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ABSTRACT

The OpenWSN project is an open-source implementation of a fully standards-based protocol stack for capillary net-
works, rooted in the new IEEE802.15.4e Time Synchronized Channel Hopping standard. IEEE802.15.4e, coupled with
Internet of Things standards, such as 6LoWPAN, RPL and CoAP, enables ultra-low-power and highly reliable mesh net-
works, which are fully integrated into the Internet. The resulting protocol stack will be cornerstone to the upcoming
machine-to-machine revolution.

This article gives an overview of the protocol stack, as well as key integration details and the platforms and tools devel-
oped around it. The pure-C OpenWSN stack was ported to four off-the-shelf platforms representative of hardware currently
used, from older 16-bit microcontroller to state-of-the-art 32-bit Cortex-M architectures. The tools developed around the
low-power mesh networks include visualisation and debugging software, a simulator to mimic OpenWSN networks on a
PC, and the environment needed to connect those networks to the Internet.

Experimental results presented in this article include a network where motes operate at an average radio duty cycle
well below 0.1% and an average current draw of 68 �A on off-the-shelf hardware. These ultra-low-power requirements
enable a range of applications, with motes perpetually powered by micro-scavenging devices. OpenWSN is, to the best of
our knowledge, the first open-source implementation of the IEEE802.15.4e standard. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The Internet of Things and machine-to-machine revolu-
tions are quietly coming, and with them is an epochal
turning point in the way people interact with the ‘things’
surrounding them: appliances in a smart home, snow-level
sensors in a smart ski resort, overflow sensors in a smart
refinery and so on. Standardisation bodies are playing a
key role in this revolution. Different working groups are
finalising the protocols running at different levels of this
communication stack, and the stack depicted in Figure 2
is becoming the de facto protocol stack for tomorrow’s
capillary networks.

At the foundation of this protocol stack is the new
IEEE802.15.4e [1] ‘Time Synchronized Channel Hopping’
standard, which achieves high reliability through frequency

agility (channel hopping) and low power through tight time
synchronisation. IEEE802.15.4e is the new medium access
control (MAC) for the IEEE802.15.4 standard.

The OpenWSN project* offers a free and open-source
implementation of this protocol stack and the surround-
ing debugging and integration tools, thereby contributing
to the overall goal of promoting the use of low-power wire-
less mesh networks. It is, to the best of our knowledge,
the first open-source implementation of the IEEE802.15.4e
standard. The OpenWSN stack has been ported to four off-
the-shelf platforms. It includes the ability to connect the
network to the Internet Protocol version 6 (IPv6) Internet
and to simulate a complete network on a PC.

*http://openwsn.berkeley.edu/
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One of the goals of the OpenWSN project is to investi-
gate the use of IEEE802.15.4e in Internet-connected low-
power mesh networks. It shows how, contrary to common
belief, IEEE802.15.4e (and, more generally, time synchro-
nized channel hopping protocols) can be implemented on
off-the-shelf platforms, without the need of dedicated hard-
ware. This article presents implementation results of this
protocol on four different platforms, using a range of
16- and 32-bit microcontrollers and radios. Moreover,
OpenWSN is a ‘pure C’ implementation, that is, no exten-
sions to the C language are needed. It is therefore not tied
to any specific tool chain. The IEEE802.15.4e implemen-
tation runs in interrupt context for timing accuracy and
is independent from the operating system running on the
mote. This implementation can therefore easily be ported
to other operating systems. Finally, it implements, on top
of IEEE802.15.4e, Internet of Things standards such as
IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN), Routing Protocol for Low Power and Lossy
Networks (RPL) and Constrained Application Protocol
(CoAP), enabling an OpenWSN network to connect seam-
lessly to the IPv6 Internet. Figure 1 depicts regular use
cases of this protocol stack.

This article highlights its contributions and positions the
OpenWSN project within related products and projects.
Section 2 gives an overview of the protocols implemented
and highlights their applicability in several use cases.
Section 3 gives an overview of related products and (open-
source) projects in the field of low-power wireless net-
works. Section 4 presents the hardware platforms used by
the OpenWSN project, as well as the tools developed for
debugging and Internet integration. Results of a perfor-
mance evaluation of OpenWSN are presented in Section 5,
with a particular focus on synchronisation and power con-
sumption. Section 6 concludes the paper and presents the
features to be included in future releases of OpenWSN.

2. PROTOCOL STACK AND
USE CASES

Figure 2 depicts the protocol stack implemented in Open-
WSN. This protocol stack is based entirely on Internet of
Things standards. This section highlights the key aspects

of these protocols and indicates the type of use cases
they enable.

2.1. Abstractions

The OpenWSN stack utilises abstraction at two levels. The
Berkeley Socket Abstraction was developed as part of the
Berkeley Software Distribution operating system develop-
ment; it has been adopted by all operating systems, and it
is at the heart of today’s Internet. It considers that applica-
tions on two Internet hosts communicate through a socket,
which is uniquely identified by the IP addresses of the
hosts and the two ports corresponding to each applica-
tion. The OpenWSN stack respects this abstraction, so that
developing an application on top of the OpenWSN stack
is very similar to developing an application on a regular
Internet host.

The Hardware Abstraction consists in grouping all func-
tions accessing the hardware (i.e. the functions that write
to the registers) into a group of files called the ‘board sup-
port package’ (BSP). This allows the vast majority of the
code to be shared among all platforms. There is one BSP
per supported platform; the remainder of the stack code is
shared between all implementations.

2.2. Inside the stack

The underlying radio technology of virtually all low-power
wireless solutions is the IEEE802.15.4-2006 [2] standard,
a ‘double’ standard defining both the physical layer (mod-
ulation, datarate, transmission power, etc.) and a stan-
dard MAC layer (how to arbitrate access to the wireless
medium). This historical MAC protocol has suffered from
two major flaws [3].

The first flaw is that a wireless device does not know
a priori when its neighbors will transmit data, so it must
leave its radio on to listen for incoming communications.
Readily available, IEEE802.15.4 radios draw 5–30 mA of
current while listening. If persistently kept on, such a radio
drains a set of AA batteries in about a week. The second
flaw of existing MAC layers relates to frequency diversity.

Figure 1. Use cases for an OpenWSN network. IPv4, Internet Protocol version 4; IPv6, Internet Protocol version 6.
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Figure 2. The OpenWSN protocol stack. Identification (ID), TCP, Transmission Control Protocol; UDP, User Datagram Protocol; CoAP,
Constrained Application Protocol; IPv6, Internet Protocol version 6; RPL, Routing Protocol for Low Power and Lossy Networks;

ICMPv6, Internet Control Message Protocol version 6; 6LowPAN, IPv6 Low-Power Wireless Personal Area Network.

Although IEEE802.15.4-compliant devices can switch fre-
quencies, the historical MAC protocol specifies operating
on only one frequency at a time. Unlike systems employing
frequency diversity, the historical MAC is prone to external
interference and multi-path fading. External interference
is especially bothersome in the unlicensed 2.4-GHz band,
shared with WiFi and Bluetooth, among others. Multi-path
fading is the phenomenon whereby several ‘echoes’ of the
same signal destructively interfere at the receiver. Realis-
tic examples often occur indoors, where reflections from
walls, furniture and people interact unpredictably, some-
times to the extent that a receiver cannot receive even
strong signals sent from a nearby transmitter.

The IEEE802.15.4e standard replaces the historical
MAC protocol, without changing the underlying physi-
cal layer. Thus, it can be implemented as a ‘software
update’ in already existing IEEE802.15.4 devices. In an
IEEE802.15.4e network, time is sliced up into time slots,
and motes synchronise to each other. A superframe con-
sists of a number of slots (typically tens to a few thousand
slots) that repeats over time. A schedule indicates to a mote
what action to take in each slot of the superframe: trans-
mit, receive or sleep. Modifying this schedule allows for
a clean trade-off between latency, network throughput and
power consumption. Finally, each slot is assigned a channel
offset, translating into a different frequency each time the

superframe repeats. While motes retain the same schedule,
each (re)transmission takes place on a different frequency.
This technique, known as ‘channel hopping’, is commonly
used to combat external interference and multi-path fading.

Time Synchronized Channel Hopping has not been
introduced by IEEE802.15.4e, as it is also the MAC
technology underlying to Timing-Sync Protocol for
Sensor Networks [4], Time Synchronized Mesh Protocol
[5], Bluetooth and WirelessHART [6]. [7] reports exper-
imental results from a 45-mote network deployed for
26 days. This network, running TSMP, yielded 99.999%
end-to-end reliability and radio duty cycle well below 1%
(i.e. motes have their radio on less than 1% of the time).

6LoWPAN [8] is an adaptation layer that compacts
IPv6 headers to minimise the size of wirelessly transmit-
ted packets. Frames exchanged in an IEEE802.15.4 net-
work are, at most, 127-byte long; if the full 40 bytes
were used, it would occupy almost a third of each packet.
The 6LoWPAN specification consists of a set of rules for
analysing the IPv6 header to be included in the packet.
It removes the fields that are not needed (e.g. the ver-
sion field, because it is always the same) and compresses
other fields where feasible (e.g. the source and destination
address, because parts of it may be inferred from the net-
work’s IPv6 prefix). All packets travelling inside the low-
power mesh contain only the resulting 6LoWPAN header,
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which can be as small as 2 bytes in the most favourable
case. Because a full IPv6 header is required to support
functionality on the Internet, an OpenWSN network imple-
ments a ‘low-power border router’ (LBR), a device that
sits between the mesh and an Internet connection. The
LBR inflates 6LoWPAN headers to normal IPv6 header on
packets leaving the mesh and compacts the IPv6 headers
on incoming packets. The result is that each mote can be
assigned a unique IPv6 address and appear on the Inter-
net as a regular Internet host. This permits for client-side
applications to be developed easily, especially in cases
where users may not have much previous knowledge about
low-level WSN technologies.

RPL is used on top of 6LowPAN to maintain a rout-
ing topology. In RPL, both collection and source rout-
ing mechanisms are implemented. To collect information,
a network gradient (named destination-oriented directed
acyclic graph) is built. OpenWSN defines different met-
rics to establish that gradient being the inverse of the
probability-of-delivery ratio used by default. Source rout-
ing (downstream) is maintained by the LBR nodes keeping
a table with a route to each of the possible destinations in
the network. This table is updated periodically by destina-
tion advertisement objects that are sent upstream by all the
nodes in the network [9].

OpenWSN also supports CoAP [10], a protocol that
enables RESTful interaction with individual motes, with-
out the overhead of Transmission Control Protocol (TCP)
and verbose nature of Hypertext Transfer Protocol (HTTP).
It consists of a 4-byte header on top of the User Datagram
Protocol (UDP). A CoAP-enabled mote acts both like a
Web browser and a Web server.

2.3. Use cases

Figure 1 illustrates a typical use case and shows how an
OpenWSN network connects to the Internet. Given the
Berkeley Socket Abstraction, it is easy to implement an
application on top of the OpenWSN protocol stack to com-
municate with clients over the Internet, sample sensors and
actuate devices. Here, we present three typical use cases,
which should cover a broad set of applications.

The most common use case is data collection. A mote is
connected to a physical sensor, and an application runs on
top of the OpenWSN stack to sample that sensor and initi-
ate a transmission to the CoAP UDP port of a data server
on the Internet. Sensor data are passed to the CoAP, which
adds a header indicating which ‘resource’ these data come
from. These payloads are prepended with UDP, 6LoWPAN
and IEEE802.15.4e headers. The resulting frames are then
scheduled for transmission using the IEEE802.15.4e Time
Synchronized Channel Hopping MAC layer. When reach-
ing the edge of the network, the packets are forwarded to
the LBR, which inflates the 6LoWPAN into a full IPv6
header and transmits into the IPv6 Internet. A data server,
which listens to the well-known CoAP UDP port, receives
the data and stores them in a database, where the data can
be displayed or processed.

A second use case is to send data from the Inter-
net to an individual mote (e.g. a mote equipped with
an actuating device to control a light fixture in a smart
building). A host on the Internet has a client applica-
tion that formats CoAP commands and sends them to the
coap://ipv6::addr/light/ resource of the mote.
This packet travels over the IPv6 Internet, through the
LBR, to the edge of the mesh and is then received by the
application on the mote. The CoAP application then parses
the command to execute any necessary local commands.

More complex client–server interactions are possible
between a mote in the low-power mesh and a host on the
Internet. An Internet host can query the mote for its avail-
able resources (i.e. the list of applications running on top
of the CoAP) by querying its well-known/ resource at
coap://ipv6::addr/well-known/. This retrieves
a list of available resources, which the client can individu-
ally query to obtain the latest sensor readings or to trigger
an actuation event. It is also possible for a mote to browse
available CoAP resources on the Internet. For example, an
individual mote attached to a smart sprinkler can query the
weather forecast of a CoAP-enabled weather server on the
Internet to optimally irrigate a garden.

3. RELATED PRODUCTS
AND PROJECTS

OpenWSN is part of an ecosystem of commercial prod-
ucts and open-source projects, which gravitate around the
Internet of Things and machine-to-machine concepts. This
section gives a list of the most relevant related products
and projects, highlighting their similarities and differences
with regard to OpenWSN.

3.1. Related commercial products

Our choice to build OpenWSN was inspired in part by
the lack of commercially available platforms, which are
simultaneously highly reliable and low cost while still con-
suming little power. Table I compares OpenWSN to three
popular platforms.

A particular platform of interest is Digi’s XBee® prod-
uct line,† a module that allows an external microcontroller
to send/receive wireless packets by controlling the radio
over a simple serial interface. One variant of the mod-
ules implements the ZigBee low-power wireless stack, a
standard almost ubiquitously adopted among most wireless
chip manufacturers.‡ Figure 3 shows the measured current
profile of one such module operating as an end device (the
lowest power configuration). Note that the module tested
uses a power amplifier, significantly increasing both the

†http://www.digi.com/, presently priced at around $30
‡http://www.zigbee.org/
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Table I. Platforms for low-power mesh networking.

Hardware GINA [11] (OpenWSN) XBee-PRO ZB S2 MICAza (TinyOS) SmartMesh IPb

Upper stack CoAP ZigBee CoAP 6LoWPAN
6LoWPAN 6LoWPAN SmartMesh
RPL RPL

Medium access IEEE802.15.4e IEEE802.15.4 IEEE802.15.4 IEEE802.15.4e
TSCH CSMA/CA CSMA/CA TSCH

Sleep current 35 �A 3:5 �A 15 �A 1:2 �A
RX current (sensitivity) 11 mAc (�101 dBm) 43 mAc (�102 dBm) 19:7 mA (�94 dBm) 4:5 mA (�91 dBm)
TX current (power) 13 mAc (0 dBm) 250 mAc (17 dBm) 17:4 mA (0 dBm) 5:4 mA (0 dBm)

Comments Channel hopping, Routers cannot sleep Open source Channel hopping,
open source industrial

a Measured.
b http://www.memsic.com/.
c http://www.dustnetworks.com/.
GINA, Guidance and Inertial Navigation Assistant; IP, Internet Protocol; CoAP, Constrained Application Protocol; 6LowPAN, IPv6 over
Low-Power Wireless Personal Area Network; RPL, Routing Protocol for Low Power and Lossy Networks; TSCH, Time Synchronized
Channel Hopping; CSMA/CA, carrier sense multiple access with collision avoidance; RX, reception ; TX, transmission.
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Figure 3. Current consumption trace for one wake cycle of
a ZigBee end device (XBee-PRO S2) showing the different
power states and steps of data transmission. TX, transmission;

RX, reception.

output power and current consumption. This current profile
was taken as the device collected one analog data sample
and then transmitted it to a central coordinator.

Figure 3 shows the four different levels of power
consumption of the XBee device: awake with radio off
(approximately 10 mA), radio listening (approximately
40 mA), radio transmitting (approximately 250 mA) and
asleep (<1mA). Over the course of a sample transmission,
there are five distinct phases:

(1) the device collects one analog data sample,
(2) the radio listens to verify that the wireless medium

is free,
(3) the device sends a short message polling the coor-

dinator for queued messages and then listens for the
response,

(4) the radio sends the data sample and then listens for
an acknowledgment, and

(5) the radio goes back to sleep.

Figure 3 indicates that each data sample consumes about
3 mJ of energy; therefore, a 2600-mAh alkaline AA pri-
mary battery can supply the collection and transmission
of 4.7 million samples. A feature of ZigBee networks is
that end devices can sleep an arbitrary length of time,
consuming very little current while doing so. Thus, by
adjusting how often samples are taken, the battery life-
time of an end device can vary in a week (sampling every
600 ms), to a year (sampling every 7 s), to 8 years (sam-
pling every minute). However, a drawback, directly related
to the fact that end devices can sleep arbitrarily long inter-
vals, is that routers must always be listening for data from
end devices. A practical ZigBee deployment therefore
requires that at least one non-battery-powered router
node must be in range of every battery-powered end-
device node. This requirement is highly impractical for
a number of potential deployments, such as remote sens-
ing and environmental habitat monitoring. Devices on a
ZigBee network also only operate on a single frequency
channel and do not benefit from channel diversity. This
makes them highly susceptible to external interference and
multi-path fading. Lack of synchronisation also increases
the risk of inter-network interference. This is especially
true in dense network deployments, where nodes inter-
fere with the transmissions of their neighbors because
of the lack of an explicitly defined transmission sched-
ule. All of these concerns are however addressed through
OpenWSN’s use of the IEEE802.15.4e MAC layer.

The IEEE802.15.4e standard synchronises all nodes in
the network to within tens of microseconds. This allows
two neighbor nodes wishing to talk to wake up at the

484 Trans. Emerging Tel. Tech. 23:480–493 (2012) © 2012 John Wiley & Sons, Ltd.
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same time, thereby avoiding idle listening and significantly
reducing the radio duty cycle and improving energy con-
sumption. Router nodes know when their neighbors are
scheduled to communicate and therefore do not need to
listen all the time. The major benefit relates to achiev-
ing a long battery life for all nodes, including routing
nodes, in a scenario where providing wired electricity to
devices is not an options. This permits every node to run
on battery power for extended periods while improving
overall reliability.

3.2. Related open-source
operating systems

TinyOS is an event-driven operating system for embed-
ded devices developed at University of California
Berkeley [12]. It is implemented using a component-
oriented programming abstraction that provides code mod-
ularity and facilitates component reuse. This comes at the
cost of a larger learning curve and code complexity. It
features a non-preemptive scheduler and multiple abstrac-
tions, including communication interfaces and hardware
timer virtualisation. TinyOS has been ported to numer-
ous hardware platforms and, during the last 10 years,
served as the main platform for new research development
on communications protocols. It provides multiple MAC
layer implementations for IEEE802.15.4 networks, includ-
ing preamble sampling or low-power listening MAC [13].
One of the first well-known implementation of 6LoW-
PAN and RPL was also developed on the TinyOS Berkeley
Low-Power IP Stack [14]. Nowadays, Berkeley Low-
Power IP Stack 2.0 provides a renovated implementation of
6LoWPAN including header compression, Dynamic Host
Configuration Protocol for IPv6 for address assignment
and RPL routing. CoAP is also part of the support package
provided by the TinyOS core distribution, and it is based on
the libcoap C library. The large community around TinyOS
has created numerous add-ons providing a large amount of
tools and functionalities. There is also a TinyOS simula-
tor, TOSSIM, that enables the simulation of large networks
using TinyOS native codes.

Contiki is an open-source operating system for WSNs
and embedded devices developed at the Swedish Institute
of Computer Science [15]. It is based on a multi-tasking
non-preemptive scheduler that uses the protothreads
abstraction [16]. The use of protothreads is similar to coop-
erative scheduling, including the caveat that an execut-
ing task may starve other waiting tasks. In addition to
the operating system, Contiki includes several add-ons
and libraries providing communication functionalities. The
most relevant is the ContikiMAC [17], a carrier sense mul-
tiple access with collision avoidance preamble-sampling
MAC using periodical wake-ups to listen for packet trans-
missions from neighbors. The �IPv6 library provides
6LoWPAN and RPL [18] routing functionality. The trans-
port layer implements both UDP and a lightweight ver-
sion of TCP [19]. Contiki also implements CoAP [20],
similar to OpenWSN. Finally, the Contiki project develops

the Cooja [21] simulator, for simulating large Contiki
networks on a PC.

4. OpenWSN PLATFORMS
AND TOOLS

This section introduces the main platforms and tools that
have been developed around the OpenWSN project.

4.1. Multiple hardware platforms

OpenWSN is curently ported to four, off-the-shelf hard-
ware platforms, listed in Table II. This selection of
platforms is intended to be a representative sample of the
hardware that can readily be encountered today. TelosB is
the oldest and lowest performance platform; the K20 plat-
form is its high-end counterpart. Although TelosB is still
very popular in the academic community, more powerful
32-bit platforms microcontrollers are becoming more and
more commonplace. Note that all of the platforms pre-
sented in Table II use an external radio, communicating
with the microcontroller using serial peripheral interface
(SPI), a common serial interface.

4.2. Toolchains

Because OpenWSN is ‘pure C’, the source can be compiled
with any toolchain compatible with the target platform.
The choice of a toolchain is a complex decision, which
trades mainly debugging functionality and resulting code
size against cost.

Debugging on all hardware platforms is performed over
a Joint Test Action Group interface, that is, it is pos-
sible to place breakpoints to freeze the code execution
and inspect the value of variables and registers. We have
used the MSP–FET430UIF debugger by Texas Instruments
(Dallas, TX, USA) for the Guidance and Inertial Navi-
gation Assistant (GINA) and TelosB, the IAR (Uppsala,
Sweden)/Segger (Hilden, Germany) J-Link for the K20 and
the built-in LPC-Link for the LPC platforms.

We have used IAR workbench§ for MSP430 for the
GINA and TelosB platforms. IAR workbench is currently
one of the most commonly used integrated development
environments for embedded systems.

We have used the LPCXpresso Integrated Develop-
ment Environment, developed by Code Red¶ for NXP
(Eindhoven, The Netherlands), for the LPC platform. Its
graphical user interface front end is based on Eclipse. The
free edition has a target code size limit of 128kB, which is
enough for the OpenWSN project.

For the K20, we support the CodeWarrior Inte-
grated Development Environment||, developed by Freescale
(Austin, TX, USA). Its graphical user interface front end is

§http://www.iar.com/.
¶http://www.code-red-tech.com/.
||http://www.freescale.com/CodeWarrior/.
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Table II. Platforms running OpenWSN.

GINA TelosB LPC K20

Toolchain IAR IAR Code Red CodeWarrior

Microcontroller
Manufacturer Texas Instruments Texas Instruments NXP Freescale
Part number MSP430f2618 MSP430f1611 LPC1769 K20DX256VLL7
Architecture 16-bit 16-bit 32-bit ARM Cortex M3 32-bit ARM Cortex M4
Maximum speed 16 MHz 8 MHz 120 MHz 72 MHz
Flash 116 kB 48 kB 512 kB 256 kB
RAM 8 kB 10 kB 64 kB 64 kB

Radio
Manufacturer Atmel Texas Instruments Atmel Atmel
Part number AT86RF231 CC2420 AT86RF231 AT86RF231
Interface SPI SPI SPI SPI

GINA, Guidance and Inertial Navigation Assistant; LPC, ; SPI, serial peripheral interface.

based on Eclipse. The free edition has a target code size
limit of 64 kB, which is enough for the OpenWSN project.

For the OpenSim simulator (Section 4.6), the OpenWSN
code is compiled to run on a standard PC. We have used the
Visual Studio 2010 by Microsoft (Redmond, WA, USA)
and the gcc compiler for Linux-based systems.

4.3. OpenOS: a simple scheduler

OpenOS is the kernel scheduler developed as part of the
OpenWSN project. Hardware and timer interrupts order
tasks on the basis of priority and push them onto a task list.
As long as there are tasks in the list, the scheduler calls
the callback associated with each task and removes (pops)
the task from the list. When no more tasks are present,
the scheduler switches the microcontroller to a deep sleep
state, waiting for an interrupt to push a new task into the
list. OpenOS is non-preemptive, that is, tasks do not inter-
rupt one another. The OpenWSN stack is not directly tied
to the OpenOS scheduler, and the stack can be run as part
of a different operating system.

4.4. 6LoWPAN low-power border router

OpenWSN implements 6LoWPAN, a specification that
allows individual motes to have a globally addressable
IPv6 address without having to carry the full 40-byte IPv6
header in each short 127-byte IEEE802.15.4 frame. All
the packets in the low-power mesh contain a 6LoWPAN
header. To communicate with the IPv6 Internet, OpenWSN
implements an LBR, which inflates 6LoWPAN headers
into IPv6 headers for packets going from the low-power
mesh into the Internet and compresses headers coming in.
The LBR implementation is carried out in Python and runs
on any Linux computer.

4.5. OpenVisualizer debug platform

The OpenVisualizer is a Python-based debugging and visu-
alisation program that runs on a PC and interacts with the
OpenWSN motes connected to it. It communicates with
each connected mote over the serial port and displays rel-
evant network information, such as showing the internal
states of each mote on the network (connectivity, neighbor
tables, and queue states), displaying the multi-hop connec-
tivity graph, displaying low-level error/debug codes gen-
erated by the motes and interacting with the applications
running on the mote. Written in Python, it is designed to
be operating system-independent and can be set up to run
on any computer supporting a serial interface. The soft-
ware can also be used to a remote manager, by providing
its IP address. OpenVisualizer is also used to facilitate IPv6
functionality, by allowing the user to connect to an LBR.
Aside from providing a visualisation framework, OpenVi-
sualizer is composed of a modularised Python framework,
which can be used easily to write powerful client-side
applications that interface with the network.

4.6. OpenSim PC-based simulator

As depicted in Figure 2, functions that interact directly
with the hardware are grouped into a platform’s BSP. There
is one BSP per supported platform; the remainder of the
code (the vast majority) is shared among all. OpenWSN
comes with a special BSP, which emulates the behaviour
of the hardware on a regular PC. That is, it is possi-
ble to build the OpenWSN stack and applications, and
emulate a full network on Windows or Linux.

Running multiple emulated motes is carried out by con-
necting them to a simulation core that handles concurrency
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between the emulated devices and the propagation of pack-
ets. This simulation framework is called OpenSim and is
shown in Figure 4.

Each emulated mote (compiled C code) runs as a process
on the host PC and communicates with the simulation core
(written in Python) over a TCP session. When an OpenSim
environment is started, the simulation core is initialised,
and as many emulated mote processes are started as there
are motes in the simulated network. When it boots, an emu-
lated mote connects to the simulation core, which instanti-
ates an object representing that mote’s BSP. When the stack
in the emulated mote calls a BSP function, this translates
into a remote procedure call from the emulated mote to the
simulation core, which executes the BSP function.

The simulation core and emulated motes execute code
synchronously. That is, as long as the simulation core has
not returned from the BSP call, the emulated mote does
not continue executing code. This enables the simulation
core to ‘pause’ execution of any emulated mote at any
given time, and as a consequence, to coordinate concurrent
execution between the different motes.

The simulation core is a discrete-event simulator: it con-
tains a timeline, which consists of a number of events to
happen in the future, and the code to execute at each. An

event is typically the expiration of a hardware timer on
an emulated mote. During a simulation, the execution of
a BSP call causes more events to be pushed onto the time-
line for execution in the future; the simulation core then
consumes the events one after another.

When developing code in OpenWSN, the OpenSim
environment is complementary to running code on real
platforms. Each emulated BSP contains a model of the
crystal used as a clock source, so that drift between motes
can be modelled. Because of the architecture of Open-
Sim, it is possible to ‘freeze’ the execution of the whole
network, at any time, including with the help of complex
triggers. Given that all emulated motes are connected via
TCP, it is also possible to run OpenSim in tandem with a
real WSN, thus allowing real-world motes to communicate
with virtual motes over the Internet.

5. STACK EVALUATION

5.1. IEEE802.15.4e state machine

In an IEEE802.15.4e network, time is sliced up into slots.
In each slot, the mote transmits, receives or sleeps. When

Figure 4. Architecture of the OpenSim simulator. BSP, board support package; TCP, Transmission Control Protocol.
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Figure 5. Simplified state machine of a IEEE802.15.4e transmis-
sion (TX) slot. ACK, acknowledgement.

Figure 6. Simplified state machine of a IEEE802.15.4e recep-
tion (RX) slot. ACK, acknowledgement.

transmitting or receiving, it needs precise time when to
transmit and listen for a packet to maintain synchronisa-
tion accuracy. Figures 5 and 6 present a simplified state
machine** of a transmit and receive slots, respectively.

**As an online addition to this paper, the complete state machine is

described at http://openwsn.berkeley.edu/wiki/TschFsm.

A transmitting mote has to send a data packet exactly
TsTxOffset after the beginning of the slot. As described
in Section 5.2, this is used for the receiving mote to be
able to evaluate how out of sync it is from the transmitter.
TsTxOffset is set to 4 ms in OpenWSN.

The slot needs to be long enough for the transmitter to
be able to send the longest frame, 127 bytes, and receive an
acknowledgment. All OpenWSN platforms feature a radio
chip, which is separate from the microcontroller; those
chips communicate with one another by using an SPI. The
TelosB platform has the slowest SPI and takes 2:5 ms to
transfer the 127 bytes of a packet from the microcontroller
to the radio. To be compatible with this ‘slow’ platform,
the slot duration for all platforms is set to 15 ms.

Within a single slot, the (full) transmit and receive state
machine consists of nine states. At each state, the micro-
controller has to perform atomic tasks, such as communi-
cating with the radio and scheduling the expiration of a
hardware timer. The associated code of these states exe-
cutes in interrupts context on the microcontroller, without
intervention from the scheduler.

5.2. Achieving synchronisation

Figure 7 shows a screen capture of a logic analyser con-
nected to visualisation pins on a TelosB and a GINA
board participating in the same network. The front part
is a ‘zoomed-in’ version of the slot around time 0 in the
back portion.

Three types of activity are depicted: the radio bar is
present when the radio is on, either transmitting or receiv-
ing; the task and isr bars indicate when the micro-
controller is executing code, in task and interrupt modes,
respectively. Slots are indicated by alternating shading;
each is 15 ms long.

The schedule the motes follow consists of nine slots:
slots 0 and 1 are used for communicating, and slots 2
and 5–8 are used for serial communication. Each byte
exchange over the serial port triggers an interrupt on the
microcontroller, yielding a ‘train’ of isr activity.

The front part of Figure 7 is a zoomed-in version of a slot
in which the TelosB mote sends a packet to the GINA mote.
At the beginning of the slot, the motes are slightly desyn-
chronised because of clock drift. the TelosB mote starts by
loading the packet to send into its radio, which it will send
TsTxOffset into the slot. The GINA mote starts listen-
ing ‘guard time’ early, to account for a possible drift. The
GINA timestamps the instant it starts receiving the data
packet and sees if it has received it a bit late. After reading
the packet out of its radio buffer, it prepares the acknowl-
edgment packet and indicates, in one of the fields of this
packet, how late it received the packet. The GINA mote
then sends the acknowledgment packet, which the TelosB
receives. The TelosB then reads the time update field from
the acknowledgment and applies it to its slot length. The
end of the slot on the GINA and TelosB platforms happens
synchronously: the motes have resynchronised.
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Figure 7. Witnessing a TelosB and a Guidance Inertial and Navigation Assistant mote resynchronise on a logic analyser.

Motes that are already part of the network use the first
slot of their superframe to transmit advertisement (ADV)
packets. These packets contain enough information to
allow a new mote to synchronise to this newfound ‘par-
ent’ and thereby ‘join’ the network. When a new mote is
switched on, it leaves its receiver listening on a specific
channel for ADV packets. When it receives this ADV
packet, it aligns its superframe to that of the overall net-
work and thus synchronises to this network. From that
moment on, it follows a schedule and only turns its radio
on in communicating slots.

Motes send ADV packets with a probability of 1=N ,
with N its number of neighbors. This mitigates the prob-
ability of two ADV packets being sent simultaneously
and colliding. Because the network uses channel hop-
ping, subsequent ADV s are sent on different channels,
and eventually, ADV s are sent on all available frequency
channels. After turning its receiver on, it takes a mote at
most numChannels � len.superframe/ to join the network.
If using a superframe of 101 slots, slots of 15 ms and com-
munication on 16 channels, it takes a mote at most 24 s to
synchronise to the network.

Once they have joined the network, motes need to keep
synchronised. At the hardware level, motes use a crystal
oscillator to keep track of time, the frequency of which
changes slightly over manufacturing conditions, tempera-
ture and supply voltage. The result is that motes ‘drifts’ in
time 1 with respect to another. A drift of 10 parts per mil-
lion (ppm) is typical; that is, 1 s after synchronising, the
time on two different motes may differ by up to 20 �s (if
one mote is 10-ppm fast and the other 10-ppm slow). To
allow for a slight de-synchronisation, motes start listening
a bit early to their neighbor; this time buffer is called the
‘guard time’.

Every time motes communicate, the receiver evaluates
how offset it is from the sender by timestamping the
reception of a packet and comparing that with the theo-
retical TsTxOffset (Section 5.1). It then either adjusts
its clock or asks the sender to adjust its clock. This

resynchronisation needs to happen periodically, because
motes continuously drift with respect to each other; resyn-
chronisation results in resetting the time offset between the
sender and the receiver. All packets exchanged between
two nodes , including data packets, are used to resynchro-
nise. If the link between two motes is used to transmit data
frequently, resynchronisation thus comes ‘free’.

However, in low-throughput networks, there may occur
prolonged periods of silence between two motes. This
causes their clocks to offset too much, thus causing de-
synchronisation. If this event occurs, the mote will have
to attempt to join the network again in order to regain
synchronisation. Avoiding this, and in the absence of
data packets, consists of motes periodically transmitting
KeepAlive packets to one another. These packets contain
no payload and are used solely for synchronisation. The
frequency of transmission of such packets depends on the
motes’ clock drift and the value of the mote’s guard time.

For example, if a mote expects to receive a packet 4 ms
into its slot, it turns its radio on 1 ms early and turns its
radio off 1 ms after the 4-ms mark in case it has not yet
started receiving a packet. Motes need to exchange (data
or KeepAlive) packets often enough that they never drift
outside of this 2-ms window. Equation (1) can be used to
calculate the maximum resynchronisation period.

MaxResyncPeriodD
guard time

drift
(1)

With a guard time of 1 ms and a 10-ppm clock drift,
clocks on the two motes will drift outside of their guard
time 50 s after having last communicated. Figure 8 shows
a plot of the resynchronisation period (seconds between
KeepAlive packets) as a function of the clock drift (ppm)
assuming a 1-ms guard time. In the OpenWSN implemen-
tation, with a 10-ppm clock drift, if no data packets are
transmitted for prolonged periods, KeepAlive packets are
generated every 30 s to maintain synchronisation.
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Figure 8. Maximum resynchronisation period (dashed line) and
minimum achievable duty cycle (solid line) as functions of clock
drift. Using higher quality, lower-drift clock sources reduce the
need to resynchronise, thus saving energy through a lower

resynchronisation duty cycle.

In the absence of other traffic, motes keep-alive to one
another periodically to remain synchronised. This results
in an incompressible radio duty cycle, that is, the minimum
duty cycle an OpenWSN network can achieve. In an Open-
WSN network, to exchange a keep-alive message and its
acknowledgement, the transmitter and receiver have their
radio on for 5 ms. Because this happens every 30 s, this
results in a duty cycle of 5 ms=30 sD 0:02%.

Figure 8 depicts the resynchronisation duty cycle as a
function of the clock drift. A mote equipped with a 30-ppm
clock source will require a re-synchronisation duty cycle
of 0.04%.

5.3. Code footprint

The code footprint is the amount of flash and RAM mem-
ory the OpenWSN system occupies. This includes the BSP,
the stack and the default sample applications. Table III lists
the footprints on the different platforms and indicates how
much space is left for custom applications utilising the
OpenWSN stack.

5.4. Power consumption

Figure 9 shows the current consumption during two slots
for the four OpenWSN platforms, as read from an oscil-
loscope. A reception slot starts at time 0 ms. The second
slot (15 ms later) is a transmission slot. Within a recep-
tion slot, the mote keeps the radio listening for the guard
time. If nothing is received after the guard time, the radio is
turned off. In a transmission slot, the packet is first loaded
in the radio’s transmit buffer; TsTxOffset into the slot,
the radio transmits the packet. The radio is turned on at the
end of the slot to receive the acknowledgement packet.

The LPC platform cannot be clocked exclusively from
an external 32-kHz crystal and requires that its main clock
tree remains on to keep an accurate sense of time. Run-
ning this clock tree on consumes a significant amount of
power, which explains the offset in power consumption of
this platform.

The remaining platforms can be clocked from an exter-
nal crystal and therefore have a very low idle current. The
GINA and K20 platforms use the same Atmel AT86RF231
(San Jose, CA, USA) radio chip and therefore consume
roughly the same amount of energy (14 mA when lis-
tening and 17 mA when transmitting at 0 dBm). The
TelosB platform uses the older Texas Instruments CC2420
radio, which consumes slightly more (19 mA receiving and
25 mA transmitting at 0 dBm).

Transmitted packets are of variable size, depending on
whether they are (short) keep-alive packets or (long) CoAP
messages. The time it takes to send the a packet is therefore
variable, as shown in Figure 9.

Figure 10 shows the current consumption of a TelosB
platform, as it executes the schedule shown in Figure 7. In
particular, radio activity accounts for most of the current
drawn; in slots 0 and 1, the mote is listening. The micro-
controller wakes up for a short amount of time at each new
slot, which explains the associated current draw. Finally,
the ‘train’ of activity in slots 2 and 5–8 is due to the activity
on the serial port.

The extremely low duty cycle achievable by IEEE802.
15.4e not only translates in prolonged lifetimes for
battery-powered devices but also enables a new range
of applications with motes running from energy scav-
enging power sources [22]. In [23], the authors powered

Table III. Code footprint of the OpenWSN stack and applications.

GINA TelosB LPC K20

Toolchain IAR IAR Code Red CodeWarrior

OpenWSN footprint
Flash 31 428 bytes 33 185 bytes 70 944 bytes 57 224 bytes
RAM 3 831 bytes 3 696 bytes 4 432 bytes 4 000 bytes

Available space
Flash 87 356 bytes (74%) 15 967 bytes (32%) 453 344 bytes (86%) 204 920 bytes (78%)
RAM 4 361 bytes (53%) 6 544 bytes (64%) 61 104 bytes (93%) 61 536 bytes (94%)

GINA, Guidance Inertial and Navigation Assistant; LPC.
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Figure 9. Current draw of the different OpenWSN platforms, as read from an oscilloscope. LPC, GINA, Guidance Inertial
Navigation Assistant.

Figure 10. Current draw and CPU activity in a nine-slot frame on the TelosB platform. The mote is listening in slots 0 and 1, and is
sending data over its serial port in slots 2, 5, 6, 7 and 8.

Figure 11. Guidance Inertial and Navigation Assistant platform connected to a contact-less (plug-through) power-line energy scav-
enger and consuming 68 �A average. It uses OpenWSN and Constrained Application Protocol to report current usage every 2 s to a

server on the Internet.
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GINA motes running the OpenWSN protocol stack from
power-line energy scavengers. These scavengers, depicted
in Figure 11, centre around a transformer that picks up
the magnetic field emitted by a current-supplying AC line
and converts it to a DC voltage supply, which powers
the GINA mote. The scavenging device is placed around
the primary prong of an appliance’s electrical plug.
When the appliance is turned on and draws 10 A (at
110 VAC and 60 Hz) or more through the line, the scav-
enger can supply the 68 � �A average current needed to
operate the GINA mote. The GINA mote runs the Open-
WSN stack depicted in Figure 2; each mote generates a
measurement every 2 s, which it transmits to a CoAP-
enabled data server on the Internet, as shown in Figure 1.

Future directions of OpenWSN aim at optimising the
energy consumption through power control of nodes in
the overall network [24]. This can be achieved by improv-
ing the routing metrics of RPL. Yet mitigating the hot-
spot problem in well-connected networks through energy
or load balancing techniques needs further exploration
[25, 26].

6. CONCLUSION

OpenWSN is an open-source implementation of a fully
standards-based protocol stack, with, as foundation,
the new IEEE802.15.4e ‘Time Synchronized Channel
Hopping’ standard. Because motes are synchronised, they
can wake up only when they need to transmit or receive.
And although motes need to periodically communicate to
keep synchronised when the network is idle, this overhead
is extremely small: about 0.02% radio duty cycle in an
OpenWSN network.

On top of IEEE802.15.4e, OpenWSN implements Inter-
net of Things-related standards such as 6LoWPAN (which
makes each mote globally addressable on the Internet) and
CoAP (which turns each mote into a Web server and a Web
browser). The resulting protocol stack, combining ultra-
low power, high reliability and Internet connectivity, will
be key to the capillary and cellular machine-to-machine
revolution [27, 28].

The protocol stack implementation is based entirely on
C and can be built with any toolchain that supports the
target platform. OpenWSN has been ported to four off-
the-shelf platforms, as well as a PC port, which allows
an OpenWSN network to be emulated on a computer.
OpenWSN is, to the best of our knowledge, the first open-
source implementation of the IEEE802.15.4e standard.
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