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Abstract—Industrial low-power wireless mesh networks are
shifting towards time-synchronized medium access control (MAC)
protocols which are able to yield over 99.9% end-to-end reliability
and radio duty cycles well below 1%. In these networks, motes
use time slots to communicate, and neighbor motes maintain their
clocks’ alignment, typically within 1 ms. Temperature, supply
voltage, and fabrication differences cause the motes’ clocks to drift
with respect to one another. Neighbor motes need to re-synchro-
nize periodically through pairwise communication. This period is
typically determined a priori, based on the worst case drift. In this
paper, we propose a novel technique which measures and models
the relative clock drift between neighbor motes, thereby reducing
the effective drift rate. Instead of resynchronizing at a preset rate,
neighbor motes resynchronize only when needed. This reduces
the minimum achievable duty cycle of an idle network by a factor
of 10, which in turn lowers the mote power consumption and
extends the network lifetime. This Adaptive Synchronization is
implemented as part of IEEE802.15.4e in the OpenWSN protocol
stack and is validated through extensive experimentation.

Index Terms—Duty cycle, energy consumption, IEEE802.15.4e,
synchronization, time-synchronized channel hopping (TSCH),
wireless sensor networks (WSNs).

I. INTRODUCTION

I N the last decade, contention-based wireless medium access
control (MAC) layers have been used in many low-power

wireless mesh protocols. ZigBee1 has been the de-facto standard
for these types of networks, but has failed to fulfill the industrial
reliability requirements.

Manuscript received December 17, 2012; revised February 06, 2013;
accepted March 15, 2013. Date of publication March 27, 2013; date
of current version December 12, 2013. This work was supported by
Projects CALIPSO-288879, OUTSMART-285038, RELYONIT-317826
and SWAP-251557, supported in part by the European Community and the
Spanish Ministry of Education under Fullbright-ME Grant INF-2010-0319.
Paper no. TII-12-0855.
D. Stanislowski and K. S. J. Pister are with the Berkeley Sensor and Actuator

Center, University of California, Berkeley, CA 94720 USA.
X. Vilajosana is with the Berkeley Sensor and Actuator Center, University of

California, Berkeley, CA 94720 USA, and also with the Universitat Oberta de
Catalunya, Barcelona 08018, Spain, andWorldsensing, Barcelona 08013, Spain.
Q. Wang is with the Berkeley Sensor and Actuator Center, University of Cal-

ifornia, Berkeley, CA 94720 USA, and also with the and University of Science
and Technology, Beijing 100083, China.
T. Watteyne is with the Berkeley Sensor and Actuator Center, University of

California, Berkeley, CA 94720 USA, and also with the Dust Networks/Linear
Technology, Hayward, CA 94544 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TII.2013.2255062

1[Online]. Available: http://www.zigbee.org/.

Things started to change with the development of the
time-synchronized channel hopping (TSCH) technique that
was adopted by major industrial low-power wireless stan-
dards such as WirelessHART [1] and recently as a part of the
published IEEE802.15.4e standard [2]. As of today, several
commercial networking providers are offering 99.9% reliable
MAC layers that provide radio duty cycles well below 1%,
thereby reducing the mote power consumption and increasing
the network lifetime.2

The IEEE802.15.4e standard [2] is an amendment to the
MAC protocol of IEEE802.15.4-2006 [3]. It achieves better
reliability and lower power consumption through time-synchro-
nized channel hopping (TSCH). All motes in an IEEE802.15.4e
network are synchronized and time is split into time slots, each
typically 10 ms long. Time slots are grouped into a super-frame
which continuously repeats over time.
A schedule instructs each mote what to do in each time

slot: send to a particular neighbor, receive from a particular
neighbor, or sleep [4]. Channel diversity is obtained by spec-
ifying, for each send and receive slot, a channel offset. The
same channel offset translates into a different frequency on
which to communicate at each iteration of the super-frame.
The resulting channel-hopping communication reduces the
impact of external interference and multipath fading, thereby
increasing the reliability of the network [5].
Crystal oscillators are commonly used for timing since they

offer a good tradeoff between power consumption, frequency
stability, and cost. The frequency of a crystal is affected by
manufacturing differences, temperature, and supply voltage. A
crystal oscillator is rated by its frequency stability: a 32-kHz
crystal rated 30 ppm will pulse somewhere between 32 768.99
Hz and 32 767.01 Hz. Two motes equipped with these crystal
can drift by 60 ppm to one another (one going fast, one going
slow), i.e., theywill desynchronize by 60 s each second. There-
fore, motes need to resynchronize periodically.
In a TSCH network, all transmitting motes are scheduled to

begin transmission at the same time in a slot (typically about
2 ms into the slot, called the TsTxOffset). To allow for some
desynchronization, receivers start listening some time before
this instant (see Fig. 1) and keep listening some time after. This
duration is called the “guard time”
Assuming a guard time of 1ms, and if twomotes are equipped

with 30 ppm crystals, it takes 16 s for them to desynchronize
by more than 1 ms. Since they cannot communicate if they get
desynchronized past the guard time, they periodically resyn-
chronize. The following equation can be used to determine the

2[Online]. Available: http://www.linear.com/products/smartmesh\_ip.
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Fig. 1. Timeline of an IEEE802.15.4e slot showing how two motes synchronize by exchanging a data packet.

maximum allowable synchronization period as a function
of the guard time and the drift rate :

(1)

Resynchronizing more frequently than the limit obtained with
(1) guarantees that the motes stay synchronized within their
guard time. The larger the guard time or the smaller the drift
, the less frequent motes need to resynchronize.
As detailed in Section III, resynchronizing in a TSCH net-

work involves exchanging a data packet and an acknowledg-
ment. Since the radio consumes power, it is best not to have to
resynchronize too often. We call the idle duty cycle the portion
of time the radio of a mote needs to be on just to keep synchro-
nized to its neighbors. The smaller this value, the longer the life-
time of the mote.
Typically, the worst case drift rate is used to hard-code the

resynchronization period in the motes. This often results in
“over-synchronization” and hence a waste of energy. We pro-
pose in this paper a technique which allows a mote to measure
its clock drift rate with a neighbor. Using this information,
it tracks its neighbor’s drift by periodically applying internal
correction to its clock, which allows it to resynchronizes less
often. This estimated correction helps to ensure that, even in
very large networks, the total desynchronization between two
arbitrary nodes is reduced as individual parent–child drifts are
reduced.
This technique, called Adaptive Synchronization, is added to

the TSCH mode of the IEEE802.15.4e implementation of the
OpenWSN protocol stack [6] and used on real hardware. Exper-
imental results presented in Section V show a reduction of the

minimum achievable duty cycle of an idle network by a factor
of 10.

II. RELATED WORK

Network synchronization is a well-studied topic. Lindsey et
al. published early theoretical work on synchronization, cov-
ering independent clocks settings, master–slave hierarchical
settings (centralized), time reference distribution, and mutual
synchronization (decentralized) [7], [8]. The emergence of
cellular and wireless networks came with new requirements
on network synchronization, such as multiframe synchro-
nization [9] or network-wide synchronization in ad-hoc [10]
networks. Recently, synchronization has also been studied in
the context of industrial real-time systems, which introduces
strict accuracy constraints [11]. The time-synchronized mesh
protocol (TSMP) [12] and the timing-sync protocol for sensor
networks (TPSN) [13] were the first to apply synchronization
techniques to low-power mesh networks. By synchronizing
the transmitter to the receiver, both motes spend most of their
time with their radio OFF, only turning it ON when a com-
munication is about to take place. This yields very low radio
duty cycles and long network lifetimes. The ideas developed
from these protocols are the foundation for standards such
as IEEE802.15.4e [2]. The technique presented in this paper
builds on top of TSMP, TPSN, and IEEE802.15.4e. Instead
of always resynchronizing at a “worst case” rate, adaptive
synchronization lowers the radio’s duty cycle even more
by modeling the clock drift between neighbor motes and
reducing the effective drift rate by making small corrections
that do not require the radio to be powered. This results in
a lower idle duty cycle and thus a longer network lifetime.
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Fig. 2. Corrections are applied to the clock of a mote which uses adaptive synchronization to track the drift with a neighbor mote. Packet-based synchronization,
which happens every 60 s or when mote temperature has changed 2 C since last packet sync, whichever comes first, causes the offset (red circles) to be applied;
software corrections are used to further track the calculated drift in between packet-based synchronizations. The same experiment is conducted in three environ-
ments with different temperature variations. Corrections are expressed in 32-kHz clock ticks. (a) Indoor setup: the temperature is constant. (b) Outdoor setup: the
temperature varies by 15 C over the course of the experiment. (c) Oven setup: the temperature varies by 55 C over the course of the experiment.

Recently, Kerkez [14] investigated how to achieve tight clock
synchronization without a precise clock source. This allows
for a board manufacturer to swap an (expensive) crystal
for a (cheap) on-chip oscillator. Similar to our approach,
Kerkez proposes to account clock drift to be able to correct
clock misalignment by modifying slot phase and duration,
but requires motes to communicate at every time frame.
Very interesting approaches have been published recently,
Medina et al. [15] present a synchronization algorithm based
on an estimation of the relative clock drift of each node,
their scheme uses periodic beacons to determine clock drift
with respect to a global clock shared by all the motes in
the network. In addition, in [16], the same authors present
a theoretical error characterization of clock drift in similar
scenarios. Adaptive synchronization presented in this paper
takes a similar approach and complements estimated clock
drift with periodic temperature monitoring in order to com-

pensate temperature effects on the drift rate of crystals. Liu
et al. [17] uses a Kalman filter to compensate clock drift,
their scheme named AdaSynch shows how clock drift can
be modeled and fit to a certain value using different Kalman
filters. The important aspect is the deep analysis of clock drift
that authors carry on a set of 100 telosb motes which can be
further used to improve the Adaptive synchronization estima-
tion scheme. Temperature compensation schemes have been
studied recently by Brunelli et al. [18]. Authors propose to
divide operation in two phases, a one-time calibration where
nodes learn the drifting pattern and a operation phases where
nodes apply the learnt pattern according to the temperature
reading. Adaptive synchronization composes a temperature
synchronization scheme with an adaptive synchronization
which benefits from the fact that no calibration is needed and
that temperature readings can be spaced in time so energy
consumption is not compromised.
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Fig. 3. GINA mote.

III. SYNCHRONIZING IN IEEE802.15.4E

In an IEEE802.15.4e TSCH network, communication hap-
pens in time slots. A network-wide schedule instructs each mote
what to do in each slot. The schedule is built to satisfy the
throughput and delay requirements of the different traffic flows.
A time slot is sufficiently long for the transmitter to transmit the
longest possible packet and for the receiver to send back an ac-
knowledgment indicating reception.
All motes in an IEEE802.15.4e network are synchronized,

i.e., neighbor motes are desynchronized by at most a guard time,
which is typically 1 ms. The network schedule indicates the
“time parents” of each mote, the neighbor motes to which this
mote needs to keep synchronized. This results in a synchroniza-
tion-directed acyclic graph. Once a mote has been assigned its
time parents, it needs to ensure its clock never drifts by more
than a guard time with respect to its time parents.
IEEE802.15.4e is designed to cope with clock drift. It

includes timing information in all packets, to allow for two
neighbor motes to resynchronize to one another whenever
they communicate. When a transmitter transmits a packet, the
receiver timestamps the instant at which it receives the packet
and indicates the offset between that measured time and the the-
oretical reception time TsTxOffset in its acknowledgment.
As a result, upon each communication, both the transmitter and
the receiver know how desynchronized they are. Depending
on which mote is the time parent, either the transmitter or the
receiver aligns its clock to the other. After resynchronizing, the
clocks of both motes are perfectly aligned.
When data packets flow through the network, keeping syn-

chronized comes at no extra cost.3 When the network sits idle
(no data packets are flowing), motes send empty data packets
periodically to keep synchronized. The period at which these
“keep-alive” packets are exchanged is the object of this paper.
We call “idle duty cycle” the portion of the time a mote’s radio
is on just to keep synchronized, when the network sits idle.
Let us take a typical case where a mote has two time parents

and two children.We assume the mote runs IEEE802.15.4e with
a 1-ms guard time and is equipped with a 30-ppm crystal. As per
the calculation above, it can expect, each 16 s, to participate in

3Strictly speaking, the time offset between transmitter and receiver is encoded
as a 2-byte signed value, which is added to the acknowledgment. Transmitting
this extra field costs some energy.

Fig. 4. Correction interval is the interval between each type of sync. For Soft-
ware Syncs, which in this case has a consistent correction value of a single clock
cycle, the interval is closely related to the clock drift rate. This figure shows an
overlay of correction intervals for two mote-pairs of different drift rates.

four resynchronizations: to both parents and both children. Each
resynchronization involves exchanging the keep-alive packet
(around 15 bytes) and the acknowledgment (around 15 bytes).
At 250 kpbs and taking into account radio startup and turn-
around times, this translates to a radio on time of around 2ms per
synchronization. To participate in all synchronizations, it will
have its radio on for around 8 ms each 16 s, or an idle radio
duty cycle of 0.050%.
The goal of the adaptive synchronization technique presented

in Section IV is to bring this idle duty cycle down by extending
the period between two resynchronization between neighbor
motes.

IV. ADAPTIVE SYNCHRONIZATION

Adaptive synchronization allows a mote to track the drift rate
to its neighbor, which it then uses to increase the time between
keep-alive messages.
This is done by measuring the effective clock drift be-

tween two consecutive keep-alive messages, and then using
that rate to make periodic “software” adjustments (which
do not require communication) in-between “packet-based”
resynchronizations.
At each packet synchronization, the timestamping of the

packets indicates to a mote how offset its clock is with respect
to its neighbor’s. It can calculate the experimental clock drift
rate by dividing this offset by the duration since the
previous packet-based synchronization , as shown in

(2)

If a mote uses (2) and determines that it is fast with respect to
a neighbor, it will periodically adjust its own clock in order to
“slow down.” It can do so by periodically adding a clock tick.
This allows it to track its neighbor’s clock, thereby reducing
the drift. Since the correction is not perfect and the drift rate
changes (e.g., with temperature), packet-based re-synchroniza-
tions is still needed, but can be less frequent.
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Fig. 5. Accumulated clock drift for a mote pair. This is the accumulated value of corrections made by both software adjustments and packet-based resynchroniza-
tions which shows how two motes would drift when corrections are not applied. The figures show how the drift rate, i.e., the slope, changes with temperature. (a)
Indoor setup. (b) Outdoor setup. (c) Oven setup.

Fig. 2(a) shows experimental results gathered on a pair of
GINA motes [19] running in a temperature-controlled environ-
ment. The blue dots show the periodic software corrections ap-
plied to the mote’s clock; the red circles represent the offset in-
dicated by each packet-based synchronization (which is pre-set
to happen every 60 s). After a learning period—during which
the mote measures the drift rate—the software corrections track
the drift, and the offset measured by the packet-based synchro-
nization drops from 22 ticks (671 s) to three ticks (91 s). This
corresponds to an effective drift dropping from 11 to 1.5 ppm.
Temperature causes the clock drift rate to change. To account

for temperature changes, Adaptive synchronization records
the temperature during the most recent packet-sync event and
then measures the temperature periodically. If the difference
between the recorded temperature and any measurement there-
after is larger than , a keep-alive message is triggered to

re-synchronize and determine the new effect drift rate. The
threshold —set to 2 C in our experiments—can be tuned to
match the crystal’s temperature sensitivity and the application
requirements.
The other sources of clock drift (supply voltage and crystal

aging) change much more slowly and are unlikely to be noticed
even with extended keep-alive packet intervals. For this reason,
we did not make any attempt to measure or correct for these
sources.
There is an error associated with the experimental clock drift

rate that increases as the packet interval decreases: short inter-
vals make for inaccurate predictions. This could be an issue if
a short message interval were immediately followed by a long
one. To prevent such a situation, the interval between keep-alive
packets is controlled so that a short interval is followed by one
twice as long, then four times as long, etcetera, until the target
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interval length is reached. In our experimental setting we started
at a period of 5 s, increasing it up to 60 s. This is similar to TCP’s
“slow start” [20].

V. EVALUATION

Here, we experimentally explore the tradeoff between syn-
chronization accuracy and energy consumption, for different
crystal oscillator configurations and temperature conditions.
All experiments are conducted with GINAmotes [19] (shown

in Fig. 3), which feature a Texas Instruments MSP430 micro-
controller and an Atmel AT86RF231 IEEE802.15.4 radio chip.
Data were collected at each synchronization event, whether

packet or software based. Clock correction amount (in units of
ticks), time of correction, a unique sync event ID, temperature,
and whether the correction was packet or software based were
all recorded.

A. Impact of Manufacturing Differences

To isolate crystal manufacturing, all experiments in this sec-
tion are conducted with motes operating in the same tempera-
ture-controlled environment, corresponding to the indoors case
shown in Fig. 2(a).
By letting the motes synchronize without adaptive synchro-

nization, we canmeasure the drift rate.We cherry-pick two pairs
of motes: motes and exhibit a high clock drift of 11 ppm;
motes and have a low effective clock drift of 4 ppm. The
motes in both pairs run the same firmware, and are configured
to exchange a keep-alive every 60 s.
Fig. 4 depicts the interval between two synchronizations.

Because Adaptive Synchronization speeds up synchronization
when the drift is large, the interval between software synchro-
nization events is smaller for the 11 ppm pair than
for the 4 ppm pair. The frequency of synchronization
is proportional to the clock drift, so in this case the 11 ppm pair
makes corrections about 2.75 time as frequently as the 4 ppm
pair.

B. Impact of Temperature

A pair of motes is set up to send keep-alive messages to
keep synchronized using adaptive synchronization; no appli-
cation data are exchanged. To measure the impact of tempera-
ture variation, the same experiment is repeated in the following
cases.
• In the indoor case, the pair of motes is placed on a desktop
in an office environment. The experiment is conducted
over the course of 20 h, during which the temperature is
constant.

• In the outdoor case, one mote is placed indoors, the other
one outdoors. The experiment is conducted over the course
of 12 h, during which the temperature drops by 15 C.

• In the oven case, one mote is placed at a constant 20 C, the
other one is placed in an oven. From 20 C, the temperature
of the oven is brought to 75 C over the course of 2 min
and then down to 55 C over 10 min.

In each case, adaptive synchronization is running with a
preset keep-alive interval of 60 s. As detailed in Section IV,

Fig. 6. Interval between time correction events in the oven setup scenario.
Packet-based corrections are separated from software-based corrections. At
around 250 s, the temperature is increased using the oven. The slow start
process can be seen when temperature reaches a steady state at around 350 to
400 s.

sudden changes in temperature trigger extra keep-alive
messages.
Fig. 5 shows the total accumulated correction conducted by

adaptive synchronization in the three cases. The total amount
that adaptive synchronization corrected is equivalent to how the
two motes would drift when corrections are not applied, there-
fore, Fig. 5 also presents the accumulated drift between two
motes in the presented scenarios. A change in temperature al-
ters the accumulation rate. In the indoor case, the value of accu-
mulated correction over time is increasing linearly due to stable
temperature. There is slow variation in the accumulation rate of
correction in the outdoor case, caused by the slow temperature
drift during the transition between day and night. In the oven
case, the green line shows the sharp temperature change when
the oven is switched on.
Fig. 6 shows the interval between time correction events in

the oven setup. As the temperature increases, it can be seen that
the packet synchronizations happen frequently at around 250 s
as the temperature rapidly increases. When temperature stabi-
lizes, adaptive synchronization starts the slow start process to
achieve the maximum keep alive interval.

C. Energy Consumption Discussion

Fig. 7 shows a direct comparison between synchronizing
with and without Adaptive Synchronization. Because drift is
not compensated when not using adaptive synchronization the
offset is large at each packet-based synchronization. In Fig. 7,
this is around 20 ticks or a drift of 11 ppm.When using adaptive
synchronization, drift is compensated, and the offset triggered
by each packet-synchronization drops to two ticks or 1 ppm.
This means that the guard time can be much smaller. In this

case, without adaptive synchronization, the guard time must be
at least 660 s long (i.e., the clock drift in 60 s); it can be
60 s when using adaptive synchronization, using the same 60-s
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Fig. 7. Correction values for the 11-ppm mote-pair running adaptive synchro-
nization versus packet-only correction.

keep-alive interval. This translates into a 90% reduction of the
energy spent by the mote idle listening for packets.

VI. CONCLUSION

TSCH networks such as those defined by the IEEE802.15.4e
standard require tight synchronization of their motes, which
limits the lowest achievable duty cycle and hence the minimum
energy consumption of the network. Clock drift is attributed
to crystal manufacturing differences and temperature, mainly.
TSCH uses periodic keep-alive messages to resynchronize
neighbor motes in the absence of application traffic.
We presented in this paper a simple adaptive synchroniza-

tion technique which can either reduce the keep-alive interval
or shorten the guard time. In both cases, this translates directly
in a reduction of the idle duty cycle. Experimental results show
an idle duty cycle reduced by a factor of 10, with the ability to
maintain synchronization even in rapidly varying temperature
settings. The technique is implemented in the IEEE802.15.4e
MAC layer of the OpenWSN protocol stack and evaluated on
off-the-shelf motes.
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