Computer Networks 76 (2015) 165-176

Computer Networks

Contents lists available at ScienceDirect

gﬁ:‘m

s

journal homepage: www.elsevier.com/locate/comnet

Adaptive synchronization in multi-hop TSCH networks

@ CrossMark

Tengfei Chang *“*, Thomas Watteyne °, Kris Pister *°, Qin Wang ¢

2 BSAC, University of California, Berkeley, CA, USA
b Linear Technology/Dust Networks, Hayward, CA, USA
¢ University of Science and Technology, Beijing, China

ARTICLE INFO

ABSTRACT

Article history:

Received 23 July 2014

Accepted 5 November 2014
Available online 15 November 2014

Keywords:

Time Slotted Channel Hopping
IEEE802.15.4e

Synchronization

Time Slotted Channel Hopping (TSCH) enables highly reliable and ultra-low power wireless
networking, and is at the heart of multiple industrial standards. It has become the de facto
standard for industrial low-power wireless solutions, and a true enabler for the Industrial
Internet of Things. In a TSCH network, all nodes remain tightly synchronized by periodi-
cally communicating with one another to compensate for clock drift. The synchronization
algorithm used in a network determines how often the nodes need to re-synchronize,
which greatly influences their energy consumption.

This article presents an adaptive synchronization technique which allows a node to learn
and predict how its clock is drifting relative to its neighbors’, and coordinates the instants
at which the nodes re-synchronize. This technique increases synchronization accuracy,
while reducing synchronization communication overhead, thereby extending the battery
lifetime of the network.

Through simulation, we show how adaptive synchronization allows the nodes in a 3-hop
deep network to maintain synchronization within 76 pis of one another, while sending an
average of only 18.9 re-synchronization packets per hour, a 83% reduction compared to a
network not using adaptive synchronization. Through experimentation on a range of hard-
ware platforms, we show how adaptive synchronization is needed for interoperability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

reliability. All nodes in a TSCH network are synchronized;
communication is scheduled so radios are only switched

Reliability and ultra-low power operation are critical
requirements for industrial applications. Multi-path fad-
ing, path obstruction and external inference challenge the
reliability of a low-power wireless network. The energy
efficiency of a low-power wireless node largely depends
on how the communication protocol duty-cycles the use
of its radio.

Time Slotted Channel Hopping (TSCH) is a technique
which achieves both low-power operation and high

* Corresponding author at: BSAC, University of California, Berkeley, CA,
USA.
E-mail addresses: tengfei.chang@eecs.berkeley.edu (T. Chang),
watteyne@eecs.berkeley.edu (T. Watteyne), pister@eecs.berkeley.edu
(K. Pister), wangqin@ies.ustb.edu.cn (Q. Wang).

http://dx.doi.org/10.1016/j.comnet.2014.11.003
1389-1286/© 2014 Elsevier B.V. All rights reserved.

on when required, leading to low-power operation. Subse-
quent (re) transmissions happen at different frequencies,
resulting in “channel hopping”. The frequency diversity
exploited by channel hopping combats the effects of inter-
ference and multi-path fading, leading to high reliability.
TSCH is at the core of established industrial standards such
as WirelessHART [1],ISA100.11a [2] and IEEE802.15.4e-2012
[3] (an amendment to the IEEE802.15.4-2011 [4] standard).
The recently formed IETF 6TiSCH working group [5] stan-
dardizes how to combine the efficiency of IEEE802.15.4e
TSCH with the ease-of-use of IPv6. Commercial wireless
mesh networking solutions exploiting TSCH are available
today in which the network exhibits over 99.999% end-to-
end reliability and in which an individual device draws an


http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.11.003&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.11.003
mailto:tengfei.chang@eecs.berkeley.edu
mailto:watteyne@eecs.berkeley.edu
mailto:pister@eecs.berkeley.edu
mailto:wangqin@ies.ustb.edu.cn
http://dx.doi.org/10.1016/j.comnet.2014.11.003
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

166 T. Chang et al./ Computer Networks 76 (2015) 165-176

average current below 50 uA at 3.6 V. With tens of thou-
sands of TSCH networks deployed today, TSCH is a proven
technology [6].

In a TSCH network, time is cut into timeslots. Timeslots
are grouped into a slotframe which continuously repeats
over time. Each timeslot is associated an index - called
the Absolute Slot Number (ASN) - which increments at
each timeslot. The ASN indicates how many slots have
elapsed since the formation of the network. The duration
of a timeslot (typically 10 ms) is large enough to fit a data
packet, followed by an acknowledgment indicating suc-
cessful reception. Within a slot, the data packet is trans-
mitted precisely TsTxOffset (a duration) after the
beginning of the slot, as depicted in Fig. 1. To allow for
slight de-synchronization between neighbor nodes, the
receiver starts listening GuardTime before TsTxOffset.
If the receiver has not started receiving a packet Guard-
Time after TsTxOffset, it turns off its radio to conserve
energy. This requires two neighbors nodes to never be
de-synchronized by more than GuardTime.

Wireless nodes use a clock source (e.g. a crystal) to keep
track of time. Differences in manufacturing, temperature
and supply voltage cause clocks from two nodes to beat
at a slightly different frequency, resulting in clock “drift”.
If the drift between two neighbor is measured to be
30 ppm (a typical value), the clocks of these two neighbor
nodes drift apart by 30 ps every second. Neighbor nodes
need to periodically re-synchronize to never be de-syn-
chronized by more than GuardTime. Re-synchronizing is
done by exchanging packets and using the timestamp of
the data packet arriving to re-align the clocks. How often
re-synchronization is needed depends on the importance
of the clock drift, and the value of GuardTime. For exam-
ple, with a GuardTime of 1 ms (a typical value) and a
30 ppm drift, re-synchronization needs to happen at least
every s o = 33s. If a node does not re-synchronize to a
neighbor for more than that duration, it will have drifted
by more than the GuardTime from that neighbor. The
lower the relative drift, the less often they need to commu-
nicate to re-synchronize, and hence the lower the power
consumption, as the radio is kept off a larger portion of
the time.

This article proposes an adaptive synchronization
technique in which neighbor nodes learn and predict their
relative drift, resulting in less frequent re-synchronization.
By keeping a history of time offsets when resynchronizing,

neighbor nodes measure their relative drift. They use that
information to periodically adjust their clocks to compen-
sate for this drift. On top of this, this article proposes to
coordinate the re-synchronization instants of the different
nodes in a multi-hop network. This causes a node to re-
synchronize right after its time parent has, i.e. when its
parent is most tightly synchronized to the network. The
result is that the network is more tightly synchronized as
a whole and does not suffer from “synchronization swing”.

The remainder of this article is organized as follows.
Section 2 presents related work on adaptive synchroniza-
tion in low-power wireless networks. Section 3 describes
how synchronization is achieved in a TSCH network. Sec-
tion 4 presents the adaptive synchronization technique
proposed in this article. Section 5 extracts the performance
of adaptive synchronization through simulation and exper-
imentation, and discusses the importance of adaptive syn-
chronization for the development of an interoperable
Internet of Things (IoT). Finally, Section 6 concludes this
paper.

2. Related work

Synchronization among nodes in a network is a com-
mon requirement. This section presents the previous work
on synchronization in low-power wireless networks most
closely related to the technique developed in this article.

Wireless mesh networks are used in many different
applications, and different classes of applications put
different constraints on network synchronization. [7] pro-
vides a taxonomy for synchronization protocols, organized
around the different synchronization techniques available,
and the nature of the applications.

In particular, [7] differentiates master-slave from peer-
to-peer architectures. In a master-slave architecture, a
clear hierarchy between nodes exists; it is for example typ-
ical to have a “time master” node, to which all the other
nodes synchronize, possibly over a multi-hop network.
The article also classifies techniques based on whether they
are deterministic (the adaptive synchronization can guar-
antee an upper bound on the clock offset with certainty).
According to this taxonomy, the techniques presented in
the current article follow a master-slave architecture, and
use clock correction to time sources internal to the
network, with a high degree of determinism.

timeslot duration

TsTxOffset

GuardTime

u

TsTxAckDelay:

:

RX

Fig. 1. The timeslot template as defined in the IEEE802.15.4e standard [3].



T. Chang et al./ Computer Networks 76 (2015) 165-176 167

In [8], the author indicate that, if one wants to increase
the sleep periods between resynchronization instants to
minimize energy consumption, clock drift must be taken
into account. Manufacturing inaccuracies and temperature
variation are the two major contributors to drift. The
article analyzes the impact of the two factors on the resyn-
chronization rate, and presents a mathematical model to
calculate the resynchronization period as a function of
the required accuracy. Similar to [8], the current article
provides a boundary for the resynchronization period
which depends on the maximum acceptable time offset
between neighbors.

In [9], the authors provide a method for estimating the
long-term drift which minimizes the energy consumption
of the nodes. The authors use long-term empirical mea-
surements to analyze the relationship between resynchro-
nization rate, history of synchronization packets and
estimation algorithm. They use a linear model to represent
relative clock drift between two indoor neighbors nodes.
The authors discuss how to predict the probability of
different time errors.

The Flooding Time Synchronization Protocol [10] (FTSP)
is a time synchronization method to deal with clock drift in
a low-power wireless network. When using FTSP, neighbor
nodes estimate their relative drift by using a linear regres-
sion on the past 8 time offset measurements. This estima-
tion is then used to predict and reduce the apparent drift.
[10] presents experimental results in which FTSP runs on
two Mica2 nodes. They show that the nodes can keep syn-
chronized within 10 ps while re-synchronizing only every
10 min. The single-hop synchronization method proposed
in this article (see Section 4.1) is similar to FTSP, although
it uses only the last time-offset measurements. Unlike
FTSP, the current article applies adaptive synchronization
to TSCH networks, which adjusts synchronizing period
dynamically through learning the drift of nodes, and intro-
duces a technique to synchronize a complete multi-hop
network (Section 4.1).

The technique presented in [11] aims at keeping a TSCH
network synchronized while reducing the frequency of re-
synchronizations. In [11], a node measures the time it
takes for it to drift by 30 ps (a 32 kHz crystal clock tick) rel-
ative to its neighbor. It then periodically applies a one-tick
time correction, using the previously calculated period.

Ref. [12] presents a detailed analysis of adaptive syn-
chronization. It formalizes the relationship between calcu-
lated drift accuracy and re-synchronization interval, and
shows how it is possible to extend the re-synchronization
interval to 5 min outdoors, and 1 h in a temperature-con-
trolled environment [12] formalizes how the main error
of calculation of clock drift can be attributed to time cor-
rection accuracy, which is itself determined by clock fre-
quency. For a 32 kHz clock, the time correction accuracy
would be 30 ps (one clock tick). It shows how extending
the re-synchronization interval increases the accuracy of
the calculated drift. Through mathematical modeling and
analysis, the paper shows that it is possible to gradually
extend the re-synchronization interval while keeping the
time offset below a given threshold.

To the best of our knowledge, and unlike the related
work described above, the current article is the first to

apply adaptive synchronization to a multi-hop network
as a whole. The related work presents techniques to reduce
the apparent drift between neighbor nodes, i.e. they focus
on single-hop synchronization. Regardless of the technique
used, a certain amount of clock de-synchronization will
always remain. In a multi-hop setting, these inaccuracies
add up at each hop, possibly leading to “synchronization
swing”. This article proposes a technique to combat this.
This main contributions of this article are:

e We present a single-hop synchronization algorithm,
similar to FTSP, for a node to learn and predict the
clock drift to its neighbors. This reduces the apparent
drift between neighbor nodes, extending the net-
work’s lifetime.

e We organize the nodes in a network as a Directly
Acyclic Graph (DAG) built around a single time mas-
ter. The DAG structure, which is loop-free by nature,
assigns a time source neighbor to each node. Follow-
ing the recommendations of the IETF 6TiSCH work-
ing group, we propose to reuse the DAG structure
built by the RPL routing protocol [13].

e Each node needs to periodically send a packet to its
parent to re-synchronize. Rather than having all
nodes re-synchronize at un-coordinated times, we
propose to coordinate this activity so that a node
re-synchronizes right after its parent has. This
results in a periodic “synchronization wave” moving
from the root of the DAG outwards, resulting in tigh-
ter network-wide synchronization.

e The proposed adaptive synchronization technique is
implemented in OpenWSN, and evaluated through
simulation and real-world experimentation on mul-
tiple hardware platforms. Besides showing the
robustness of the approach, it also shows that its
complexity is low, and can be implemented in a
inter-operable way on off-the-shelf platforms.

3. Synchronization in IEEE802.15.4e TSCH

All nodes in a TSCH network are synchronized. When a
new node joins a network, it synchronizes to it and must
keep synchronized at all times after that. If it looses syn-
chronization, it must re-join the network, which takes both
time and energy; this is particularly problematic for nodes
forwarding traffic for other nodes. This section details how
synchronization is achieved in IEEE802.15.4e TSCH. It first
discusses “single-hop synchronization” (i.e. how a node
synchronizes to a neighbor) before highlighting the chal-
lenges of keeping a multi-hop network synchronized.

3.1. Single-hop synchronization

For a node to be synchronized to a network, it must
learn the value of the ASN of the current slot used by the
other nodes in the network, and align the edges of its slot
to that of the node it synchronizes to.

A node which joins the network keeps its radio on, lis-
tening for an Enhanced Beacon (EB), a type of packet. EBs
are periodically sent by nodes already in the network,
and contain a field indicating the current ASN number.



168 T. Chang et al./ Computer Networks 76 (2015) 165-176

As soon as the joining node hears an EB, it reads and stores
the ASN field. It then increments its internal ASN value at
each new slot.

To align its slot boundaries to that of the node sending
the EB, the joining node timestamps the instant it started
receiving the EB. This instant is agreed upon by all the
nodes in the network. It is defined in the IEEE802.15.4e
standard as TsTxOffset, a duration after the beginning
of the slot. The joining node knows the value of
TsTxOffset a priori, and therefore retroactively aligns
its internal timers so its slot starts exactly TsTxOffset
before the reception of the EB.

Once a node is part of a network, it must keep synchro-
nized to it. Since its clock drifts relative to its neighbors’, it
needs to periodically re-synchronize. Each TSCH node is
assigned a time source neighbor (how it is chosen is detailed
below) to which it must keep synchronized at all times.

There are two ways for a node to re-synchronize to its
time source neighbor, both defined in IEEE802.15.4e-2012:

o Every time the node receives a data packet from its time
source neighbor, it timestamps the instant it starts
receiving it. Knowing TsTxOffset, it shifts it slot
boundaries to match that of its time source neighbor.
This is the same procedure as a joining node uses to ini-
tially synchronize to the neighbor after hearing an EB.
This is called “frame-based synchronization”.

Every time the node sends a data packet to its time
source neighbor, the latter timestamps the instant it
started receiving the packet, and indicates that value
in a field of the link-layer acknowledgment it sends
back. The sending node uses this value to realign its
clock to that of its time source neighbor. This is called
“ACK-based synchronization”.

Fig. 2a and b show the two ways of re-synchronizing. At
each re-synchronization, either frame-based or ACK-based,
the receiver measures the relative de-synchronization,
called offset. It is defined as the difference between the
measure reception time and TsTxOffset, its theoretical
value. In frame-based synchronization, the offset is
applied to the receiver’s timing; in ACK-based synchroni-
zation, it is applied to the sender’s timing.

3.2. Challenges of multi-hop synchronization

The IEEE802.15.4e standard defines the mechanisms for
a node to synchronize to its time source neighbor. It does

time TsTxOffset ‘
D —
source
neighbor J
GuardTime TsTxAckDelay ﬁ
TsTxOffset T %/
node /
> >

offset

(a) Frame-based Synchronization.

not detail how this time source neighbor is selected, nor
how to synchronize a complete multi-hop network.
IEEE802.15.4e keeps these elements out of scope, and indi-
cates a “higher layer” is responsible for them.

The IETF 6TiSCH working group [5] was created to
define this higher layer. In the architecture of a 6TiSCH net-
work, a single node plays the role of time master; all other
nodes synchronize to it, possibly over multiple hops. A
6TiSCH network uses RPL as its routing protocol. RPL orga-
nizes the network as a Directed Acyclic Graph (DAG), in
which each node has a routing parent. 6TiSCH recom-
mends to reuse the same DAG structure for synchroniza-
tion: a node’s routing parent is also its time source
neighbor. A DAG has the advantage of being loop-free
(thereby prevented synchronization loops), and since it is
already maintained by the RPL protocol, no extra signaling
is needed to construct the synchronization structure.

There are subtle challenges to multi-hop synchroniza-
tion, even with a DAG structure in place. A node needs to
periodically synchronize to its time source neighbor to
cancel clock drift. Right before synchronizing, a node and
its time source neighbor are slightly desynchronized (e.g.
by 400 ps); right after synchronizing, they are tightly syn-
chronized (e.g. within 30 ps). In a multi-hop case, the de-
synchronization adds up with the number of hops: if the
re-synchronization instants of the different nodes at differ-
ent hop depths are not coordinated, “synchronization
swing” may happen, possibly leading to the de-synchroni-
zation of nodes deeper in the network.

Fig. 3 illustrates synchronization swing in the canonical
case of a linear network of 4 nodes, in which node A is the
time source neighbor of node B, node B is the time source
neighbor of node C, etc. The GuardTime in this network
is 1 ms, i.e. nodes can never de-synchronize by more than
this duration. Let’s assume that, at some point in the life of
the network, each node synchronizes right before its time
source neighbor does. It is then possible, as illustrated in
the top half of Fig. 3, that each node is desynchronized
by 400 us with respect to its time source neighbor. Let’s
further assume that, following this configuration, nodes
synchronize right after its time source neighbor, from left
to right in Fig. 3. That is, B synchronizes to A, then C syn-
chronizes to B. At this point (represented in the lower half
of Fig. 3), node D and its time source neighbor are de-syn-
chronized by 1200 us. Since this is more than GuardTime,
node D loses synchronization.

One effective way of combating synchronization swing
is for a node to learn when its time source neighbor

TsTxOffset ‘ |
e —>
node :

‘H
TsTxAckDelay offset

GuardTime

time TsTxOffset
Source
neighbor

e
offset

(b) ACK-based Synchronization.

Fig. 2. The two ways to synchronize defined in IEEE802.15.4e-2012 TSCH.



T. Chang et al./ Computer Networks 76 (2015) 165-176 169

1000us

TimeOffset

Ous

before the time
source neighbor

1000us

Synchronizing right

o7l

TimeOffset

Ous——.—.—."/

after the time
source neighbor

Synchronizing right

Fig. 3. Multi-hop “Synchronization Swing” can cause nodes to de-synchronize.

synchronized, and synchronize right after it. Thus each
nodes’ time is related to the time source of whole network
(root), which avoids the desynchronization between node
and its time source neighbor swings along the time tree
and results large desynchronization on deep nodes of net-
work. In this article, we do so by adding a field in EB packet
periodically sent by all nodes. Nodes use this information
to schedule their re-synchronization instants.

4. Adaptive synchronization

The basic idea of single-hop adaptive synchronization is
for a node to measure the drift to its time source neighbor,
and compensate for it through software. A node starts by
storing the ASN of the slot during which it synchronizes
to its neighbor. When it synchronizes again, it measures
how much it has de-synchronized to its neighbor, and
knows how much time has elapsed since the last synchro-
nization point. It calculates the drift as the ratio between
those two values. It expresses this drift as the number of
slots it takes for it to drift by a clock tick (e.g. 30 ps when
using a 32 kHz clock source). It sets a counter to that value,
decrements it every slot, and adjusts its clocks by one tick
when the counter reaches zero.

To achieve coordinated multi-hop synchronization,
nodes coordinate the instants at which they synchronize,
so that a node synchronizes right after its time source
neighbor has. They do so by adding a field to all EB and
ACK packets, indicating their synchronization period. A
node uses that information received from its time source
neighbor to schedule when it resynchronizes.

The remainder of this section further details single-hop
adaptive synchronization and coordinated multi-hop
synchronization.

4.1. Single-hop adaptive synchronization

The adaptive synchronization model was first intro-
duced in [12], and is presented here for completeness.

In (1), t represents time, D, is the real clock drift and D,
the calculated drift. Ey, represent the synchronization
error after two neighbor nodes have drifted apart for t

without re-synchronizing. Eq. (1) shows that, the better
the drift is calculated (i.e. the closer D, gets to D,), the
slower the synchronization error increases with time.

Eq. (2) indicates how D, is calculated. When a node
resynchronizes to its time source neighbor, it measures
their time offset, offset. At is the amount of time since
the last synchronization point. The drift D. is calculated
as the ratio between those two values.

In practice, offset is measured by reading the value of
a timer. Since this timer is clocked by a clock with a finite
frequency (e.g. a 32 kHz crystal), offset is necessarily
inaccurate. Eq. (3) indicates that the effective drift is
bounded by the duration of a clock tick
(tick_duration, 30 pus when using a 32 kHz crystal), and
At. That is, to have a smaller effective drift, nodes either
need to use a faster clock (which costs extra energy), or
increase At. The latter is employed by adaptive synchroni-
zation, as detailed below.

At each synchronization point, a node uses (2) to calcu-
late D., and has to decide when to synchronize next. Its goal
is to remain synchronized within GuardTime (e.g. 1 ms) to
its time source neighbors. It will decide on a required
accuracy RequiredAccuracy (e.g. 300 ps), smaller than
the GuardTime by some security factor, and calculate
Atpex, the duration until the next synchronization instant.
As long as the inequality in (4) is met, under the assump-
tion that the drift rate does not change, the node will never
desynchronize by more than RequiredAccuracy.

ESy"C = (Dr - DC) -t (1)
__offset
De==51 2)
tick_duration
_ < - 77
IDy — De| < Al 3)
RequiredAccurac
Atpexe < %
C
RequiredAccuracy )
< ———— At
offset

This adaptive synchronization model is further detailed
in [12].

Fig. 4 shows the behavior of adaptive synchronization,
implemented on two GINA [14] nodes. The nodes toggle



170 T. Chang et al./ Computer Networks 76 (2015) 165-176

140 T T T T T T T
time offset
120 F A resynchronization

100 | J

80} : : : |
60 |-
40

20 |

time offset (us)

-40 4

0 500 1000 1500 2000 2500 3000 3500 4000
time (s)

Fig. 4. Adaptive synchronization allows nodes to learn their clock drift,
and slow down the rate at which they need to re-synchronize.

a pin on each timeslot edge, a logic analyzer logs this activ-
ity. Fig. 4 plots the desynchronization between the two
nodes over time, based on those logs. Each triangle repre-
sents a synchronization point.

The high-frequency variation of the de-synchronization
is due to the periodic adjustment of the timers; the
“width” of the resulting signal is 30 ps, corresponding to
one 32 kHz clock tick. After each synchronization point,
the nodes slowly drift apart (indicated by the slope of the
average signal). At the beginning, the measured synchroni-
zation is large, requiring for the nodes to re-synchronized
often. As the synchronization period increases, the drift
calculation gets more accurate, and the slope reduces. In
the second half of the plot, although the nodes do not
resynchronize for over 30 min, they stay synchronized
within 50 ps.

Fig. 4 is obtained by running the nodes in a tempera-
ture-controlled environment, where the drift can be con-
sidered constant [15]. If temperature is not constant,
once can use an on-board temperature sensor to detect
temperature swings, and trigger early resynchronization.
In our experiments (detailed in Section 5), we cap the
resynchronization period at 5 min.

4.2. Coordinated multi-hop synchronization

Section 3.2 discusses the subtle challenges related to
multi-hop synchronization, how “synchronization swing”
can cause nodes to desynchronize, and how coordinating
the instants at which nodes synchronize combats this
phenomenon.

The key to “coordinated” multi-hop synchronization is
to let a node learn approximately when its time source
neighbor synchronizes, and synchronize to it right after.
We therefore add a 2-byte data field to all EB and ACK
packets, indicating the resynchronization period, in sec-
onds, of the transmitter.

Fig. 5 illustrates coordinated multi-hop synchronization
a canonical 3-node linear network. Here, node B synchro-
nizes to node A, and per (4) decides to resynchronize after

DATA
ACK (At)
DATA . )
"""" ACK(m)’> DATA
,
(—
rrrrrrrrrrrrr - .>
ACK (At)
=
5
DATA
ACK ,,,,,,,,, q DATA

Fig. 5. Coordinated multi-hop synchronization allows a node to learn its
time source neighbor’s synchronization period and synchronize right
after its time source neighbor.

At;. When node C synchronizes to B, node B indicates At;
as part of its ACK message. Node C schedules the time it
will resynchronize accordingly. The next time B synchro-
nizes to A, it increments its resynchronization period to
At,. Node C follows after resynchronizing, modifying its
resynchronization instants lockstep.

When a new node joins the network, it needs to learn
the synchronization period of its time source neighbor,
but also when this time source neighbor has just synchro-
nized. We therefore add a i sAccurate flag to all ACK and
EB packets, which is set to true up to 10 s after a node has
synchronized to its time source neighbors.

Fig. 6 illustrates the use of the isAccurate flag. The
newly joined node C sends frequent synchronization mes-
sages to node B. Node B, after having synchronize to A, sets
the isAccurate flag in all ACK packets for 10s. After
receiving an ACK with the isAccurate flag set, C initiates
adaptive synchronization, increasing it synchronization
period until it is lockstep with node B.

The isAccurate flag is also used to deal with the situ-
ation where a node synchronizes late. This is illustrated in
Fig. 7. Node C is lockstep with node B. Because of a low
packet delivery ratio, it takes B multiple tries to synchro-
nize to A. As a result, node C, on the scheduled resynchro-
nization instant, does not receive an ACK with the
isAccurate flag set. Node C therefore keeps resynchro-
nizing frequently to B, until B synchronizes to A and C
receives an ACK with the isAccurate flag set. At that
point, nodes B and C are lockstep again, and the system
has recovered.



T. Chang et al./ Computer Networks 76 (2015) 165-176

171

A B

A A
Q Tj A A A 4
Q <> < <>
10s 10s 10s

-4—— Synchronization data packet and ACK (isAccurate=False)
44— Synchronization data packet and ACK (isAccurate=True)

Fig. 6. Newly joined C keeps frequently synchronizing to B until it hears an ACK with the isAccurate flag set.

A B

At

At

k)
i

T‘

0

@

—
10s

lTi 1
< <>
10s 10s

»—— Failed synchronization (no ACK)

-4—— Synchronization data packet and ACK (isAccurate=False)
44— Synchronization data packet and ACK (isAccurate=True)

Fig. 7. The isAccurate flags is used to recover from a situation where a node takes longer to synchronize than anticipated.

5. Implementation and results

The performance of the adaptive synchronization tech-
niques presented in Section 4 are extracted through
simulation and experimentation. Section 5.1 described
OpenWSN, the environment used to conduct these experi-
ments, as well as the parameters used. Sections 5.2 and 5.3
present the simulation and experimental results, respec-
tively, before discussing the importance of adaptive syn-
chronization for the development of an inter-operable IoT.

5.1. OpenWSN parameters

UC Berkeley’s OpenWSN project! is an implementation
of an entirely standards-based protocol stack for the IoT,
and the de facto open-source implementation of
IEEE802.15.4e TSCH. It has been ported to 10 different
16-bit and 32-bit platforms. In addition to running on real
hardware, the source code can run in a simulation environ-
ment called OpenSim. Having the same code running in the
simulator augments the confidence that a real deployment
behaves like its simulation. The architecture and design
choices of OpenWSN are detailed in [16].

OpenSim is an discrete-event simulator which accu-
rately models the timing of the nodes, a characteristic
needed to evaluate adaptive synchronization. The simu-
lated node contains a model of the 32 kHz crystal driving
its timers. Each node can independently be given a

T http://www.openwsn.org/.

different drift. That is, the frequency of one node’s crystal
can be 32768.3 Hz while its neighbor’s can be 32767.7 Hz,
resulting in a 20 ppm relative drift between them.

The IEEE802.15.4e-2012 TSCH implementation of
OpenWSN uses the hard-coded communication schedule
standardized in [17], with a slotframe of 11 timeslots long,
including a timeslot for sending EBs and 5 shared slots for
data. Each node is configured to send an EB every 10 s. Syn-
chronization to EBs is disabled, so all synchronization is
ACK-based, and relies on a node sending a data packet to
its time source neighbor and reading its offset from the
ACK. Initially, a node is configured to synchronize to its
time source neighbor every 1 s; adaptive synchronization
is used to increase the effective synchronization period,
but no more than the maximum period of 5 min. Adaptive
synchronization is set up to ensure that nodes always stay
synchronized within the required accuracy of 120 ps
(RequiredAccuracy in (4)). To measure only the perfor-
mance of adaptive synchronization, no application-level
data is produced in the network. Per the recommendation
of the IETF 6TiSCH Working Group [5], the RPL routing par-
ent of a node is also its time source neighbor.

Since the same code runs in OpenSim and on the
real hardware, the parameters listed above apply to
both the simulation (Section 5.2) and experimental results
(Section 5.3).

5.2. Simulation results

Simulation results were obtained on the 3-hop deep 13-
node network depicted in Fig. 8, with 4 nodes at each hop


http://www.openwsn.org/

172 T. Chang et al./ Computer Networks 76 (2015) 165-176

one hop

root

two hops

three hops

""""""" wireless link
~#— time source neighbor

Fig. 8. Topology used for simulation.

depth. The drift of each node is randomly selected in the
[-30ppm ...+ 30ppm] range.

Throughout the lifetime of the network, nodes keep
synchronizing to their time source neighbors. At each syn-
chronization, a node measures the offset to its time
source neighbor, which quantifies their de-synchroniza-
tion. OpenSim is instrumented to log those values at each
resynchronization. Fig. 9 shows the offset of all the
nodes, averaged over a 5 min sliding window. It gives a
good idea of the overall performance of adaptive synchro-
nization, and indicates that adaptive synchronization
maintains the de-synchronization between neighbor nodes
below 2.5 32 kHz ticks, or 76 ps.

As nodes drift and the timestamps are only as accurate
as the clock, synchronization errors remain. Fig. 10 shows
the average, minimal, and maximal values of the offset,
as a function of the number of hops to the root. Per Section
3.2, the maximum time offset should be lower than the
required accuracy multiplied by the number of hops. This
is verified in Fig. 10; at 3 hops for example, all measured
offset as within [-244 ps... + 305 ps], which is within
the theoretical [-366 pis... + 366 Lis].

80

70 : ‘ ‘ ‘ : 1
60 1
50 1

40 |

time offset (us)

30 f 1

20 40 60 80 100 120 140 160
time (minutes)

Fig. 9. offset measured by all nodes in the network, averaged over a
5min sliding window, in 32 kHz clock ticks. Results obtained by
simulation.

400
I = verage time offset
max/min time offset
300 1
200 1

-

o

o
T
i

time offset (us)
o

=100 1

=200 1

-300

1 2 3 4
number of hops to root

Fig. 10. The offset as a function of hop count. Results obtained by
simulation.

The goal of adaptive synchronization is for a node to
resynchronize less often to conserve energy. A key mea-
surement is hence the number of resynchronization mes-
sages. If no adaptive synchronization were used, a node
with a 30 ppm drift would require 109 packets per hour
to stay synchronized. During the 160 min simulated time,
the 12 nodes in the network (not counting the root, which
does not resynchronize) performed 604 resynchroniza-
tions, which translated in an average of 18.9 packets per
hour, for each node. This is a 83% decrease compared to a
network which does not use adaptive synchronization.

5.3. Experimental results and interoperability

The purpose of the experimentation is twofold: verify
the correct behavior of the implementation on real hard-
ware, and demonstrate how adaptive synchronization
enables inter-operation.

The behavior of the adaptive synchronization imple-
mentation is verified on the setup depicted in Fig. 11. This
setup is composed of four OpenMoteSTM motes connected
to a logic analyzer. The boards are programmed to toggle a
pin on each slot edge, and when they resynchronize; the
logic analyzer logs that activity, and an Matlab analysis
script tracks the offset between neighbor devices. The
neighbor table is hard-coded on each board to force the
linear topology. The drift of node B, C and D refer to node
A are 4 ppm, 13 ppm and 18.5 ppm respectively.

Fig. 12 shows the offset of nodes B, C and D relative to
their time source neighbor. No graph is shown for node A
since it is the root and therefore does not resynchronize.

Fig. 11. Experimental setup.



T. Chang et al./ Computer Networks 76 (2015) 165-176 173
300
300 time offset time offset
A resynchronization A resynchronization
200 200
g 100 g 100
@ @
£ 0 £ 04
s} s}
[} [}
£ -100 £ -100
-200 -200
-300 : : : : 300 : : : :
0 200 400 600 800 1000 200 400 600 800 1000
Time (s) Time (s)
(a) Node B (b) Node C
300
time offset
A resynchronization
200
g 100
o}
£ o A
s}
[}
£ -100
-200
-300
0 200 400 600 800 1000
Time (s)
(c) Node D

Fig. 12. Experimental time error for nodes relative to time source neighbor in the experimental setup depicted in Fig. 11. At t =410 s, node D is reset.

Results obtained experimentally.

Fig. 12a and b shows how the resynchronization period
increases to the maximum value of 5 min. Besides, it also
shows that the time offset is controlled around 100 ps.
To show the behavior when a node (re-) joins the network
(see Section 4.2), node D is reset at t =410s. Fig. 12¢
shows how it synchronizes frequently until C re-synchro-
nizes at t = 510 s, after which it starts adaptive synchroni-
zation. Node D get little larger time offset during 510 to
790 since its time source neighbor, node C's time is not
accurate during that period.

Fig. 13 shows the offset of nodes B, C and D relative to
the root of network, node A. Since node A is also the time
source neighbor of node B, Fig. 13a is same with Fig. 12a.
The time offset of node C and D is controlled around
200 pis and 300 ps respectively. The time offset of node will
increase 100 s each hop deeper. So a 9 hops network can
be deployed with GuardTime of 1 ms based on the exper-
iment setting.

With the emergence of the IoT, networks will be more
and more often composed of multi-vendor devices. Users
will favor standards-based solutions. Interoperability is at
the heart of standardization activities at the IEEE and IETF.
The recently formed IETF 6TiSCH Working Group [5] works
for example on standardizing the use of IPv6 over
IEEE802.15.4e TSCH for IoT application requiring ultra high
reliability and low-power operation. Such standards allow

the devices to inter-operate by agreeing on packets for-
mats and behaviors.

Even so, differences between micro-controllers and
crystals cause devices from different vendors to exhibit
slightly different timing characteristics. Different devices
might use different crystals, each having different drift
and beating a slightly different frequency. Adaptive syn-
chronization is a key enabler for this type of interoperabil-
ity. Without it, nodes would not learn the drift to their time
source neighbor, and would have to resynchronize every
handful of seconds, thereby increasing their power con-
sumption beyond what is acceptable by most applications.

To demonstrate interoperability between different plat-
forms, we use the basic setup from Fig. 11, but with the
four hardware devices shown in Fig. 14. These are repre-
sentative of the variety of devices available: they are of dif-
ferent generations (TelosB dates back to 2004 while the
OpenMoteCC2538 was designed in 2013), with different
micro-controller architecture (16-bit for TelosB and GINA,
32-bit for OpenMoteSTM and OpenMoteCC2538), different
board requirements (OpenMoteCC2538 use a single-chip
solution, while OpenMoteSTM, TelosB and GINA use a sep-
arate radio and micro-controller), and different crystals.

One immediate effect of these differences is that, even
after carefully tuning, the duration of the TSCH timeslots
are slightly different, as shown in Table 1. For example,



174

300

T. Chang et al./ Computer Networks 76 (2015) 165-176

300
time offset time offset
A resynchronization A resynchronization
200 200
g 100 g 100
© ©
2 0 KLY
o o
Q [0]
£ -100 £ -100
-200 -200
-300 -300
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (s) Time (s)
(a) Node B (b) Node C
300
time offset
A resynchronization
200
3 100
ko
£ 0
o
[0]
£ -100
-200
-300
0 200 400 600 800 1000
Time (s)
(c) Node D

Fig. 13.

Experimental time error for nodes relative to root in the experimental setup depicted in Fig. 11. Results obtained experimentally.

Fig. 14. Adaptive synchronization enables interoperability by building networks

with different platforms. Here the OpenMoteCC2538 (top-left),

OpenMoteSTM (top-right), TelosB (bottom-left) and GINA (bottom-right) participate in the same TSCH network. All four platforms run OpenWSN.

the difference in slot length between the GINA and Open-
MoteCC2538 devices is equivalent to a 667 ppm drift. In this
case, a TSCH network could not function without adaptive
synchronization. Instead, with adaptive synchronization,
nodes measure and learn their relative drift. In this experi-
ment the devices are running the minimal 6tisch draft?
implementation plus adaptive synchronization. Though they

2 GTISCH minimal draft, https://ietf.org/doc/draft-ietf-6tisch-minimal/.

may form a one-hop network because of all devices can hear
the packet sent from root, the experiment we shown above
has already proved the correctness of adaptive synchroniza-
tion in multi-hop network.

The IETF 6TiSCH working group organized a plugfest at
the IETF89 meeting.> During this event, the adaptive syn-
chronization OpenWSN implementation presented in this

3 BTiSCH plugfest, IETF89, March 6 2014, London, UK.


https://ietf.org/doc/draft-ietf-6tisch-minimal/

T. Chang et al./ Computer Networks 76 (2015) 165-176 175

Table 1
Four hardware with different micro-controller have different feature on
timing.

Device Micro-controller Slot duration (us)
GINA MSP430F2618 15,000
TelosB MSP430F1611 15,000
OpenMoteSTM STM32F103 15,004
OpenMoteCC2538 CC2538 15,010

paper was used by 5 different research teams, running on 7
different hardware platforms, all able to inter-operate
despite their slight timing differences. Adaptive synchroni-
zation makes interoperability between TSCH devices a real-
ity. We believe that it essential to the development of
6TiSCH networks, and its widespread use in the IoT.

6. Conclusion

ATSCH network is fully synchronized, and nodes need to
periodically resynchronize to one another to account for
clock drift. This is done by exchanging packets, so the less
often nodes need to resynchronize, the less energy nodes
consume. This article presents an adaptive synchronization
technique composed of two part. Through “single-hop”
adaptive synchronization, nodes learn and cancel the drift
to their neighbor. Through “coordinated” multi-hop adap-
tive synchronization, a node synchronize to its time source
neighbors when that node is most tightly synchronized to
the network, thereby combating “synchronization swing”.

Adaptive synchronization was implemented in the
OpenWSN project. Simulation results show how the nodes
in the network are on average synchronized within 76 ps,
while requiring only 18.9 synchronization packets per
hour, a 83% decrease compared to a network with no adap-
tive synchronization.

Apart from lowering the energy budget dedicated to
synchronization, adaptive synchronization enables TSCH
networks to be composed of different hardware platforms.
This level of interoperability will be a cornerstone to the
development of the IoT for applications which require
ultra-high reliability and low-power, as targeted by the
IETF 6TiSCH working Group.

From a protocol point of view, adaptive synchronization
only requires a 2-byte field to be added to particular
IEEE8021.15.4e packets. The results of this work will be
proposed to the IETF 6TiSCH working Group for possible
standardization.

Acknowledgments

Tengfei Chang’s stay at the University of California,
Berkeley is funded by the “Short-Term Visiting Project”
of the Univ. of Sci. and Tech. in Beijing, China.

References

[1] WirelessHART Specification 75: TDMA Data-Link Layer, HART
Communication Foundation Std., Rev. 1.1, 2008, hCF_SPEC-75.

[2] ISA-100.11a-2011: Wireless Systems for Industrial Automation:
Process Control and Related Applications, International Society of
Automation (ISA) Std., May 2011.

[3] 802.15.4e-2012: IEEE Standard for Local and Metropolitan Area
Networks - Part 15.4: Low-Rate Wireless Personal Area Networks
(LR-WPANs) Amendment 1: MAC Sublayer, IEEE Std., 16 April 2012.

[4] 802.15.4-2011: IEEE Standard for Local and Metropolitan Area
Networks - Part 15.4: Low-Rate Wireless Personal Area Networks
(LR-WPANSs), IEEE Std., 5 September 2011.

[5] P. Thubert, T. Watteyne, M.R. Palattella, X. Vilajosana, Q. Wang, IETF
6TSCH: combining IPv6 connectivity with industrial performance,
in: International Workshop on Extending Seamlessly to the Internet
of Things (esloT), Taiwan, 3-5 July 2013.

[6] T. Watteyne, L. Doherty, ]. Simon, K. Pister, Technical overview of
SmartMesh IP, in: International Workshop on Extending Seamlessly
to the Internet of Things (esloT), Taiwan, 3-5 July 2013.

[7] B.Sundararaman, U. Buy, A. Kshemkalyani, Clock synchronization for
wireless sensor networks: a survey, Elsevier Ad Hoc Network. 3 (3)
(2005) 281-323.

[8] T.Schmid, R. Shea, Z. Charbiwala, . Friedman, M.B. Srivastava, On the
interaction of clocks, power, and synchronization in duty-cycled
embedded sensor nodes, ACM Trans. Sensor Networks (TOSN) 7 (3)
(2010).

[9] S. Ganeriwal, I. Tsigkogiannis, H. Shim, V. Tsiatsis, M.B. Srivastava, D.
Ganesan, Estimating clock uncertainty for efficient duty-cycling in
sensor networks, IEEE Trans. Network. 17 (3) (2009) 843-856.

[10] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, The flooding time
synchronization protocol, in: international Conference on
Embedded Networked Sensor Systems (SenSys), 2004.

[11] D. Stanislowski, X. Vilajosana, Q. Wang, T. Watteyne, K. Pister,
Adaptive synchronization in IEEE802.15.4e networks, IEEE Trans.
Indust. Inform. 9 (2) (2013) 600-608.

[12] T. Chang, Q. Wang, Compensation for time-slotted synchronization
in wireless sensor network, Int. J. Distribut. Sensor Networks 7
(2014).

[13] T. Winter, P. Thubert, A. Brandt, ]. Hui, R. Kelsey, P. Levis, K. Pister, R.
Struik, J. Vasseur, R. Alexander, RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks, IETF Std. RFC6550, March 2012.

[14] A. Mehta, K. Pister, WARPWING: a complete open source control
platform for miniature robots, in: Intelligent Robots and Systems
(IROS), Taipei, Taiwan, IEEE, 18-22 October 2010.

[15] J.R. Vig, Introduction to Quartz Frequency Standards, Army Research
Laboratory, Electronics and Power Sources Directorate, Tech. Rep.
SLCET-TR-92-1 (Rev. 1), October 1992.

[16] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, K. Pister, OpenWSN: a standards-based low-power
wireless development environment, Trans. Emerging Telecommun.
Technol. 23 (5) (2012) 480-493.

[17] X. Vilajosana, K. Pister, Minimal 6TiSCH Configuration, 6TiSCH
Working Group Std. Draft-ietf-6tisch-minimal-03, October 26, 2014.

Tengfei Chang is a candidate Ph.D student of
School of Computer and Communication,
University of Science & Technology Beijing
(USTB), China. He received BS degree in
Computer Science and Technology from
Central South University of Forestry and
Technology (CSUFT) in 2010. He focuses on
the research of wireless sensor networks and
embedded systems. Since January 2012, he
has been collaborating with the OpenWSN
project. During January 2014 to May 2014, he
had been working on OpenWSN project in UC
Berkeley as a visiting student researcher.

Thomas Watteyne is a Senior Networking
Design Engineer at Linear Technology, in the
Dust Networks Product Group, which spe-
cializes in ultralow power and highly reliable
Wireless Sensor Networking. He designs
networking solutions based on a variety of loT
standards and promotes the use of highly
reliable standards such as IEEE802.15.4e. He is
co-chairing the new IETF 6TiSCH group,
which aims at standardizing how to use
IEEE802.15.4e TSCH in IPv6-enabled mesh
networks. Prior to Dust Network, he was a
Postdoctoral Researcher at the University of California, Berkeley, working
with Prof. K. Pister. He started Berkeley’s OpenWSN project, an open-
source initiative to promote the use of fully standards-based protocol


http://refhub.elsevier.com/S1389-1286(14)00392-2/h0035
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0035
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0035
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0040
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0040
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0040
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0040
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0045
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0045
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0045
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0055
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0055
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0055
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0060
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0060
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0060
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0080
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0080
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0080
http://refhub.elsevier.com/S1389-1286(14)00392-2/h0080

176 T. Chang et al./ Computer Networks 76 (2015) 165-176

stacks in M2M applications. He received the Ph.D. degree in computer
science (2008) and the M.Sc. degree in telecommunications (2005) from
INSA Lyon, France.

Kristofer SJ. Pister received his B.A. in
Applied Physics from UCSD in 1986, and his
M.S. and Ph.D. in Electrical Engineering from
UC Berkeley in 1989 and 1992. From 1992 to
1997 he was an Assistant Professor of Elec-
trical Engineering at UCLA where he devel-
oped the graduate MEMS curriculum, and
coined the phrase Smart Dust. Since 1996 he
has been a professor of Electrical Engineering
and Computer Sciences at UC Berkeley. In
2003 and 2004 he was on leave from UCB as
CEO and then CTO of Dust Networks, a com-
pany he founded to commercialize wireless sensor networks. He partic-
ipated in the creation of several wireless sensor networking standards,
including Wireless HART (IEC62591), IEEE 802.15.4e, ISA100.11A, and
IETF RPL. He has participated in many government science and technol-
ogy programs, including DARPA ISAT and the Defense Science Study
Group, and he is currently a member of the Jasons. His research interests
include MEMS, micro robotics, and low power circuits.

Qin Wang is a Professor with the School
Computer and Communication, University of
Science and Technology Beijing (USTB), China.
She received the B.S., M.S., and Ph.D. degrees
in computer science and engineering from
USTB in 1982, Peking University in 1985, and
USTB in 1998, respectively. She joined USTB in
1985, became Full Professor in 2000. As a
Visiting Scientist (2005-2006) in the Electri-
cal Engineering and Computer Science
Department, Cornell University, NY, and Vis-
iting Researcher (2006-2007) in the Electrical
Engineering and Computer Science Department, Harvard University,
Cambridge, MA, her research and contributions were on wireless sensor
network technology and related power consumption modeling from both
device and network system perspective. Recent years, she has focused on
low power wireless sensor networks and MPSoC (multiprocessor System-
on-Chip) technology in communications and networking systems. Since
January 2012, she has been working on OpenWSN project in UC Berkeley
as a visiting professor. She has been involved in international wireless
network standard development since 2007, including ISA100.11a, IEEE
802.15.4e, and industrial wireless standard WIA-PA proposed to IEC by
China.



	Adaptive synchronization in multi-hop TSCH networks
	1 Introduction
	2 Related work
	3 Synchronization in IEEE802.15.4e TSCH
	3.1 Single-hop synchronization
	3.2 Challenges of multi-hop synchronization

	4 Adaptive synchronization
	4.1 Single-hop adaptive synchronization
	4.2 Coordinated multi-hop synchronization

	5 Implementation and results
	5.1 OpenWSN parameters
	5.2 Simulation results
	5.3 Experimental results and interoperability

	6 Conclusion
	Acknowledgments
	References


