
 
 

  

Abstract—Wireless sensors were designed which are small 
and light enough to be worn by small animals such as rats. 
These sensors are used to record three axes acceleration data 
from animals during natural behavior in a cage. The behavior 
of the animal is further extracted from the recorded 
acceleration data using neural network based pattern 
recognition algorithms. Successful recognition of eating, 
grooming and standing are demonstrated using this approach. 
Finally another potential application of this research is 
demonstrated in behavioral neuroscience by showing 
correlations between action potentials recorded from the motor 
cortex of a rat and acceleration data.   

  

I. INTRODUCTION 
ONITORING the behavior of animals in a laboratory 
setting is a topic of interest for a large number of 

researchers. Research using animal models plays a vital role 
in the development of new medicines and vaccines. 
However it is largely a manual process, so there are 
limitations on how often observations can be made, and how 
thoroughly these observations can be analyzed. Better 
monitoring could help improve the collection and analysis of 
data from animal studies and reduce the number of animals 
needed in such research. The work in this paper concentrates 
on monitoring rats but it can easily be generalized to other 
species.  

Many systems have been proposed for the recognition of 
behavioral states in the rat. One commonly used technique is 
video surveillance which has the important advantage of 
being non-intrusive. However, most current approaches 
require overhead cameras or cameras facing the long side of 
the cage [1], [2]. Most vivariums have cages stacked in close 
proximity with only the short side of the cage facing the 
outside, and implementation of such technologies would 
require significant redesign of cages and the rooms in which 
they are placed. Moreover, many of these algorithms fare 
poorly when multiple animals are present in the same cage. 
Some other approaches developed include the use of piezo 
or pressure sensors on the floor of the cage and the use of 
Continuous-wave Doppler radar (CWDR) signals to 
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discriminate animal behaviors [3]. Both technologies fare 
poorly in the presence of multiple animals in a cage which is 
the norm. Moreover it would be of great value if the system 
could monitor the activity as well as physiological quantities 
like temperature of the animal. 

The last few years has seen an explosion in sensor 
networks research with the development of many different 
hardware and software platforms; see for example the 
proceedings of SenSys, 2003 – present. Concurrently, 
advances in Micro Electro Mechanical Systems (MEMS) 
technologies have enabled the development of packaged low 
power accelerometers and other inertial sensors. In recent 
years, significant effort has been expended into making 
wireless inertial sensors small enough to enable biological 
applications. For example, Hitachi has demonstrated a 
wristband sensor node which can record the motion and 
pulse of a person and transmit it wirelessly to a base station 
[4]. This device measures 6cm x 4cm and weighs 50grams. 
Researchers have attempted analysis of animal behavior 
using inertial sensors in the past but these have been 
restricted to large systems unsuitable for small animals and 
lacking wireless telemetry capabilities [5], [6]. Ideally, the 
sensor used for small animals such as rats or mice would be 
less than 1cm3 in size and weigh less than 5grams. Wireless 
sensors at this size scale have also been demonstrated in 
recent years [7], [8]   

As a first generation device, we have built a wireless 
accelerometer which is 3cm x 2.5cm in size and weighs 
10grams. This sensor is small enough to be tested on rats. 
Three axes acceleration data has been recorded from rats and 
wirelessly transmitted to a base station using this system. 
This data can be used to record and measure the activity of 
the animal over time. Multiple animals and hence multiple 
transmitters in close proximity is not an issue so long as 
appropriate protocols are used for data transmission. Further, 
we demonstrate that various behaviors of the animal such as 
standing, eating and grooming can be extracted from this 
acceleration data using neural network based algorithms. 
Finally we demonstrate another potential application of this 
research in behavioral neuroscience by showing correlates 
between signals recorded from the motor cortex of a rat and 
acceleration data.   

II. METHODS 

A. Hardware 
As a wireless frontend, a SmartMesh mote from Dust 

Networks which contains a Radio transceiver, a 
microcontroller, analog to digital converters etc. on a single 
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board was used. This board controls the sampling of data 
from the sensors, providing accurate timestamps and 
transmission of data over the 2.4GHz frequency band. It uses 
frequency-hopping spread-spectrum communication for 
interference immunity and duty cycles components like the 
transceiver when not in use to extend battery life.  

A sensor interface was developed as a separate board 
which could be attached to the SmartMesh mote. This sensor 
board contains a three axis accelerometer (MMA7260Q, 
Freescale Semiconductor), a chip antenna (Rainsun), a 
150mAh rechargeable lithium polymer battery (Roomflight), 
voltage regulator, switch and passive components. The 
completed wireless sensor weighs 10.2grams and measures 
32mm x 25mm and is shown in Figure 1(a).  

The accelerometer can be sampled at 36samples/s using 
our current protocol. However this number can be increased 
in the future using modifications to the software. At this data 
rate, the transceiver uses approximately 600µA and the 
accelerometer approximately 500µA which gives the device 
a lifetime of over 5 days.  
 

B. Testing 
The sensor was tested on adult Sprague Dawley rats which 

weighed approximately 300grams and were 1 foot long. All 
animal procedures were approved by oversight committees 
at the University of California, Berkeley and were consistent 
with NIH and USDA regulations. The sensor was mounted 
using a specially designed vest or a rat jacket from Harvard 
Apparatus and is shown in Figure 1(b). This jacket is often 
used during behavioral training of rats and the rat 
comfortably moves around the cage with the sensor.  It was 
also verified that multiple animals in a cage with sensors did 
not disturb each other’s jackets. More long term testing is 
required to verify that the presence of the sensor does not 
significantly alter the behavior or stress level of the animal.   

The acceleration sensors measure both accelerations 
related to movements of the animal and gravitational 
acceleration (g). Figure 2 shows three axes acceleration data 
collected from a rat freely moving in a cage. Typically one 
axis shows a mean of 1g due to gravity and the other two 
axes show around 0g as we would expect. During the period 
of this recording, the rat was initially moving around the 
cage and then fell asleep and that is clearly seen from the 
acceleration data. Hence the recorded acceleration data can 
be used to obtain some quantitative measure of ‘activity’ of 
the animal and also to monitor its sleeping patterns. Clinical 

relevance of these two metrics is expected to be high and 
needs to be studied over longer trials. We would also like to 
extract periods of relevant behaviors from this acceleration 
data and this is an interesting pattern recognition problem.  

 

C. Behavior Recognition 
The behaviors which we decided to categorize were 

standing, eating and grooming. Standing is when the animal 
stands on its rear legs, eating is when the animal eats a small 
piece of food and grooming is when the animal uses its 
forearms to clean itself. Grooming is a behavior of particular 
interest since rats groom themselves to keep themselves 
clean and tend not to do so when unhealthy [9]. Hence 
length of time spent grooming each day could be a good 
indicator of well being of the animal. These three behaviors 
were manually recorded in order to train the algorithms. 
Figure 4 shows three axes acceleration as recorded from a 
rat along with recordings of its behaviors.  

32mm32mm32mm

Figure 1: (a) The 32mm x 25mm wireless accelerometer prior to 
packaging (b) The wireless sensor being tested on adult rats. 

Figure 2: Three axes acceleration data as recorded from a rat 
moving freely in a cage show that the rat was initially active and 
then fell asleep. 
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Figure 3: Behavior of the rat as 
recorded manually during 
recording of acceleration data. 
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The acceleration data used for behavior recognition was 
obtained using a wired version of the same accelerometer to 
aid in accurate time-stamping of data with respect to 
behavioral and neural data. 36 gauge wires attached to a 
multichannel commutator (Plexon Inc, Dallas Tx) were used 
to allow the animal free movement in the cage. The 
acceleration data was sampled at 20samples/sec and 
preprocessed depending on the behavior being detected. 
Eating and grooming performed best with data high-pass 
filtered at 2Hz while standing algorithms performed best 
using raw data.  

To analyze the data and recognize patterns of behavior, 
we used a supervised learning algorithm. A 2 layer neural 
network with 5 hidden units was chosen for this purpose. 
Each unit performs the computation  









= ∑

j
ijW ji xy σ , 

where yi is the output of the unit, xj are the inputs to the unit, 
Wij are the weights assigned to individual inputs and σ is a 
nonlinear (sigmoidal) function.   
 It is essential to provide the neural network with 
information regarding the frequency content of the 
acceleration data. This can either be done by performing a 
sliding window Fourier transform on the data and feeding 
this as the input or by feeding data for the current time 
instant as well as ‘n’ previous time instants.  The second 
approach showed better performance and hence was chosen. 
The recorded behavior serves as the desired answer for the 
neural network during the training period. The network was 
trained using a standard back-propagation algorithm. Other 
possible algorithms for this purpose include Independent 
component analysis (ICA), Support vector machines (SVM) 
and the K nearest neighbor algorithm. It is still an open 
question as to which algorithm is optimally suited to analyzing 
data from such inertial sensors [10].   

III. RESULTS 

A. Behavior Recognition 
Post processing involved low pass filtering and 

thresholding the neural network output and the results are 
shown in Figures 4 and 5. In both figures, the first part of the 
data was used to train the algorithm and the second part of 
the data was used to test the algorithm. In this case, the 
algorithm achieved 97% accuracy in recognition of periods 
of standing and 93% accuracy in periods of eating. This is a 
typical value of the performance of the algorithm over 
multiple trials. The performance in grooming is similar to 
that in eating.  

The performance of the algorithm is worse if it is trained 
on data from one day and its performance tested on another 
day’s data. One reason for this problem is that the sensor is 
mounted in a slightly different way each time it is taken off 
and put back on. This causes a rotation in space and 1g is 
distributed among the three axes in a different way. One 
method to reduce this problem is to mount the sensor in an 
identical fashion on the animal everyday or calibrate the 
sensor during characteristic movements. Another option is to 
use an inertial sensor which contains a 3 axes accelerometer 
and a 3 axes gyroscope, for e.g. the ADIS16350 from 
Analog Devices.  However this comes with a major power 
penalty since it consumes 48mA and significantly reduces 
the lifetime of the device.  

 

B. Applications in Behavioral Neuroscience 
A potential application of this technology is to monitor the 

behavior of animals during experiments. Behavior recording 
of animals is typically performed in a test chamber with the 
animal performing tasks such as a forelimb reach for food or 
activating an infrared sensor within a nose poke. These 
methods have some inherent limitations since they tend to 
record only part of the behavior of the animal. For example, 
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Figure 4 (a) Neural network recognition of standing  
 (b) Manually recorded periods of standing. 
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Figure 5: (a) Neural network recognition of eating  
  (b) Manually recorded periods of eating. 
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it has been shown that reach-related activity in shoulder 
muscles and shoulder movement can precede attainment of 
the goal of the movement (attaining food) by 400 ms or 
more [11]. Such analysis is of particular importance for 
studies of motor areas of the brain, if it is desired to assign 
neural activity to the pre-motor and motor phases of the task. 
Researchers typically solve this problem by designing more 
complex tasks or by using other techniques such as 
subcutaneous Electromyogram (EMG) recordings [11] or 
frame by frame video monitoring to accurately measure the 
behavior of the animal. Our goal is to develop a non invasive 
rodent monitoring system to help control for rat behavior 
during the collection of electrophysiological data that avoids 
experimenter intervention and bias. Measuring the 
acceleration of the animal during the performance of a task 
or during free behavior provides us with such a system.  

We are interested in studying the neural correlates of 
behavior. Neural signals were recorded from the 
somatosensory and motor cortices of rats using implanted 
electrodes and techniques similar to those presented in [12]. 
Figure 6 shows action potentials recorded from the motor 
cortex of a rat along with simultaneously recorded 
acceleration data. The rows above represent the firing of 
motor neurons in a rat and the traces below show the 
simultaneously recorded acceleration data. It is well known 
that neural activity in the motor cortex correlates well with 
overt movement. In the acceleration data, two periods when 
the rat was very active are visible and it can be seen that this 
correlates very well to the periods when the cells in the 
motor cortex were most active. Thus acceleration data can 
serve to provide information about the animal’s behavior 
concurrent with recorded neural data.  

IV. DISCUSSION 
Once a wireless sensor platform has been implemented, it 

is reasonably simple to add other sensors to this system. For 
example, one can add pulse sensors, temperature sensors etc 
which could be of great help to assess the health of the 
animal. By providing a vivarium-wide collection of 
continuous animal health measurements, this technology 

could aid in drug design and medical research as well as 
veterinary science and animal care in zoos and agriculture. 
Another application of this work is for the analysis of 
activity and behavior in humans. 

V. CONCLUSION 
Our work has demonstrated that wireless accelerometers 

are a viable means for monitoring overt behavior in rats. 
Overt behavior need not be limited to those we attempted to 
observe in this study nor is the application restricted to rats. 
In the future, we would like to develop smaller and lighter 
wireless sensors which will help to monitor behavior and 
vital functions in a more unobtrusive manner.  
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Figure 6: Action potentials of cells from the motor cortex of a rat 
are seen to be well correlated to acceleration values. Each row in 
the raster plot represents a cell and each vertical line represents an 
instant when the cell fired. The traces below show simultaneously
recorded acceleration data.   
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