
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
Eur. Trans. Telecomms. 2013; 00:1–13

DOI: 10.1002/ett

RESEARCH ARTICLE

OpenWSN: A Standards-Based Low-Power Wireless
Development Environment
Thomas Watteyne1,2,∗, Xavier Vilajosana1,3, Branko Kerkez4,1, Fabien Chraim1, Kevin Weekly1,
Qin Wang1,5, Steven Glaser4, Kris Pister1

1BSAC, University of California, Berkeley, USA.
2Dust Networks/Linear Technology, Hayward, CA, USA.
3Universitat Oberta de Catalunya, Barcelona, Spain.
4Civil and Environmental Engineering, University of California, Berkeley, USA.
5University of Science and Technology, Beijing, China.

ABSTRACT

The OpenWSN project is an open-source implementation of a fully standards-based protocol stack for capillary networks,
rooted in the new IEEE802.15.4e Time Synchronized Channel Hoppingstandard. IEEE802.15.4e, coupled with Internet-
of-Things standards, such as 6LoWPAN, RPL and CoAP, enables ultra-low power and highly reliable mesh networks which
are fully integrated into the Internet. The resulting protocol stack will be cornerstone to the upcoming Machine-to-Machine
revolution.
This article gives an overview of the protocol stack, as well key integration details and the platforms and tools developed
around it. The pure C OpenWSN stack was ported to four off-the-shelf platforms representative of hardware currently
used, from older 16-bit micro-controller to state-of-the-art 32-bit Cortex-M architectures. The tools developed around the
low-power mesh networks include visualization and debugging software,a simulator to mimic OpenWSN networks on a
PC, and the environment needed to connect those networks to the Internet.
Experimental results presented in this article include a network where motesoperate at an average radio duty cycle well
below 0.1% and an average current draw of 68µA on off-the-shelf hardware. These ultra-low power requirements enable
a range of applications, with motes perpetually powered by micro-scavenging devices. OpenWSN is, to the best of our
knowledge, the first open-source implementation of the IEEE802.15.4e standard. Copyrightc© 2013 John Wiley & Sons,
Ltd.

∗Correspondence

BSAC, 403 Cory Hall 1774, University of California Berkeley, CA 94720-1774. E-Mail: watteyne@eecs.berkeley.edu.

1. INTRODUCTION

The Internet of Things (IoT) and Machine-to-Machine
(M2M) revolutions are quietly coming, and with them an
epochal turning point in the way people interact with the
“things” surrounding them: appliances in a smart home,
snow-level sensors in a smart ski resort, overflow sensors
in a smart refinery, etc. Standardization bodies are playing
a key role in this revolution. Different working groups
are finalizing the protocols running at different levels of
this communication stack, and the stack depicted in Fig.2
is becoming thede-facto protocol stack for tomorrow’s
capillary networks.

At the foundation of this protocol stack is the new
IEEE802.15.4e [1] “Time Synchronized Channel Hop-
ping” (TSCH) standard, which achieves high reliability

OpenWSN
network

IPv4
Internet

Internet host

data server

Low-power
Border
Router

remote actuation

data collection

Figure 1. Use Cases for an OpenWSN Network.

through frequency agility (channel hopping) and low-
power through tight time synchronization. IEEE802.15.4e
is the new Medium Access Control (MAC) for the
IEEE802.15.4 standard.

Copyright c© 2013 John Wiley & Sons, Ltd. 1
Prepared using ettauth.cls [Version: 2010/06/21 v2.00]



OpenWSN: Standards-Based Low-Power Wireless T. Watteyne, X. Vilajosana, B. Kerkez et al.

The OpenWSN project∗ offers a free and open-source
implementation of this protocol stack and the surrounding
debugging and integration tools, thereby contributing to
the overall goal of promoting the use of low-power
wireless mesh networks. It is, to the best of our knowledge,
the first open-source implementation of the IEEE802.15.4e
standard. The OpenWSN stack has been ported to four off-
the-shelf platforms. It includes the ability to connect the
network to the IPv6 Internet, and to simulate a complete
network on a PC.

One of the goals of the OpenWSN project is
to investigate the use of IEEE802.15.4e in Internet-
connected low-power mesh networks. It shows how,
contrary to common belief, IEEE802.15.4e (and more
generally time synchronized channel hopping protocols)
can be implemented on off-the-shelf platforms, without
the need of dedicated hardware. This article presents
implementation results of this protocol on four different
platforms, using a range of 16-bit and 32-bit micro-
controllers and radios. Moreover, OpenWSN is a “pure
C” implementation, i.e. no extensions to the C language
are needed. It is therefore not tied to any specific
tool chain. The IEEE802.15.4e implementation runs in
interrupt context for timing accuracy, and is independent
from the operating system running on the mote. This
implementation can therefore easily be ported to other
operating systems. Finally, it implements, on top of
IEEE802.15.4e, Internet-of-Things standards such as IPv6
over Low power Wireless Personal Area Networks
(6LoWPAN), Routing Protocol for Low power and Lossy
Networks (RPL) and Constrained Application Protocol
(CoAP), enabling an OpenWSN network to connect
seamlessly to the IPv6 Internet. Fig.1 depicts regular use
cases of this protocol stack.

This article highlights its contributions and positions the
OpenWSN project within related products and projects.
Section2 gives an overview of the protocols implemented,
and highlights their applicability in several use cases.
Section 3 gives an overview of related products and
(open-source) projects in the field of low-power wireless.
Section 4 presents the hardware platforms used by
the OpenWSN project, as well as the tools developed
for debugging and Internet integration. Results of a
performance evaluation of OpenWSN are presented in
Section5, with a particular focus on synchronization and
power consumption. Section6 concludes the paper and
presents the features to be included in future releases of
OpenWSN.

2. PROTOCOL STACK AND USE CASES

Fig. 2 depicts the protocol stack implemented in
OpenWSN. This protocol stack is based entirely on

∗http://openwsn.berkeley.edu/

transport

IPv6

adaptation

reservation

medium access

board support package

pins leds radio timers

IEEE802.15.4e

neighborsschedule

6LoWPAN

User Applications

queue

ID
forwarding ICMPv6

TCP CoAPUDP

Berkeley Socket Abstraction

Hardware Abstraction

RPL

Figure 2. The OpenWSN Protocol Stack.

Internet-of-Things standards. This section highlights the
key aspects of these protocols, and indicates the type of
use cases they enable.

2.1. Abstractions

The OpenWSN stack utilizes abstraction at two levels. The
Berkeley Socket Abstraction was developed as part of the
Berkeley Software Distribution (BSD) operating system
development; it has been adopted by all operating systems,
it is at the heart of today’s Internet. It considers that
applications on two Internet hosts communicate through
a socket, which is uniquely identified by the IP addresses
of the hosts, and the two ports corresponding to each
application. The OpenWSN stack respects this abstraction,
so that developing an application on top of the OpenWSN
stack is very similar to developing an application on a
regular Internet host.

The Hardware Abstraction consists in grouping all
functions accessing the hardware (i.e. the functions which
write to the registers) into a group of files called the “Board
Support Package” (BSP). This allows the vast majority of
the code to be shared among all platforms. There is one
BSP per supported platform; the remainder of the stack
code is shared between all implementations.

2 Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls

http://openwsn.berkeley.edu/


T. Watteyne, X. Vilajosana, B. Kerkez et al. OpenWSN: Standards-Based Low-Power Wireless

2.2. Inside the Stack

The underlying radio technology of virtually all low-
power wireless solutions is the IEEE802.15.4-2006 [2]
standard, a “double” standard defining both the physical
layer (modulation, datarate, transmission power, etc.) and
a standard medium access control, MAC, layer (how to
arbitrate access to the wireless medium). This historical
MAC protocol has suffered from two major flaws [3].

The first flaw is that a wireless device does not know
a priori when its neighbors will transmit data, so it must
leave its radio on to listen for incoming communications.
Readily available IEEE802.15.4 radios draw 5-30mA of
current while listening. If persistently kept on, such a
radio drains a set of AA batteries in about a week. The
second flaw of existing MAC layers relates to frequency
diversity. Though IEEE802.15.4-compliant devices can
switch frequencies, the historical MAC protocol specifies
operating on only one frequency at a time. Unlike systems
employing frequency diversity, the historical MAC is
prone to external interference and multi-path fading.
External interference is especially bothersome in the
unlicensed 2.4GHz band, shared with WiFi and Bluetooth,
among others. Multipath fading is the phenomenon
whereby several “echoes” of the same signal destructively
interfere at the receiver. Realistic examples often occur
indoors, where reflections from walls, furniture, and
people interact unpredictably, sometimes to the extent that
a receiver cannot receive even strong signals sent from a
nearby transmitter.

The IEEE802.15.4e standard replaces the historical
MAC protocol, without changing the underlying physical
layer. Thus, it can be implemented as a “software
update” in already existing IEEE802.15.4 devices. In
an IEEE802.15.4e network, time is sliced up into time
slots and motes synchronize to each other. A superframe
consists of a number of slots (typically tens to a few
thousand slots) which repeats over time. A schedule
indicates to a mote what action to take in each slot of
the superframe: transmit, receive, or sleep. Modifying this
schedule allows for a clean trade-off between latency,
network throughput and power consumption. Finally, each
slot is assigned a channel offset, translating into a different
frequency each time the superframe repeats. While motes
retain the same schedule, each (re)transmission takes
place on a different frequency. This technique, known as
“channel hopping” is commonly used to combat external
interference and multi-path fading.

Time Synchronized Channel Hopping has not been
introduced by IEEE802.15.4e, as it is also the MAC
technology underlying to TPSN [4], TSMP [5], Bluetooth
and WirelessHART [6]. [7] reports experimental results
from a 45-mote network deployed for 26 days. This
network, running TSMP, yielded 99.999% end-to-end
reliability and radio duty cycle well below 1% (i.e. motes
have their radio on less that 1% of the time).

6LoWPAN [8] is an adaptation layer which compacts
IPv6 headers to minimize the size of wirelessly transmitted

packets. Frames exchanged in an IEEE802.15.4 network
are at most 127-bytes long; if the full 40-byte were
used, it would occupy almost a third of each packet.
The 6LoWPAN specification consists of a set of rules for
analyzing the IPv6 header to be included in the packet.
It removes the fields which are not needed (e.g. the
version field, since it’s always the same) and compresses
other fields where feasible (e.g. the source and destination
address, since parts of it may be inferred from the
network’s IPv6 prefix). All packets traveling inside the
low-power mesh contain only the resulting 6LoWPAN
header, which can be as small 2 bytes in the most favorable
case. Because a full IPv6 header is required to support
functionality on the Internet, an OpenWSN network
implements a “Low-power Border Router” (LBR), a device
which sits between the mesh and an Internet connection.
The LBR inflates 6LoWPAN headers to normal IPv6
header on packets leaving the mesh, and compacts the IPv6
headers on incoming packets. The result is that each mote
can be assigned a unique IPv6 address, and appear on the
Internet as a regular Internet host. This permits for client-
side applications to be developed easily, especially in cases
where users may not have much previous knowledge about
low-level WSN technologies.

RPL is used on top of 6LowPan to maintain a routing
topology. In RPL both collection and source routing
mechanisms are implemented. To collect information a
network gradient is built (named Destination Oriented
Directed Acyclic Graph (DODAG)). OpenWSN defines
different metrics to establish that gradient being the
inverse of the probability of delivery ratio (PDR) used by
default. Source routing (dowsntream) is maintained by the
LBR nodes keeping a table with a route to each of the
possible destinations in the network. This table is updated
periodically by Destination Advertisement Objects (DAO)
that are send upstream by all the nodes in the network [9].

OpenWSN also supports CoAP [10], a protocol
which enables RESTful interaction with individual motes,
without the overhead of TCP and verbose nature of HTTP.
It consists of a 4-byte header on top of UDP. A CoAP-
enabled mote acts both like a web browser and a web
server.

2.3. Use Cases

Fig. 1 illustrates a typical use case and shows how an
OpenWSN network connects to the Internet. Given the
Berkeley Socket Abstraction, it is easy to implement
an application on top of the OpenWSN protocol stack
to communicate with clients over the Internet, sample
sensors, and actuate devices. Here, we present three typical
use cases which should cover a broad set of applications.

The most common use case is data collection. A mote
is connected to a physical sensor, and an application runs
on top of the OpenWSN stack to sample that sensor
and initiate a transmission to the CoAP UDP port of a
data server on the Internet. Sensor data is passed to the
CoAP protocol, which adds a header indicating which

Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd. 3
DOI: 10.1002/ett
Prepared using ettauth.cls



OpenWSN: Standards-Based Low-Power Wireless T. Watteyne, X. Vilajosana, B. Kerkez et al.

Table I. Platforms for low-power mesh networking

Hardware GINA [11] (Open-
WSN)

XBee-PRO ZB S2 MICAz1 (TinyOS) SmartMesh IP2

Upper Stack
CoAP
6LoWPAN
RPL

ZigBee

CoAP
6LoWPAN
RPL

6LoWPAN
SmartMesh

Medium Access IEEE802.15.4e
TSCH

IEEE802.15.4
CSMA/CA

IEEE802.15.4
CSMA/CA

IEEE802.15.4e
TSCH

Sleep Current 35µA 3.5µA 15µA 1.2µA
RX Current (sensitivity) 11mA⋆ (-101dBm) 43mA⋆

(−102dBm)
19.7mA
(−94dBm)

4.5mA
(−91dBm)

TX Current (power) 13mA⋆ (0dBm) 250mA⋆ (17dBm) 17.4mA (0dBm) 5.4mA (0dBm)

Comments
Channel Hopping
Open-source

Routers Cannot
Sleep

Open-Source Channel Hopping
Industrial

⋆Measured
1http://www.memsic.com/
2http://www.dustnetworks.com/

“resource” this data comes from. This payload is pre-
pended with UDP, 6LoWPAN and IEEE802.15.4e headers.
The resulting frame is then scheduled for transmission
using the IEEE802.15.4e TSCH MAC layer. When
reaching the edge of the network, the packet is forwarded
to the LBR, which inflates the 6LoWPAN into a full IPv6
header, and transmits into the IPv6 Internet. A data server,
which listens to the well-known CoAP UDP port, receives
the data and stores it in a database, where the data can be
displayed or processed.

A second use case is to send data from the Internet
to an individual mote (e.g. a mote equipped with an
actuating device to control a light fixture in a smart
building). A host on the Internet has a client application
which formats CoAP commands and sends them to the
coap://ipv6::addr/light/ resource of the mote.
This packet travels over the IPv6 Internet, through the
LBR, to the edge of the mesh, and is then received by the
application on the mote. The CoAP application then parses
the command to execute any necessary local commands.

More complex client-server interactions are possible
between a mote in the low-power mesh and a host on
the Internet. An internet host can query the mote for its
available resources (i.e. the list of applications running
on top of the CoAP) by querying itswell-known/
resource atcoap://ipv6::addr/well-known/.
This retrieves a list of available resources, which the client
can individually query to obtain the latest sensor readings,
or to trigger an actuation event. It is also possible for a mote
to browse available CoAP resources on the Internet. For
example, an individual mote attached to a smart sprinkler
can query the weather forecast of a CoAP-enabled weather
server on the Internet to optimally irrigate a garden.

3. RELATED PRODUCTS AND
PROJECTS

OpenWSN is part of an ecosystem of commercial
products and open-source projects which gravitate around
the Internet-of-Things and Machine-to-Machine concepts.
This section gives a list of the most relevant related
products and projects, highlighting their similarities and
differences with regard to OpenWSN.

3.1. Related Commercial Products

Our choice to build OpenWSN was inspired in part by
the lack of commercially available platforms which are
simultaneously highly reliable and low-cost, while still
consuming little power. TableI compares OpenWSN to
three popular platforms.

A particular platform of interest is Digi’s XBeeR©

product line†, a module which allows an external micro-
controller to send/receive wireless packets by controlling
the radio over a simple serial interface. One variant of
the modules implements the ZigBee low-power wireless
stack, a standard almost ubiquitously adopted among most
wireless chip manufacturers‡. Fig. 3 shows the measured
current profile of one such modules operating as an end-
device (the lowest power configuration). Note that the
module tested uses a power amplifier (PA), significantly
increasing both the output power and current consumption.
This current profile was taken as the device collected
one analog data sample then transmitted it to a central
coordinator.

†http://www.digi.com/, presently priced at around 30 USD
‡http://www.zigbee.org/

4 Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls

http://www.memsic.com/
http://www.dustnetworks.com/
http://www.digi.com/
http://www.zigbee.org/


T. Watteyne, X. Vilajosana, B. Kerkez et al. OpenWSN: Standards-Based Low-Power Wireless

0 5 10 15
0

100

200

300

Time (ms)

C
ur

re
nt

 (
m

A
)

1
2

3 4

5

CPU on

?

RX on

?

TX on -

Sleep

?

Figure 3. Current consumption trace for one wake cycle of a
ZigBee End Device (XBee-PRO S2) showing the different power

states and steps of data transmission.

Fig. 3 shows the four different levels of power
consumption of the XBee device: awake with radio off
(approx.10mA), radio listening (approx.40mA), radio
transmitting (approx.250mA), and sleep (< 1mA). Over
the course of a sample transmission, there are five distinct
phases:

1. the device is collecting one analog data sample,
2. the radio is listening to verify that the wireless

medium is free,
3. the device sends a short message polling the

coordinator for queued messages, then listens for
the response,

4. the radio sends the data sample, then listens for an
acknowledgment, and

5. the radio goes back to sleep.

Fig. 3 indicates that each data sample consumes about
3mJ of energy, therefore, a2600mAh alkaline AA
primary battery can supply the collection and transmission
of 4.7 million samples. A feature of ZigBee networks is
that end devices can sleep an arbitrary length of time,
consuming very little current while doing so. Thus, by
adjusting how often samples are taken, the battery lifetime
of an end device can vary between a week (sampling every
600ms), to a year (sampling every 7s), to 8 years (sampling
every minute). However, a drawback, directly related to the
fact that end devices can sleep arbitrarily long intervals,
is that routers must always be listening for data from
end devices.A practical ZigBee deployment therefore
requires that at least one non-battery-powered router
node must be in range of every battery-powered
end-device node. This requirement is highly impractical
for a number of potential deployments, such as remote
sensing and environmental habitat monitoring. Devices on
a ZigBee Network also only operate on a single frequency
channel, and do not benefit from channel diversity. This
makes them highly susceptible to external interference and
multipath fading. Lack of synchronization also increases

the risk of inter-network interference. This is especially
true in dense network deployments, where nodes interfere
with the transmissions of their neighbors due to the lack
of an explicitly defined transmission schedule. All of these
concerns are however addressed through OpenWSN’s use
of the IEEE802.15.4e MAC layer.

The IEEE802.15.4e standard synchronizes all nodes in
the network to within tens of micro-seconds. This allows
two neighbor nodes wishing to talk to wake up at the same
time, thereby avoiding idle listening, and significantly
reducing the radio duty cycle and improving energy
consumption. Router nodes know when their neighbors are
scheduled to communicate and therefore do not need to
listen all the time. The major benefit relates to achieving a
long battery life for all nodes, including routing nodes, in a
scenario where providing wired electricity to devices is not
an options. This permits every node to run on battery power
for extended periods of time, while improving overall
reliability.

3.2. Related Open-Source Operating Systems

TinyOS is an event-driven operating system for embedded
devices developed at U.C. Berkeley [12]. It is implemented
using a component oriented programming abstraction that
provides code modularity and facilitates component reuse.
This comes at the cost of a larger learning curve and code
complexity. It features a non-preemptive scheduler and
multiple abstractions, including communication interfaces
and hardware timer virtualization. TinyOS has been
ported to numerous hardware platforms and during
the last ten years served as the main platform for
new research development on communications protocols.
It provides multiple MAC layer implementations for
IEEE802.15.4 networks, including preamble sampling
or low power listening MAC [13]. One of the first
well known implementation of 6LoWPAN and RPL was
also developed on the TinyOS Berkeley Low-Power
IP Stack (BLIP) [14]. Nowadays, BLIP2.0 provides a
renovated implementation of 6LoWPAN including header
compression, dhcpv6 for address assignment and RPL
routing. CoAP is also part of the support package provided
by the TinyOS core distribution and it is based on the
libcoap C library. The large community around TinyOS
has created numerous addons providing a large amount of
tools and functionalities. There is also a TinyOS simulator,
TOSSIM, that enables the simulation of large networks
using TinyOS native codes.

Contiki is an open-source operating system for WSNs
and embedded devices developed at the Swedish Institute
of Computer Science [15]. It is based on a multitasking
non-preemptive scheduler which uses the protothreads
abstraction [16]. The use of protothreads is similar
to cooperative scheduling, including the caveat that an
executing task may starve other waiting tasks. In addition
to the operating system, Contiki includes several add-ons
and libraries providing communications functionalities.
Most relevant is the ContikiMAC [17], a Carrier Sense

Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd. 5
DOI: 10.1002/ett
Prepared using ettauth.cls



OpenWSN: Standards-Based Low-Power Wireless T. Watteyne, X. Vilajosana, B. Kerkez et al.

Table II. Platforms running OpenWSN.

GINA TelosB LPC K20

toolchain IAR IAR CodeRed CodeWarrior

micro-controller
manufacturer Texas Instruments Texas Instruments NXP Freescale
part number MSP430f2618 MSP430f1611 LPC1769 K20DX256VLL7
architecture 16-bit 16-bit 32-bit ARM Cortex M3 32-bit ARM Cortex M4
max. speed 16 MHz 8 MHz 120MHz 72MHz
flash 116kB 48kB 512kB 256kB
RAM 8kB 10kB 64kB 64kB

radio
manufacturer Atmel Texas Instruments Atmel Atmel
part number AT86RF231 CC2420 AT86RF231 AT86RF231
interface SPI SPI SPI SPI

Multiple Access with Collision Avoidance (CSMA/CA)
preamble-sampling MAC using periodical wake-ups to
listen for packet transmissions from neighbors. The
µIPv6 library provides 6LoWPAN and RPL [18] routing
functionality. The transport layer implements both UDP
and a lightweight version of TCP [19]. Contiki also
implements CoAP [20], similar to OpenWSN. Finally,
the Contiki project develops the Cooja [21] simulator, for
simulating large Contiki networks on a PC.

4. OPENWSN PLATFORMS AND TOOLS

This section introduces the main platforms and tools that
have been developed around the OpenWSN project.

4.1. Multiple Hardware Platforms

OpenWSN is curently ported to four, off-the-shelf
hardware platforms, listed in TableII . This selection of
platforms is intended to be a representative sample of the
hardware that can readily be encountered today. TelosB
is the oldest and lowest performance platform; the K20
platform is its high-end counterpart. While TelosB is still
very popular in the academic community, more powerful
32-bit platforms microcontrollers are becoming more
and more commonplace. Note that all of the platforms
presented in TableII use an external radio, communicating
with the micro-controller using Serial Peripheral Interface
(SPI), a common serial interface.

4.2. Toolchains

Since OpenWSN is “pure C”, the source can be compiled
with any toolchain compatible with the target platform.
The choice of a toolchain is a complex decision, which
trades mainly debugging functionality and resulting code
size against cost.

Debugging on all hardware platforms is done over a
JTAG interface, i.e. it is possible to place breakpoints
to freeze the code execution and inspect the value
of variables and registers. We have used the MSP–
FET430UIF debugger by Texas Instruments for the GINA
and TelosB, the IAR/Segger j-link for the K20 and the
built-in LPCLink for the LPC platforms.

We have used IAR workbench§ for MSP430 for the
GINA and TelosB platforms. IAR workbench is currently
one of the most commonly used integrated development
environments for embedded systems.

We have used the LPCXpresso Integrated Development
Environment (IDE), developed by CodeRed¶ for NXP, for
the LPC platform. Its GUI front-end is based on Eclipse.
The free edition has a target code size limit of 128kB,
which is enough for the OpenWSN project.

For the K20, we support the CodeWarrior IDE‖,
developed by Freescale. Its GUI front-end is based on
Eclipse. The free edition has a target code size limit of
64kB, which is enough for the OpenWSN project.

For the OpenSim simulator (see Section4.6), the
OpenWSN code is compiled to run on a standard PC. We

§http://www.iar.com/
¶http://www.code-red-tech.com/
‖http://www.freescale.com/CodeWarrior/

6 Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls

http://www.iar.com/
http://www.code-red-tech.com/
http://www.freescale.com/CodeWarrior/


T. Watteyne, X. Vilajosana, B. Kerkez et al. OpenWSN: Standards-Based Low-Power Wireless

have used the Visual Studio 2010 by Microsoft, and the
gcc compiler for Linux-based systems.

4.3. OpenOS: A Simple Scheduler

OpenOS is the kernel scheduler developed as part of the
OpenWSN project. Hardware and timer interrupts order
tasks based on priority and push them onto a task list. As
long as there are tasks in the list, the scheduler calls the
callback associated with each task and removes (“pops”)
the task from the list. When no more tasks are present,
the scheduler switches the micro-controller to a deep sleep
state, waiting for an interrupt to push a new task into the
list. OpenOS is non-preemptive, i.e. tasks do not interrupt
one another. The OpenWSN stack is not directly tied to
the OpenOS scheduler, and the stack can be run as part of
a different operating system.

4.4. 6LoWPAN Low-Power Border Router

OpenWSN implements 6LoWPAN, a specification which
allows individual motes to have a globally-addressable
IPv6 address without having to carry the full 40-byte IPv6
header in each short 127-byte IEEE802.15.4 frame. All
the packets in the low-power mesh contain a 6LoWPAN
header. To communicate with the IPv6 Internet, OpenWSN
implements a Low-power Border Router (LBR), which
inflates 6LoWPAN headers into IPv6 headers for packets
going from the low-power mesh into the Internet, and
compresses headers coming in. The LBR implementation
is done in Python, and runs on any Linux computer.

4.5. OpenVisualizer Debug Platform

The OpenVisualizer is a Python-based debugging and
visualization program which runs on a PC and interacts
with the OpenWSN motes connected to it. It communicates
with each connected mote over the serial port and displays
relevant network information, such as showing the internal
states of each mote on the network (connectivity, neighbor
tables, queue states), displaying the multi-hop connectivity
graph, displaying low-level error/debug codes generated
by the motes, and interacting with the applications running
on the mote. Written in Python, it is designed to be OS-
independent, and can be set up to run on any computer
supporting a serial interface. The software can also be
used to a remote manager, by providing its IP address.
OpenVisualizer is also used to facilitate IPv6 functionality,
by allowing the user to connect to an LBR. Aside from
providing a visualization framework, OpenVisualizer is
comprised of a modularized Python framework, which can
be used easily to write powerful client-side applications
which interface with the network.

4.6. OpenSim PC-based Simulator

As depicted in Fig.2, functions which interact directly with
the hardware are grouped into a platform’s “Board Support
Package” (BSP). There is one BSP per supported platform;

BSP BSP BSP

Simulation Core

Propagation Model

timeline

now event event event

(Python process)

regular
OpenWSN

stack

BSP
"passthrough"

emulated mote
(C process)

TCP

regular
OpenWSN

stack

BSP
"passthrough"

emulated mote
(C process)

regular
OpenWSN

stack

BSP
"passthrough"

emulated mote
(C process)

TCP TCP

Figure 4. Architecture of the OpenSim Simulator.

the remainder of the code (the vast majority) is shared
among all. OpenWSN comes with a special BSP which
emulates the behavior of the hardware on a regular PC.
That is,it is possible to build the OpenWSN stack and
applications, and emulate a full network on Windows
or Linux.

Running multiple emulated motes is done by connecting
them to a simulation core that handles concurrency
between the emulated devices and the propagation of
packets. This simulation framework is called OpenSim and
is shown in Fig.4.

Each emulated mote (compiled C code) runs as a
process on the host PC and communicates with the
simulation core (written in Python) over a TCP session.
When an OpenSim environment is started, the simulation
core is initialized, and as many emulated mote processes
are started as there are motes in the simulated network.
When it boots, an emulated mote connects to the
simulation core, which instantiates an object representing
that mote’s BSP. When the stack in the emulated mote calls
a BSP function, this translates into a remote procedure
call from the emulated mote to the simulation core, which
executes the BSP function.

The simulation core and emulated motes execute code
synchronously. That is, as long as the simulation core has
not returned from the BSP call, the emulated mote does
not continue executing code. This enables the simulation
core to “pause” execution of any emulated mote at any
given time, and as a consequence to coordinate concurrent
execution between the different motes.

The simulation core is a discrete-event simulator: it
contains a timeline which consists of a number of events

Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd. 7
DOI: 10.1002/ett
Prepared using ettauth.cls



OpenWSN: Standards-Based Low-Power Wireless T. Watteyne, X. Vilajosana, B. Kerkez et al.

to happen in the future, and the code to execute at each.
An event is typically the expiration of a hardware timer
on an emulated mote. During a simulation, the execution
of a BSP call causes more events to be pushed onto the
timeline for execution in the future; the simulation core
then consumes the events one after another.

When developing code in OpenWSN, the OpenSim
environment is complementary to running code on real
platforms. Each emulated BSP contains a model of the
crystal used as a clock source, so that drift between motes
can be modeled. Because of the architecture of OpenSim, it
is possible to “freeze” the execution of the whole network,
at any time, including with the help of complex triggers.
Given that all emulated motes are connected via TCP, it
is also possible to run OpenSim in tandem with a real
WSN, thus allowing real-world motes to communciate
with virtual motes over the Internet.

5. STACK EVALUATION

5.1. IEEE802.15.4e State Machine

In an IEEE802.15.4e network, time is sliced up into slots.
In each slot, the mote transmits, receives, or sleeps. When
transmitting or receiving, it needs to precisely time when to
transmit and listen for a packet to maintain synchronization
accuracy. Figs.5and6present a simplified state machine∗∗

of a transmit and receive slot, respectively.
A transmitting mote has to send a data packet exactly

TsTxOffset after the beginning of the slot. As described
in Section5.2, this is used for the receiving mote to be
able to evaluate how out-of-sync it is from the transmitter.
TsTxOffset is set to4ms in OpenWSN.

The slot needs to be long enough for the transmitter to
be able to send the longest frame 127 bytes, and receive
an acknowledgment. All OpenWSN platforms feature a
radio chip which is separate from the micro-controller,
those chips communicate with one another using an
SPI interface. The TelosB platform has the slowest SPI
interface, and takes 2.5ms to transfer the 127 bytes of
a packet from the micro-controller to the radio. To be
compatible with this “slow” platform, the slot duration for
all platforms is set to15ms.

Within a single slot, the (full) transmit and receive
state machine consists of 9 states. At each state, the
micro-controller has to perform atomic tasks, such
as communicating with the radio and scheduling the
expiration of a hardware timer. The associated code of
these states executes in interrupts context on the micro-
controller, without intervention from the scheduler.

∗∗As an online addition to this paper, the complete state machine is described at
http://openwsn.berkeley.edu/wiki/TschFsm.

start of TX slot

load packet in radio

set frequency

wait for TsTxOffset

send packet

listen for ACK

ack received?

remove packet
from queue

maximum
retransmissions

reached?

yes no

declare
failed

yes

end of TX slot

no

Figure 5. Simplified State Machine of a IEEE802.15.4e transmit
slot.

start of RX slot

set frequency

start listening

data received?

send ACK

yes no

end of RX slot

Figure 6. Simplified State Machine of a IEEE802.15.4e
reception slot.

5.2. Achieving Synchronization

Fig.7 shows a screen capture of a logic analyzer connected
to visualization pins on a TelosB and a GINA board
participating in the same network. The front part is a
“zoomed-in” version of the slot around time 0 in the back
portion.

Three types of activity are depicted: theradio bar
is present when the radio is on, either transmitting or
receiving; thetask and isr bars indicate when the
micro-controller is executing code, in task and interrupt
mode, respectively. Slots are indicating by alternating
shading; each is15ms long.

The schedule the motes follow consist of 9 slots, slots
0 and 1 are used for communicating, slots 2 and 5-8 are
used for serial communication. Each byte exchange over

8 Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls

http://openwsn.berkeley.edu/wiki/TschFsm


T. Watteyne, X. Vilajosana, B. Kerkez et al. OpenWSN: Standards-Based Low-Power Wireless

−50 0 50 100 150 200 250
Time (ms)

isr

task

radio

isr

task

radio

8.522 ms

1.434 ms

20.67 ms

28.176 ms

0.476 ms

19.046 ms

Te
lo

sB
G

IN
A

0 5 10 15
Time (ms)

isr

task

radio

isr

task

radio

0.916 ms

1.23 ms

7.046 ms

4.272 ms

0.206 ms

6.014 ms

d
a
ta

a
ck

guard time

desync.

load data

read data

resync.

Figure 7. Witnessing a TelosB and a GINA mote resynchronize on a logic analyzer.

the serial port triggers an interrupt on the micro-controller,
yielding a “train” ofisr activity.

The front part of Fig.7 is a zoomed-in version of
a slot in which the TelosB mote sends a packet to the
GINA mote. At the beginning of the slot, the motes are
slightly desynchronized because of clock drift. the TelosB
mote starts by loading the packet to send into its radio;
which it will sendTsTxOffset into the slot. The GINA
mote starts listening “guard time” early, to account for a
possible drift. The GINA timestamps the instant it starts
receiving the data packet, and sees that it has received it a
bit late. After reading the packet out of its radio buffer, it
prepares the acknowledgment packet and indicates, in one
of the fields of this packet, how late it received the packet.
The GINA mote then sends the acknowledgment packet,
which the TelosB receives. The TelosB then reads the
time update field from the acknowledgment, and applies
it to its slot length. The end of the slot on the GINA and
TelosB platforms happens synchronously: the motes have
resynchronized.

Motes which are already part of the network use the first
slot of their superframe to transmit advertisement packets
(ADV ). These packets contain enough information to
allow a new mote to synchronize to this newfound “parent”
and thereby “join” the network. When a new mote is
switched on, it leaves its receiver listening on a specific
channel forADV packets. When it receives thisADV
packet, it aligns its superframe to that of the overall
network and thus synchronizes to this network. From that
moment on, it follows a schedule and only turns its radio
on in communicating slots.

Motes sendADV packets with a probability of
1/N , with N its number of neighbors. This mitigates
the probability of two ADV packets being sent
simultaneously and colliding. Because the network uses
channel hopping, subsequentADV s are sent on different
channels, and eventuallyADV s are sent on all available
frequency channels. After turning its receiver on, it takes a
mote at mostnumChannels · len(superframe) to join
the network. If using a superframe of 101 slots, slots of

15ms and communication on 16 channels, it takes a mote
at most24s to synchronize to the network.

Once they have joined the network, motes need to
keep synchronized. At the hardware level, motes use a
crystal oscillator to keep track of time, the frequency
of which changes slightly over manufacturing conditions,
temperature and supply voltage. The result is that motes
“drift” in time one with respect to another. A drift of 10
parts per million (ppm) is typical; that is, one second after
synchronizing, the time on two different motes may differ
by up to20µs (if one mote is10ppm fast and the other
10ppm slow). To allow for a slight de-synchronization,
motes start listening a bit early to their neighbor; this time
buffer is called the “guard time”.

Every time motes communicate, the receiver evaluates
how offset it is from the sender by timestamping the
reception of a packet, and comparing that to the theoretical
TsTxOffset (see Section5.1). It then either adjusts
its clock, or asks the sender to adjust its clock. This
resynchronization needs to happen periodically, since
motes continuously drift with respect to each other;
resynchronization results in resetting the time offset
between the sender and receiver. All packets exchanged
between two nodes are used to resynchronize, including
data packets. If the link between two motes is used to
transmit data frequently, resynchronization thus comes
“free”.

However, in low throughput networks there may occur
prolonged periods of silence between two motes. This
causes their clocks to offset too much, thus causing de-
synchronization. If this event occurs, the mote will have
to attempt to join the network again in order to regain
synchronization. Avoiding this, and in the absence of
data packets, consists of motes periodically transmitting
KeepAlive packets to one another. These packets contain
no payload, and are used solely for synchronization. The
frequency of transmission of such packets depends on the
motes’ clock drift and the value of the mote’sguardtime.

For example, if a mote expects to receive a packet4ms
into its slot, it turns its radio on1ms early, and turns its
radio off 1ms after the4ms mark in case it has not yet

Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd. 9
DOI: 10.1002/ett
Prepared using ettauth.cls



OpenWSN: Standards-Based Low-Power Wireless T. Watteyne, X. Vilajosana, B. Kerkez et al.

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Clock Drift (ppm)

R
es

yn
ch

ro
ni

za
tio

n 
du

ty
 c

yc
le

 (
%

)

0 10 20 30 40
10

20

30

40

50

60

70

80

90

100

R
es

yn
ch

ro
ni

za
tio

n 
pe

rio
d 

(s
)

Figure 8. Maximum resynchronization period (dashed line) and
minimum achievable duty-cycle (solid line) as functions of clock
drift. Using higher-quality, lower-drift clock sources reduces the
need to resynchronize, thus saving energy through a lower

resynchronization duty cycle.

started receiving a packet. Motes need to exchange (data
or KeepAlive) packets often enough that they never drift
outside of this2ms window. (1) can be used to calculate
the maximum resynchronization period.

MaxResyncPeriod =
guardtime

drift
(1)

With a guardtime of 1ms, and a 10ppm clock
drift, clocks on the two motes will drift outside of
their guard time50s after having last communicated.
Fig. 8 shows a plot of the resynchronization period
(seconds betweenKeepAlive packets) as a function of
the clock drift (ppm) assuming a1ms guardtime. In
the OpenWSN implementation, with a10ppm clock drift,
if no data packets are transmitted for prolonged periods,
KeepAlive packets are generated every30s to maintain
synchronization.

In the absence of other traffic, motes keep-alive to one
another periodically to remain synchronized. This results
in an incompressible radio duty cycle, i.e. the minimum
duty cycle an OpenWSN network can achieve. In an
OpenWSN network, to exchange a keep-alive message and
its ACK, the transmitter and receiver have their radio on
for 5ms. Since this happens every30s, this results in a
duty cycle of5ms/30s=0.02%.

Fig. 8 depicts the resynchronization duty-cycle as a
function of the clock drift. A mote equipped with a30ppm
clock source will require a re-synchronization duty-cycle
of 0.04%.

5.3. Code Footprint

The code footprint is the amount of flash and RAM
memory the OpenWSN system occupies. This includes
the BSP, the stack and the default sample applications.
TableIII lists the footprint on the different platforms, and

indicates how much space is left for custom applications
utilizing the OpenWSN stack.

5.4. Power Consumption

Fig. 9 shows the current consumption during two slots
for the four OpenWSN platforms, as read from an
oscilloscope. A reception (RX) slot starts at time0ms. The
second slot (15ms later) is a transmission (TX) slot. Within
an RX slot, the mote keeps the radio listening for the guard
time. If nothing is received after the guard time, the radio
is turned off. In a TX slot, the packet is first loaded in
the radio’s transmit buffer;TsTxOffset into the slot, the
radio transmits the packet. The radio is turned on at the end
of the slot to receive the ACK packet.

The LPC platform can not be clocked exclusively from
an external32kHz crystal, and requires that its main clock
tree remains on to keep an accurate sense of time. Running
this clock tree on consumes a significant amount of power,
which explains the offset in power consumption of this
platform.

The remaining platforms can be clocked from an
external crystal, and therefore have a very low idle
current. The GINA and K20 platforms use the same Atmel
AT86RF231 radio chip, and therefore consume roughly
the same amount of energy (14mA when listening, 17mA
when transmitting at 0dBm). The TelosB platform uses the
older Texas Instruments CC2420 radio, which consumes
slightly more (19mA receiving, 25mA transmitting at
0dBm).

Transmitted packets are of variable size, depending on
whether they are (short) keep-alive packets or (long) CoAP
messages. The time it takes to send the a packet is therefore
variable, as shown in Fig.9.

Fig. 10 shows the current consumption of a TelosB
platform, as it executes the schedule shown in Fig.7. In
particular, radio activity accounts for most of the current
drawn; in slots 0 and 1, the mote is listening. The micro-
controller wakes up for a short amount of time at each new
slot, which explains the associated current draw. Finally,
the “train” of activity in slots 2 and 5-8 is due to the activity
on the serial port.

The extremely low duty-cycle achievable by
IEEE802.15.4e not only translates in prolonged lifetimes
for battery-powered devices, but also enables a new
range of applications with motes running from energy
scavenging power sources [22]. In [23], the authors power
GINA motes running the OpenWSN protocol stack from
power-line energy scavengers. These scavengers, depicted
in Fig. 11, center around a transformer which picks up the
magnetic field emitted by a current-supplying AC line,
and convert it to a DC voltage supply which powers the
GINA mote. The scavenging device is placed around the
primary prong of an appliance’s electrical plug. When the
appliance is turned on and draws 10A (at 110 VAC and
60Hz) or more through the line, the scavenger can supply
the 68µA average current needed to operate the GINA
mote. The GINA mote runs the OpenWSN stack depicted

10 Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls



T. Watteyne, X. Vilajosana, B. Kerkez et al. OpenWSN: Standards-Based Low-Power Wireless

Table III. Code Footprint of the OpenWSN Stack and Applications.

GINA TelosB LPC K20

toolchain IAR IAR CodeRed CodeWarrior

OpenWSN footprint
flash 31428 bytes 33185 bytes 70944 bytes 57224 bytes
RAM 3831 bytes 3696 bytes 4432 bytes 4000 bytes

available space
flash 87356 bytes (74%) 15967 bytes (32%) 453344 bytes (86%) 204920 bytes (78%)
RAM 4361 bytes (53%) 6544 bytes (64%) 61104 bytes (93%) 61536 bytes (94%)

−5 0 5 10 15 20 25 30
0

50

100

150

Time (ms)

C
ur

re
nt

 (
m

A
)

 

 

LPC
GINA
TelosB
K20

Figure 9. Current draw of the different OpenWSN platforms, as read from an oscilloscope.

0 20 40 60 80 100 120
Time (ms)

isr

task
15.718 ms

0.116 ms
0 20 40 60 80 100 120

0

5

10

15

20

25

cu
rr

e
n
t 

(m
A

)

slot 0 slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7 slot 8

Figure 10. Current draw and CPU activity in a 9-slot frame on
the TelosB platform. The mote is listening in slots 0 and 1, and

sending data over its serial port in slots 2, 5, 6, 7, 8.

in Fig. 2; each mote generates a measurement every2s
which it transmits to a CoAP enable data server on the
Internet, as shown in Fig.1.

Future directions of OpenWSN aim at optimizing the
energy consumption through power control of nodes in the
overall network [24]. This can be achieved by improving
the routing metrics of RPL. Yet, mitigating the hot
spot problem in well connected networks through energy
or load balancing techniques needs further exploration
[25][26].

6. CONCLUSION

OpenWSN is an open-source implementation of a fully
standards-based protocol stack, with as foundation the new
IEEE802.15.4e “Time Synchronized Channel Hopping”
standard. Because motes are synchronized, they can wake

Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd. 11
DOI: 10.1002/ett
Prepared using ettauth.cls



OpenWSN: Standards-Based Low-Power Wireless T. Watteyne, X. Vilajosana, B. Kerkez et al.

Figure 11. GINA platform connected to contact-less (“plug-
through”) power line energy scavenger and consuming 68µA

average. Uses OpenWSN and CoAP to report current usage
every 2 seconds to a server on the Internet.

up only when they need to transmit or receive. And
while motes need to periodically communicate to keep
synchronized when the network is idle, this overhead
is extremely small: about 0.02% radio duty cycle in an
OpenWSN network.

On top of IEEE802.15.4e, OpenWSN implements
Internet-of-Things related standards such as 6LoWPAN
(which makes each mote globally addressable on the
Internet) and CoAP (which turns each mote into a web
server and a web browser). The resulting protocol stack,
combining ultra-low power, high reliability, and Internet
connectivity, will be key to the capillary and cellular
Machine-to-Machine revolution [27][28].

The protocol stack implementation is based entirely
on C, can be built with any tool chain which supports
the target platform. OpenWSN has been ported to 4 off-
the-shelf platforms, as well as a PC port, which allows
an OpenWSN network to be emulated on a computer.
OpenWSN is, to the best of our knowledge, the first open-
source implementation of the IEEE802.15.4e standard.

ACKNOWLEDGEMENTS

Xavier Vilajosana is funded by the Spanish Ministry of
Education under Fullbright-BE grant (INF-2010-0319).

REFERENCES

1. 802.15.4e-2012: IEEE Standard for Local and
metropolitan area networks–Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs)
Amendment 1: MAC sublayer 16 April 2012.

2. 802.15.4-2006: IEEE Standard for Information
technology, Local and metropolitan area networks,
Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (WPANs) 2006.

3. Bachir A, Dohler M, Watteyne T, Leung K. Mac
essentials for wireless sensor networks.Commu-
nications Surveys Tutorials, IEEE quarter 2010;

12(2):222 –248.
4. Ganeriwal S, Kumar R, Srivastava MB. Timing-

Sync Protocol for Sensor Networks.Conference
on Embedded Networked Sensor Systems (SenSys),
ACM: Los Angeles, California, USA, 2003; 138–
149.

5. Pister KSJ, Doherty L. TSMP: Time Synchronized
Mesh Protocol.IASTED International Symposium
on Distributed Sensor Networks (DSN), Orlando,
Florida, USA, 2008.

6. WirelessHART Specification 75: TDMA Data-Link
Layer 2008. HCFSPEC-75.

7. Doherty L, Lindsay W, Simon J. Channel-Specific
Wireless Sensor Network Path Data.International
Conference on Computer Communications and
Networks, IEEE: Turtle Bay Resort, Honolulu,
Hawaii, USA, 2007.

8. Hui J, Thubert P. Compression Format for IPv6
Datagrams over IEEE 802.15.4-Based Networks
September 2011.

9. Watteyne T, Molinaro A, Richichi MG, Dohler M.
From manet to ietf roll standardization: A paradigm
shift in wsn routing protocols.IEEE Communications
Surveys and Tutorials 2011;13(4):688–707.

10. Shelby Z, Hartke K, Bormann C, Frank B.
Constrained Application Protocol (CoAP) 12 March
2012.

11. Mehta A, Pister K. WARPWING: A Complete
Open-Source Control Platform for Miniature Robots.
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2010.

12. Hill J, Szewczyk R, Woo A, Hollar S, Culler
D, Pister K. System Architecture Directions for
Networked Sensors.SIGOPS Oper. Syst. Rev. Nov
2000;34(5):93–104, doi:10.1145/384264.379006.

13. Ye W, Heidemann J, Estrin D. An Energy-Efficient
MAC Protocol for Wireless Sensor Networks.Pro-
ceedings 21st International Annual Joint Conference
of the IEEE Computer and Communications Soci-
eties, New York, New York, USA, 2002.

14. Hui J, Culler D. Extending IP to Low-Power, Wire-
less Personal Area Networks.Internet Computing,
IEEE july-aug 2008;12(4):37 –45, doi:10.1109/MIC.
2008.79.

15. Dunkels A, Gronvall B, Voigt T. Contiki - a
Lightweight and Flexible Operating System for Tiny
Networked Sensors.Proceedings of the First IEEE
Workshop on Embedded Networked Sensors (Emnets-
I), Tampa, Florida, USA, 2004.

16. Dunkels A, Schmidt O, Voigt T, Ali M. Protothreads:
Simplifying Event-Driven Programming of Memory-
Constrained Embedded Systems.Proceedings of the
Fourth ACM Conference on Embedded Networked
Sensor Systems (SenSys 2006), Boulder, Colorado,
USA, 2006.

17. Dunkels A. The ContikiMAC Radio Duty Cycling
Protocol. Technical Report T2011:13, Swedish

12 Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls



T. Watteyne, X. Vilajosana, B. Kerkez et al. OpenWSN: Standards-Based Low-Power Wireless

Institute of Computer Science Decembers 2011.
18. Ko J, Eriksson J, Tsiftes N, Dawson-Haggerty

S, Terzis A, Dunkels A, Culler D. ContikiRPL
and TinyRPL: Happy Together.Proceedings of the
workshop on Extending the Internet to Low power
and Lossy Networks (IPSN 2011), Chicago, IL, USA,
2011.

19. Braun T, Voigt T, Dunkels A. TCP Support for Sensor
Networks. IEEE/IFIP WONS 2007, Obergurgl,
Austria, 2007.

20. Kovatsch M, Duquennoy S, Dunkels A. A Low-
power CoAP for Contiki.Proceedings of the IEEE
Workshop on Internet of Things Technology and
Architectures, Valencia, Spain, 2011.

21. Osterlind F, Dunkels A, Eriksson J, Finne N, Voigt
T. Cross-level Simulation in COOJA.Proceedings
of the European Conference on Wireless Sensor
Networks (EWSN), Poster/Demo session, Delft, The
Netherlands, 2007.

22. Alvarado U, Juanicorena A, Adin I, Sedano B,
Gutierrez I, de No J. Energy Harvesting Technologies
for Low-Power Electronics.Transactions on Emerg-
ing Telecommunications Technologies 2012; doi:10.
1002/ett.2529.

23. Stanislowski D. Energy Harvesting for Wireless
Power Monitoring - Implementing a Low Power, Low
Data Rate Wireless Network (OpenWSN). Master’s
Thesis, EECS Department, University of California,
Berkeley June 2012.

24. Bravos G, Kanatas AG. Integrating power control
with routing to satisfy energy and delay constraints
in sensor networks.European Transactions on
Telecommunications 2009; 20(2):233–245, doi:10.
1002/ett.1248.

25. Ishmanov F, Malik AS, Kim SW. Energy con-
sumption balancing (ecb) issues and mechanisms in
wireless sensor networks (wsns): a comprehensive
overview. European Transactions on Telecommuni-
cations 2011;22(4):151–167, doi:10.1002/ett.1466.

26. Vilajosana X, Llosa J, Pacho JC, Vilajosana I, Juan
AA, Vicario JL, Morell A. Zero: Probabilistic routing
for deploy and forget wireless sensor networks.
Sensors 2010;10(10):8920–8937.

27. Accettura N, Palattella M, Dohler M, Grieco L,
Boggia G. Standardized power-efficient & internet-
enabled communication stack for capillary m2m
networks.Proc. of IEEE Wireless Communications
and Networking Conference, WCNC, Paris, France,
2012.

28. Palattella M, Accettura N, Dohler M, Grieco L,
Boggia G. Traffic aware scheduling algorithm for
multi-hop ieee 802.15.4e networks.Proc. of IEEE
PIMRC 2012, Sydney, Australia, 2012.

Eur. Trans. Telecomms. 2013; 00:1–13 c© 2013 John Wiley & Sons, Ltd. 13
DOI: 10.1002/ett
Prepared using ettauth.cls


	1 Introduction
	2 Protocol Stack and Use Cases
	2.1 Abstractions
	2.2 Inside the Stack
	2.3 Use Cases

	3 Related Products and Projects
	3.1 Related Commercial Products
	3.2 Related Open-Source Operating Systems

	4 OpenWSN Platforms and Tools
	4.1 Multiple Hardware Platforms
	4.2 Toolchains
	4.3 OpenOS: A Simple Scheduler
	4.4 6LoWPAN Low-Power Border Router
	4.5 OpenVisualizer Debug Platform
	4.6 OpenSim PC-based Simulator

	5 Stack Evaluation
	5.1 IEEE802.15.4e State Machine
	5.2 Achieving Synchronization
	5.3 Code Footprint
	5.4 Power Consumption

	6 Conclusion

