summation
plot, overlayed with a smoothed version for clarity is shown here.

As for the gateway, common practices involve powering it
directly from the mains. However, it would be possible to
utilize a solar scavenger with a rechargeable battery instead.
Combined with a low-power Linux box, the WirelessHART
gateway will consume on the order of 1.5 W on average.

C. Detection Algorithm

Considering the system architecture above, where each sen-
sor adaptively reports its gas concentration measurements to
one location (through one or more gateways), we now look at
a method for detecting the occurrences of leaks. Our frame-
work is a probabilistic one, where each sensory observation
s(t) is represented probabilistically, then the total likelihood
of a leak is computed at every time step. To get there, we
model each sensor observation independently as p(si(t)|θt),
where i ∈ {1, . . . ,M},M is the total number of sensors per
area under consideration, and θt is an indicator variable,
which represents the existence of a leak at time step t. We
have derived semiheuristic models for our sensors both in
the presence of a leak (ON, θ = 1) and when just measur-
ing leak-free environments (OFF, θ = 0). The measurements
and experiments leading to these models will be defined in
Section IV. The histograms corresponding to the derived mod-
els are illustrated in Fig. 4.

Using these models, the likelihood at each time step is
computed as follows:

Lt(θ) =

N∏

i=1

p(si(t)|θ). (1)

When θ = 1, we are essentially computing the likelihood of
a leak being present (ON state). Lt(θ = 0) is the likelihood
in the OFF state, or when no leaks are present. This is done
at each time step, using all of the available sensory informa-
tion si(t) for i ∈ {1, . . . ,M}. Intuitively, one would expect
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Fig. 8. Concentration heat maps of a 5 × 4 grid of sensors in two states:
(a) during a leak; and (b) when no gas is present (the sidebar denotes
concentrations in % volume).

Lt(θ=1) to increase in the presence of a leak (i.e., ON state),
while expecting Lt(θ = 0) to decrease during the same time.
Such a behavior is observed in our experiments and Fig. 5 is
one sample case.

In the quest for a completely automatic leak detection
system, we would like to record these changes in the like-
lihood signal autonomously. We, therefore, treat the problem
as a signal segmentation one [17]. In essence, we are inter-
ested in the segments of the likelihood time series, which
differ from the normal. Such signal segmentation techniques
have been successfully applied in electrocardiogram (ECG)
and electroencephalogram (EEG) applications [18], [19]. We
are using the algorithm presented in [18] to detect changes
in our constructed likelihood signal Lt(θ), in both states.
The method is detailed in Algorithm 1. The autocorrelation
functions (ACFs) of segments of length N are computed, as this

windows progresses along the time series. Each ACF computa-
tion is called Ai, where i ∈ {1, . . . , L/N}, and L is the total
length of the time series. The cosine of pair-wise ACF compu-
tations (Ai, Aj |i �= j) is performed, forming a similarity matrix
of size L/N × L/N . The weights of the similarity matrix are
then calculated and indices outside of the P th percentile are
labeled.

The main intuition behind this is the following: disturbance
free segments of a signal should have similar ACFs. However,
if there is a clear change in the signal, there should be a cor-
responding dissimilarity in the ACFs as well. Computing the
pairwise cosine similarities between each ACF, one can visu-
alize the similarity between the segments. By summing the
columns of the resultant similarity matrix, the weights are com-
puted. In our application, when there are no leaks, these weights
are high. During a leak, however, we expect the weights to
decrease, as they will be dissimilar to the regular ‘no-leak’ seg-
ments. The change in the segments is then detected simply by
applying a threshold set at the P th percentile value.

The algorithm presented here then returns a number of time
indices, which correspond to various regions of the likelihood
series, which were unusual. We will name these time indices
as stage-1 detections. Fig. 6 shows the same likelihood plots
of Fig. 5, but with overlayed segments representing the stage-1
detections.

One of the important parameters of this algorithm is the
percentile parameter. Depending on the percentile threshold,
which is set, one can reduce the rate of false positives. These

Algorithm 1. Phase-1 change detection algorithm

1: Input: likelihood timeseries, window size N , percentile
value P

2: Output: indices of the segments corresponding to the
irregularities

3: Segment the signal into epochs of length N
4: Compute the Auto-Correlation Functions (ACFs) of each

segment, Ai

5: Compute the cosine similarity between each pair of ACFs

cosσij =
AT

i Aj

‖Ai‖ ‖Aj‖ (2)

and form the similarity matrix
6: Compute the weights by summing the columns of the

similarity matrix
7: Calculate the P -th percentile of the weights
8: Label the segments with weights outside the P -th per-

centile

false positives arise from the fact that the sensor noise floors
are elevated (as explained in part III-A), and therefore, reduc-
ing our signal-to-noise ratio (SNR). Increasing the percentile
threshold in our algorithm reduces the false alarm rate, but this,
however, comes at the price of a reduction in true positives. This
parameter should be, therefore, set in such a way that alarm
fatigue and a “tolerable” leak miss rate are balanced.
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Fig. 9. Site of the experiment in College Station, TX. This figure shows
the two release points and the placement of the 20 sensor grid (5× 4)
at an elevation of about 2.25m.

Another effect of the sensor noise is the fact that some of the
stage-1 detections actually correspond to fluctuations of con-
centration measurements triggered by temperature variations
around the sensing element. This explanation was obtained
from the sensor manufacturer. This effect means that we are
not able to immediately consider the output of the first stage
and have to perform additional steps before making a decision.
To reduce false positives, we look at the total number of stage-1
detections in a sliding window. A sample output of stage-2 is
shown in Fig. 7, where a window size of 100 was utilized.
If this cumulative count of detections exceeds some predeter-
mined threshold level for a preset period of time, we then output
a detection, which we name as stage-2 detection. The length
of the sliding window, the threshold level, and the duration of
crossing can all be used to control the false positive and true
positive rates, similarly to stage-1. The overall performance of
stage-2 detections (and therefore, that of the entire algorithm) is
analyzed with respect to user-set parameters (percentile thresh-
old, stage-1 window size, and stage-2 window size). The results
are presented in Section IV.

D. Localization Algorithm

Following a successful detection of a leak by both stages
of the algorithm, a localization routine is called. We utilized
a simple center of mass approach. Upon finding a detection,
we calculate the two-dimensional mean of the concentration
measurements in the X − Y plane

x̂ =

N∑
i=1

si(t)xi

N∑
i=1

si(t)

(3)

ŷ =

N∑
i=1

si(t)yi

N∑
i=1

si(t)

. (4)

Fig. 10. Impact of varying the stage-1 window size on the number of
detections and false alarms. (a) An increase in the window size generally
leads to a decrease in the number of detections. (b) False alarms also
increase with the window size.

In the above equations, xi and yi represent the coordinates of
each sensor, whereas si(t) is the sensor concentration read-
ing. The resulting point (x̂, ŷ) is defined as the estimate of the
leak source detection. This would correspond to find the point
of maximum concentration on a heat map. Fig. 8 depicts the
localization result on a particular heat map.

E. Possible Improvements to Our Method

In our analysis, we assumed that the sensory readings are
conditioned only on the state of the leak (i.e., ON vs. OFF). Now,
as the deployment grows in size, a far-away sensor from the leak
source will probably not be able to detect any change. Still, con-
sidering a reduced spatial sampling, the response of the sensor
to the plume of gas will depend on its location with respect to
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Fig. 11. At the second stage, a larger window size tends to have a better
performance overall. (a) Increase in window size beyond a certain point
reduces the number of detections by a small number. (b) False alarms
are reduced when the stage-2 window size is larger.

this plume. To take this into account, the sensor models would
be augmented in the following form:

p(si(t)|θ, location). (5)

However, developing sensor models based on plumes is well
beyond the scope of this work, and it would somehow
complicate the study. Nevertheless, it is worth mentioning that
a location-dependent model can be worked out similarly to the
previous section. The likelihood methods will then be directly
applied, with some tuning.

Other important improvement that can be introduced is time
dependence. With our current approach, we do not exploit the
fact that if a leak exists at time t, it is then likely for this leak
to remain at time t+ 1. Considering this feature means that

Fig. 12. Stage-2 window size increase leads to a decrease in false
alarms, but that comes at the expense of an increase in detection delay.

we could use a general state space model to describe the leak
phenomenon. Our objective would then be to perform state esti-
mation, for which one may resort to Kalman filtering, unscented
Kalman filtering, or particle filtering.

IV. EXPERIMENTAL VALIDATION

To validate our architecture, hardware, and algorithms, we
took part in an experiment at the Texas A&M Engineering
Extension Service facility, College Station, TX, USA. Over the
period of 3 days, more than 60 propane leaks of 2 min each were
released. These leaks were monitored using the detection sys-
tem presented here, and controlled by a team of engineers and a
team of firefighters. The site of the releases is shown in Fig. 9.
Twenty wireless propane sensors were used to monitor an area
of about 200 m2 surrounding the two release points (at 0.5 and
5.5 m). The sensors were placed in a 4× 5 grid configuration,
with a separation of about 4 m. All of them were mounted on
an elevation of about 2.25 m. These devices measured propane
concentrations at a rate of one measurement every 5 s. The
measurements were collected in a data packet and transmitted
to a nearby gateway. We now present the results of our algo-
rithm applied to 60 releases of different source heights, source
nozzle sizes (2, 6.35, 19, and 63.5 mm), and flow rates (ranging
between 1.35 and 1020 lb/h).

A. Detection Results

The algorithms described in Section III were applied
to the collected concentration measurements, with different
parameters modified for every pass. First, we look at the number
of correct detections and false alarms as the stage-1 window
size is varied. The results are shown in Fig. 10. The general
trend observed shows that increasing the window size of the
first stage does not affect the number of detections greatly,
except when it grows to a point where the actual variations
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Fig. 13. Percentile threshold parameter is very important in determining
the performance of these routines. (a) Percentile threshold in the 10%–
20% seems to lead to a higher number of detections. (b) Number of false
alarms rises quickly with the percentile, before it rolls off at a slower rate.

associated with the leaks are no longer beyond the selected per-
centile threshold. This effect is accelerated when the window
size of stage-2 is reduced. The effect in question is readily vis-
ible in Fig. 10(a) for the stage-2 window size of 50. Looking
at false positives, we notice that the trend peaks at a particular
stage-1 window size before starting to roll off. However, it is to
note that this roll-off is sometimes associated with a reduction
in detections as well.

The impact of changing the stage-2 window size on the num-
ber of true and false positives is shown in Fig. 11. Concerning
the number of detections, increasing the size of the stage-2
window shows an increase in these detections, which tends
to settle (with a slight dip) beyond a particular point (around

Fig. 14. Given ideal sensors (with enhanced SNR), the detection prob-
lem would become much easier. This plot shows the result of the
two-stage detection algorithm presented here applied to ’ideal‘ data gen-
erated from the experimental one. (a) In some configurations, detecting
all of the releases becomes possible. (b) Rate of false alarms is zero
across most configurations.

125 samples). At the same time, the number of false alarms
increases sharply before it peaks and decreases with an increas-
ing window. This validates the conjecture made before: increas-
ing the stage-2 window size allows us to have a better detection
methodology, as it decreases the number of false alarms, while
not diminishing the true positives much.

However, and as expected, increasing the stage-2 window
size has a direct effect on delays. This is readily observed in
Fig. 12. Though the delay starts by being elevated with short
window sizes, this can be explained by the fact that the num-
ber of leaks detected with that configuration is very low, and
the data are, therefore, not representative. However, once the
delay reaches a minimum value, it starts to climb back up with
increased stage-2 window size. Indeed, the confidence in the
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Fig. 15. Scatter plot of all of the detections (during many different con-
figurations). The offset seen between the real source of the leak and
the conglomeration of detections could be explained by the fact that no
sensors were present directly above the source.

Fig. 16. Histogram of the distances between the detections and the real
source of the leak is shown. More than 50% of all detections are within
3 m of the source.

detection increases, but the consequence is that the algorithm
has to wait for more and more samples before making the
decision.

As explained before, the percentile parameter is an important
one that determines the performance of our detection method.
Looking at Fig. 13, we notice that increasing this parameter
has a similar effect in increasing the stage-2 window size: the
number of detections rises quickly before starting to dip slightly
with increase in percentile threshold, while the number of false
alarms rises quickly in the beginning, before dropping, as the
percentile is increased.

At this point, it is worth noting that the most balanced
configuration of this algorithm returned a detection rate of

Fig. 17. In the preferred configuration (resulting in 55 detections out of
60, with seven false alarms), the localization results appear even closer
to the actual source of the leaks.

55/60, with seven false alarms, and an average delay of 108 s.
Though these results seem promising, they leave a lot of room
for improvement. The detection rate is satisfactory, especially
when compared to the absence of widespread reliable detec-
tion methods on the market today, but a 100% rate would be
desirable of course. A delay of more than 100 s could repre-
sent some challenges for a refinery workers in responding to an
alarm, so reducing it to below 1 min is also desired. Finally, a
false alarm rate of 7 over a period of 3 days seems excessive,
even if these alarms were short-lived. Still, a false-positive rate
of 1 per plant per month (or per year) would be highly desirable,
especially with an elevated detection rate to accompany it. To
reach these desirable results, we would require an improvement
in sensor technology of at least one order of magnitude in SNR.
Concerning the lifetime of the sensors, and to enable a 10-year
deployment without the need to change batteries, a reduction in
power consumption of two orders of magnitude is required for
reliable detection.

With this in mind, we “massage” our experimental data to
reduce its noise as proposed and run the algorithm again. The
results are shown in Fig. 14. It is clear that certain configu-
rations of our detection methodology would give us a 100%
detection rate (while others give a slightly reduced rate). Most
important, however, is the false alarm rate, which stays at zero
across all configurations considered here.

B. Localization Results

We now look at the localization results, given our noisy sen-
sors covering the test site. Upon finding a detection, the center
of mass routine is called upon the concentration data, and the
point of highest mean in both the X and Y directions is identi-
fied as the leak source estimate. Fig. 15 shows a scatter of these
detection estimates (for different parameters described above)
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Fig. 18. Distance between the detected leak and the real source, for
one particular release under various algorithm configurations. (a) Larger
percentile thresholds tend to yield better localization results since the
response of more sensors is taken into account. (b) Stage-1 and stage-2
window sizes largely do not affect the localization.

along with the true source of the leaks. Most of the detec-
tions seem clustered in the middle of the sensor grid, but with
a slight skew toward the actual source. One potential expla-
nation to this phenomenon is the absence of sensors directly
above the leak release point. This means that the algorithm is
converging toward the closest sensor(s) in the vicinity of this
source.

Looking at the distribution of distance between the estimated
leak source and the actual one in Fig. 16, we can see that it
follows an inverse Gaussian trend. Most detections actually
occurred less than 3 m away from the leak source, and a striking
majority were localized less than 5 m away. The localizations
of the 55 “best” detections, which were obtained as described

above (with the seven false alarms and the delay of 108 s), are
shown in Fig. 17. Finally, Fig. 18 shows the distance between
the detected leak and the actual source, for one particular leak
and across different configurations. Larger percentile thresholds
lead to better detections since the concentration measurements
of more sensors are taken into account. In general, varying the
stage-1 and stage-2 window sizes does not affect the localiza-
tion results greatly. The main reason is that the localization
routine is purely a center of mass approach, and should not
be affected by the parameters. Hence, unless the detection is
distant, localization results will be more or less independent
of configuration parameters. However, by looking at particu-
lar leaks, some configurations were identified as problematic
across various gas releases. The results shown confirm the reli-
ability of the localization method, with no estimates found in
unusual locations (near the edge of the network). In a realistic
deployment, the localization figures presented here would be
very helpful for workers who are familiar with the equipment
present in the vicinity of the sensors, and who should quickly
be able to identify the source of the leak.

V. CONCLUSION

In this study, we proposed, implemented, and validated a
wireless distributed gas leak solution for industrial places. In
our system architecture, many gas sensors are placed around
a region of interest in a plant, and they all report to a single
location. These sensors are duty-cycled in time and space to
conserve energy (as they are battery powered). At the gateway,
an algorithm is run on the measured concentration data, which
allows the detection and localization of the leaks. In our exper-
iment (with 20 sensors and a monitoring area of 200 m2), we
were able to detect 55 out of the 60 releases, with an average
delay of 108 s, and a localization accuracy under 5 m. Over
the period of 3 days, we saw seven false alarms. Though we
can achieve these results nowadays, there is still some work
to be done to get this idea into productization. In this study,
we made an attempt at being as agnostic to the leak source
as possible. Studying the relationship between flow rates and
nozzle sizes would be beneficial and is left for future research.
As the wireless communication reaches new boundaries in reli-
ability, and as efficient microcontrollers become cheaper and
less power hungry, the only component left to be improved
is the sensor. Certainly, improvements on the detection algo-
rithm could help reduce the false alarm rate and increase the
detection rate, but the sensing hardware would be a better
place to start. An order of magnitude improvement in signal
to noise needs to be accomplished in explosive gas sensors (to
reduce false alarms). A faster wake-up and quicker response
time is required for faster detections. Finally, two orders of
magnitude of improvement in energy consumption is needed
to extend the lifetime of the device to 5 years. As a conclud-
ing note, and though this study was done with industrial plants
in mind, we feel that similar approaches can be accomplished
in cities of the future, where a gas detection and localization
system can help address the problems of leaks in urban gas
pipelines.
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