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ABSTRACT 
An evaluation methodology is presented for the performance of 
reporting node self-selection in wireless sensor networks. Five 
cost metrics are proposed along with several methods for self- 
selection that involve little or no collaboration with other nodes. 
These costs are used to evaluate how efficiently the various 
algorithms allow for node self-selection as simulated on different 
field complexities. Analysis of different methods over 100 test 
fields sampled by 2000 nodes indicates that there is no single 
method that is superior in all respects. Trade-offs in latency and 
overall energy consumption are revealed to be highly dependent 
on the selection method and the field complexity. 

Categories and Subject Descriptors 
H. 1.1 [Models and Principles]: Systems and Information Theory 
- General Systems The0 y .  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Sensor networks, data recovery, energy measures. 

1. INTRODUCTION 
As sensor networks progress, the trend is to decentralized control 
and processing of information as Gupta and Kumar have shown 
that throughput decreases with network size [4]. Still, industrial 
interest in large-scale deployment of sensor nodes is focused on 
collecting data from a wide geographic region at a centralized 
database. The user in this paradigm is interested in visualizing a 
full representation of data gathered throughout the network and 
watching how it evolves in a periodic and timely fashion. This 
paper discusses one approach to analyzing the theoretical limits to 
obtaining such a representation in a multi-hop wireless network. 

The application domain under consideration is one where 
topological changes occur seldom relative to the data retrieval 
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period. This requirement is implemented so that the cost of 
network discovery and route management can safely be neglected. 
There have been a host of algorithms proposed in the literature for 
finding and maintaining routes and schedules in the network such 
as [1,5,7,13,15]. This paper also does not consider the challenges 
introduced by localization. With a sufficiently dense network and 
the implementation of promised RF time-of-flight distance 
measuring systems, node positioning should be possible to within 
acceptable levels of uncertainty [10,14]. This mechanism may be 
costly in terms of energy but the slowly-varying restriction allows 
amortization over several cycles of data collection. For the 
analysis that follows, nodes know both their positions and a multi- 
hop data path to send information back to a basestation for 
collection and processing. 

While many types of algorithms are possible for fusing data 
within the network prior to sending it back to the basestation 
through several hops (see [2,6] for examples), this paper is 
concerned only with those that perform no data fusion at all. The 
algorithms considered are of the class that, with the allowance of a 
modicum of data exchange with nearest neighbors, allow nodes to 
self-select as part of a subset of nodes forwarding their data for 
collection. At the basestation, information consisting only of 
position-data pairs is received with the positions being irregularly 
placed throughout the monitoring environment. The 
reconstruction of such a data field is similar to the Scattered Data 
problem in image processing. This is a well-studied problem with 
optimized solutions discussed in the literature such as [8]. The 
contribution of this paper is to detail the energy costs in terms of 
atomic network operations that are required to provide the 
basestation with sufficient information on which to base a 
scattered data reconstruction of the field to a specified resolution. 
Several energy metrics are proposed and the variation in cost with 
the field complexity being monitored by the sensor network is 
detailed. The energy metrics considered focus on reducing 
communication as many authors suggest this as the biggest drain 
on network resources [3,9,11,12]. All results in this paper are in 
the context of a single snapshot in time. For multiple time steps, 
the data collection would occur multiple times. 

This paper is organized as follows. In Section 2, details on the 
fields and network used for simulation are provided and 
parameters defined. Section 3 discusses various algorithms used 
by nodes to self-select as reporting nodes. Section 4 introduces 
five cost metrics to evaluate these algorithms. The simplest 
method is considered in detail in Section 5 and a summary of the 
important results for all methods is given in Section 6. 
Uncertainty in position and quantization is considered in Section 
7 with conclusions and future research directions in Section 8. 
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2. TEST FIELDS AND NETWORKS 
2.1 Parameters 
The symbols used to describe the fields and networks are as 
follows: 

N - The number of nodes in the network 
R - The communication radius of each node (a disc) 
p - The spatial density of nodes in the network 
C,,, - The mean connectivity of nodes (a hnction of R and p)  
h,, - The mean number of hops from nodes to the basestation 

2.2 Field Generation 
Fields used in the following simulation are of area 20Rx20R and 
generated by a three-step process shown in Figure 1. The goal is a 
discrete approximation with 0.1RxO. 1R resolution of a continuous 
field. First, data “sources” are placed at some of the 400 potential 
grid locations; no square of area R2 has more than one source. 
Grid locations with sources generate fixed data identified by the 
value of the source. Second, all grid locations are assigned a data 
value based on a simulated multi-step diffusion process fi-om the 
sources. Third, the grid is refined by a factor of ten in each 
dimension by interpolation to a finer grid of 200x200 units. 

The number of sources is set before the field is generated with the 
data value of each source drawn independently from a uniform 
random distribution between 0 and 64. Likewise, x-y locations of 
each source are randomly chosen from the set of integers between 
1 and 20. The number of sources in the field represents the 
complexity of the field. Ten test fields are generated for each 
number of sources under consideration: (4, 7, 10, 15, 20, 30, 50, 
100,200,400}, resulting in 100 test fields. 

A sequence of 100 time steps is simulated with each non-source 
grid location setting its value to the mean of its four nearest 
neighbors. Locations with sources keep the same value throughout 
the simulated diffision. The number of time steps used is 
sufficient to allow the system to reach steady state. Following 
diffusion, all the data at the 400 grid locations is stored in a 
variable called tempgrid. This 20x20 grid is locally interpolated 
using the following MATLAB commands: 

[xc,yc]=meshgrid(O:20) 
[xf,yfl=meshgrid(O. 1 :O. 1 :20) 
finetempgrid=griddata(xc,yc,tempgrid,xf,yf,’cubic’) 

Following interpolation, the discrete field now has 40,000 entries 
representative of 0.1R increments in either dimension. The entries 
of Jinetempgrid are used as the sample values for sensor nodes 
that lie within the appropriate areas. 

Figure 1. Field generation. Left: 100 sources shown on grid 
with brightness representing values and non-sources are the 
neutral background. Middle: values at 400 grid points after 
diffusion steps (tempgrid). Right: values interpolated to a 
200x200 grid finetempgrid). Nodes with positions inside a 
particular grid square sample only this data value. 

The number of sources is the independent variable representative 
of complexity in this study. The goal is to relate the cost of 
representing a field by a sensor network data recovery algorithm 
to the complexity of this field, and hence it is important that the 
complexity be commensurate with the number of sources. By 
visually examining fields of different numbers of sources it is 
qualitatively obvious that more sources lead to fields requiring 
more sensor readings for reconstruction. This relationship is 
quantifiable through independent means by invoking the image 
processing analogy and using compression. Each of the 100 test 
fields is mapped to a 200x200 pixel monochrome image and 
highest-quality (100 level) jpeg compression is applied. The mean 
file size is a monotonically increasing function of the number of 
sources in the field and fields generated with the same number of 
sources have similar compressed file sizes (Figure 2). 

The selection of the fields as originating from several sources is 
intended to represent a sensor network application where there are 
regions where data is changing rapidly with location and regions 
where sensor readings are similar over large areas, i.e. a variety of 
spatial frequencies. These two measures are relative to the number 
of nodes in the network and the node density. To represent the 
field with a small number of samples, it is speculated that nodes 
should be chosen in regions of high data variation, though the 
selection of these nodes must be balanced with the cost of local 
communication to determine the optimal nodes. 

The number of sources chosen for the simulation spans the range 
from those that can be very effectively represented by a small 
number of nodes to those that are still poorly represented by the 
full number of samples that are permitted. The user in this 
application is interested in a full mapping of the field, not just 
determining the location of the data-generating sources. Each field 
as the one shown in Figure 1 is intended to represent a single 
moment in time: the temporal evolution and compression of data 
is not considered in this paper. In the following time step, the 
sources would potentially have changed in value and/or location; 
the field is assumed to be changing much more rapidly than the 
node topology. 
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Figure 2. The compressed file size increases with the number 
of sources generating the field. Each dot represents one of the 
10 test fields and the line interpolates the values. 
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R. By assigning the basestation role to the node closest to the 
center of the region, a flooding algorithm is used to count the 
number of hops from each node to the basestation, i.e. how many 
transmit and receive events must occur for information to be 
obtained from this node. 

The network parameters are chosen to represent a network larger 
than those currently implemented. The large diameter ensures that 
trade-offs between local and basestation communication are clear 
from the simulation. If a node h hops away from the basestation is 
selected to relay its data, the overall energy consumption in the 
network is h times that required for a node a single hop away. 

2.4 Field Reconstruction 
Once data has been recovered at the basestation, the scattered data 
problem is solved by interpolating the received data to the 
200x200 grid locations with ‘griddata’. This interpolated field is 
compared to the original field. The absolute difference of these 
two fields is averaged over the 40,000 grid locations and this 
value is the mean error of the reconstruction. A sample 
reconstruction is shown in Figure 4. A host of node selection 
methods is detailed in the following section. 

In reconstructing the field, the interpolation mechanism allows 
only for estimation within the convex hull spanned by the location 
of the data. To eliminate regions where no reconstruction is 
possible, four artificial nodes are placed at the comers of the 
network and always report data. Costs of these nodes reporting are 
accounted for in energy calculations. 

Hop numbers for a 2000 node test network 

Figure 4. Field reconstruction from scattered data. Left: 
original field showing 212 randomly chosen sample locations. 
Middle: field reconstructed from the 212 scattered data points. 
Right: error field used for computation of the mean error. 

3. METHODS UNDER CONSIDERATION 
This section details algorithms used to allow nodes to self-select 
as reporting nodes. Different algorithms use various combinations 
of the following three categories of information: (i) the node’s 
data, (ii) the node’s neighbors’ data, (iii) the node’s distance from 
the basestation. Each method has a parameter that allows the 
number of nodes selected to be tuned from near zero reporting to 
all nodes reporting. 

3.1 Random selection 
The simplest approach to selecting nodes is through random 
selection. In this model, nodes independently compare a randomly 
generated number to a known network-wide parameter that 
specifies the fraction of nodes expected to communicate data back 
to the basestation. The node does not require any local 
communication or even to sample if not self-selected to report. 
This model is evaluated mainly as a basis to which the others can 
be compared and it is expected to exhibit poor per node 
performance but a low per node energy cost. The number of nodes 
reporting in this model is controlled directly through the reporting 
probability that would be disseminated through the network 
during initialization. 

3.2 Hop-based selection 
Assuming that each node has access to the number of hops to the 
basestation, this hop number is used to weight the probability that 
a node self-selects. In terms of the total number of messages 
required to obtain data, nodes more distant from the basestation 
require a greater expenditure of resources. Consequently, the 
probability of reporting should decrease monotonically with the 
hop number. Two examples are chosen for the rate of this 
decrease: linear and quadratic. The probability of reporting is a 
polynomial functionfof the hop number at each node. The node 
does not need to communicate with its neighbors or sample prior 
to making a reporting decision. To tune the number of nodes 
reporting in this model, the functionfrepresenting the probability 
of self-selection can be scaled. Nodes whose hop counts lead to 
values of f > l  are always selected for data reporting. Aside from 
the hop number dissemination that should- occu; infrequently 
compared to data collection, this method requires no more 
communication than the random method. 

Figure 3. Hop numbers and locations of each of the 2000 nodes 
in the test network. Darker stars represent smaller hop 
numbers while lighter stars are nodes with more hops to the 
basestation at the center of the plot. Nodes at the corners are 
21-22 hops away from the basestation. 3.3 Interval selection 

Following sampling, each node self-selects based on its sensor 
reading. If the sensor reading is close to a certain periodic goal 
reading, it has a high probability of self-selecting. Periods of units 
and tens are used. For unit spacing, nodes sampling data slightly 
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above each integer have a high probability of self-selecting while 
in the tens model, it is nodes with data close to {0,10,20, ..., 60). 
This method selects nodes on the field contours suggesting an 
effective means of representing the field with fewer data points as 
shown in Figure 5 .  The decay rate of the probability as node 
readings become more distant from the goal readings is modified 
to vary the number of nodes reporting. Again, this method is no 
more costly per selected node than the random method. 

Figure 5. Nodes selected with the “interval = 10” method. In 
regions of slow spatial variation, the selected nodes are seen 
tracing contours in the field while the selection becomes 
random in regions of high variation. 

3.4 Extremum selection 
Nodes with sensor readings well above or well below the mean of 
their neighbors’ readings self-select. Nodes are required to read 
their sensor and receive all neighboring data prior to making the 
decision rendering this method relatively costly compared to the 
previously discussed methods. The number of reporting nodes is 
controlled by setting the linear decay rate by which nodes with 
values close to their neighbors have less chance of reporting than 
those with extreme values. The per node selection cost of this 
method is higher than random selection, but this may be offset by 
the selection of more representative nodes. 

3.5 Edge detection 
An edge node is one where the field reading is changing rapidly in 
a spatial sense. Nodes with neighbors spanning a larger data range 
are given a higher probability of reporting data. Like the 
extremum method, the decay rate controls the number of nodes 
reporting and a similar per node selection cost is required. A 
modified edge algorithm, the “limited edge” selection, is also 
tested: nodes receive data from a’maximum of four neighbors in 
this model. 

3.6 Edge dilation 
Following edge detection, this method selects only the minimum- 
and maximum-valued neighbors of edge nodes. The notification 
of neighbors adds another communication step to the edge 
detection algorithm making this selection the most costly per 
node. Each edge node makes two additional transmissions (to the 
selected dilation nodes) and each of the two dilation nodes has an 
additional receive event. The number of reporting nodes is 
controlled by the edge decay value but the actual selected may be 
up to twice the value of that in the edge detection model. As the 
edge nodes approach N, the dilation method might actually select 
fewer nodes than the edge method since with a low threshold, 
every node becomes an edge but not every node is an extreme 
nearest neighbor. The motivation behind this method is that 
accurate reconstruction requires a reference on either side of each 
discontinuity. 

4. ENERGY COST METRICS 
Five different cost metrics are proposed for evaluating the 
resource consumption: 

1 .  Number of nodes reporting 
2. Number of nodes sensing 
3. Total number of transmit events in the network 
4. Total number of receive events in the network 
5. Average transmissions from one-hop nodes to the basestation 

The sensing and reporting node counts are measures of general 
network activity. The number of transmit and receive events are 
indicators of the mean energy consumption. One-hop nodes are 
those that lie within a communication radius of the basestation 
and must serve as relays for all multi-hop messages originating in 
the network. The average number of transmit events at one-hop 
nodes is a measure both of the maximum energy consumption and 
the maximum bandwidth requirements as these nodes are both 
communication and battery lifetime bottlenecks since nodes are 
uniformly distributed and all information must pass through them. 
As we are dealing with a broadcast medium, the number of 
transmit events can be smaller than the number of receive events 
provided that the one-to-many communication is well scheduled. 

Table 1 summarizes the costs of the proposed methods. The first 
three rows of the table represent the methods without local 
communication to select nodes while the incremental effect of the 
local communication can be seen in the final three rows. These 
costs represent the lower bounds that could be obtained if all 
communication was synchronized and no collisions occurred. 

In general, data collection can result in nonlinear relationships 
among each of the five costs, but in scattered data models the 
mean number of one-hop transmissions is a scaled version of the 
number of reporting nodes. The expected scaling factor is 

i 
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Table 1. Summary of the costs associated with the different scattered data strategies. The probability of selection of any given node 
(which varies considerably among methods) is represented by P. 

precisely the number of one-hop nodes available for relaying 
messages to the basestation. It is hence sufficient to use the 
number of reporting nodes (cost 1) as a measure of maximum 
individual energy and bandwidth requirements (cost 5). The 
sampling cost will be mainly ignored as an independent measure 
since sensing and reporting nodes are either the same or all nodes 
are sampling. 

5. RANDOM METHOD RESULTS 
A detailed description of the results is given for the random 
method as an illustration of the analysis procedure and to show 
that the test fields and networks are sufficient to span the intended 
set of behaviors. All methods are compared without the full detail 
in the next section. 

Using the 100 test fields with varying numbers of sources, trials 
are completed with different probabilities of reporting data. The 
probability of each individual node reporting (preport) is varied 
logarithmically through 9 values between 0.0 1 (an expected 20+4 
nodes reporting) and 1 (all nodes reporting). The mean error 
averaged over 10 trials for each field for the smallest and largest 
values ofpreport is shown in Figure 6 .  Three observations are of 
interest: 

1. Each field having the same number of sources yields nearly the 
same mean error 

2. The maximum mean error for a field with a smaller number of 
sources is rarely significantly higher than the minimum for a 
field with a larger number of sources 

3 .  Aside from a few exceptions, fields that appear problematic for 
the preport = 0.01 case are not poorly handled in the preport = 
1 case and vice versa 

The combination of items 1 and 2 are further confirmation that the 
selection of the number of sources as an independent measure of 
field complexity is well founded. Item 3 suggests that the 
variation in error across fields of similar complexity is due mainly 
to statistical deviations in the node selection and not in 
fundamental differences among fields with the same number of 
sources. 

These charts show a general decrease in mean error as more nodes 
are reporting, but the decrease is not proportionate across source 
numbers. The monotonic increase in error as either (a) fewer 
nodes report data or (b) more sources are added is salient in 
comparing these bar charts. Averaging over all fields at the same 
source number gives the results shown in Figure 7. 

As anticipated, collecting data from more nodes by increasing 
preport allows for the field to be reconstructed with less error. 
There is, however, an increasing cost associated with larger values 
of preport. The five costs outlined in Table 1 are summarized in 
Figure 8. There are only three curves since only the nodes 
reporting need to sample their sensors and the number of receive 
and transmit events is symmetric. 
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Figure 6. Bar charts showing the mean error for each field. 
Top: the expected number of reporting nodes is 24. Bottom: all 
2004 nodes are reporting. Each bar represents the mean 
integrated error averaged over 10 trials for one of the 100 test 
fields. X-axis numbers correspond to the list below them. 
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Mean error over all 10 fields at each level of sources 
15 
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Costs of nodes repotting over all fields and sources 
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3500 

Number of sources Expected fraction of  nodes reporting 

Figure 8. Costs associated with different values of preport. 
Curves are scaled to fit on the plot. 

Figure 7. All trials of the random reporting method. Each 
curve represents an entire bar chart like in Figure 6. The 
legend shows values of preport in the vertical order they Costs l o  obtain a mean error of 2 for random node selection 

appear. Curve intersection points with the horizontal line 
denote the number of sources that can be monitored by each 

Number of nodes reporting 

- Number of Tx events at 1-hop (x10) 

3500 number of reporting nodes with a mean error of 2. 

All costs are linear with preport in the random model. Suppose 
now that the interest is in designing a sensor network to obtain a 
particular level of performance. The intersection of a horizontal 
line like the one crossing Figure 7 with the curves allows for 
determination of the costs required to obtain a mean error of 2. As 
sources are added, the number of reporting nodes must increase. 
Figure 9 is obtained by plotting the cost at the x-values of the 
intersection of the horizontal and curved lines in Figure 7. 

Values shown in this graph give expected costs to reconstruct the 
field to within an error of 2. For example, 579 sensingheporting 
nodes, 5834 transmitlreceive events and 41 relays from each of 
the one-hop nodes to the basestation are required to adequately 
reconstruct a field with 100 sources on the average. The one-hop 
node load can be translated to message latency if the particular 
communication parameters of the network are known. With 
limited bandwidth, only a certain throughput is possible from the 
interfering one-hop nodes to the basestation; the time to forward 
all messages varies linearly with the number of relays. 

In the following section, all methods are compared using the same 
metrics as in Figure 7: a similar set of cost-complexity curves are 
generated through the same procedure. The curves in Figure 9 do 
not go beyond -270 sources as beyond this even the collection of 
data &om all nodes does not allow for reconstruction to 
resolutions below a mean error of 2. This same limit will be seen 
in all the selection methods as the best resolution is obtained with 
exactly the same data. The costs associated with this limit will 
however be larger for the local communication methods as they 
require more energy to determine that all nodes should self-select. 

3000 1 
+ m 

i 

Figure 9. The costs associated with reconstructing the field to 
a mean error of 2 using nodes that are randomly self-selected. 
Costs are scaled as shown in the legend. 

6. RESULTS FOR ALL METHODS 
The same analysis of plotting mean error as the reporting 
parameters are changed is carried out for all the methods 
discussed earlier. It is of little use to compare the raw mean errors 
as fimctions of these reporting variables as each method has a 
different cost associated with it. The only way of justly comparing 
the methods is to plot each on the cost-complexity curve at a 
given mean error as done in Figure 9. As the plots are dense with 
information, three different plots are used to show how the costs 
vary with the method. The costs not explicitly plotted are (i) the 
sensing cost: this does not change with different reporting 
parameters and (ii) the number of one-hop relays: this is a scaled 
version of the number of reporting nodes. The first cost 
considered is the number of reporting nodes required to obtain a 
mean error of 2 and is shown in Figure 10. 

The hop-based methods do not save many nodes from reporting - 
this is expected since these methods serve mainly to save cost in 
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Figure 10. The number of reporting nodes for sufficient 
reconstruction of the fields for each method. Top: the cost of 
all methods plotted on the same axes is difficult to distinguish. 
Bottom: a detail view of the difference in cost between each 
method and random selection. Ten trials for each of the 100 
test fields are used to generate this data. 

the form of total transmidreceive events by preferentially selecting 
nodes closer to the basestation to report. The interval methods 
save up to 50 nodes from reporting but also perform worse than 
the random method under some circumstances. Since the interval 
methods do not consider hop number and do not require local 
communication, it is expected that the other costs for the interval 
methods will be the same relative to the random selection. 

Substantial gains are possible when the simple local 
communication is used to select nodes that are better 
representatives of the field. Comparing the edge method with its 
limited counterpart, the restriction to four neighbor samples does 
impact the effectiveness of selecting representative nodes but both 
perform substantially and categorically better than the methods 

without local communication. The similar extremum method has 
both a higher and lower cost in different regions: it appears better 
than the edge method at representing complex fields. Finally, the 
additional communication required for the dilate method results in 
the best selection of nodes of the ones considered. Recall that this 
cost is a measure of the bandwidth and energy requirement at 
nodes near the basestation so these savings reflect bottleneck 
reduction near the basestation. All the curves plotted converge to 
the same point as the number of reporting nodes approaches the 
total size of the network. In fact, all methods considered report 
exactly the same data for reconstruction, namely all of it, in this 
limiting case. 

The price of local communication is more apparent when 
evaluating the cost as the total number of receive events as shown 
in Figure 1 1 .  The method requiring the most local 
communication, the dilate method, actually remains on par with 
the edge and extremum methods through a better selection of 
random nodes for all but the more complex fields. As suggested 
by Figure 10, the additional local receive events are 
counterbalanced by less of a need to multi-hop selected data back 
to the basestation. The edge and extremum methods are equivalent 
at both ends of the plot but the regional superiority seen in Figure 
10 is still apparent. All three of these methods require about 
30,000 more receive events than random selection. The limited 
edge method reduces this gap significantly by limiting the allowed 
number of local receive events during the selection process and is 
a beneficial improvement if overall energy consumption is more 
of a constraint than bandwidth near the basestation. 

The hop-based methods require fewer total receive events than the 
random method as they preferentially select nodes closer to the 
basestation and hence result in shorter multi-hop data collection 
paths. The savings in this scenario is up to -12% with the 
quadratic penalty faring slightly better than the linear penalty. As 

Number of message hops (RXj required to  obtain a mean error of 2 

Extremum 
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Figure 11. Total number of receive events for sufficient 
reconstruction of the fields. 
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Figure 12. Total number of transmit events for sufficient 
reconstruction of the fields. 

suggested in the discussion of Figure 10, the relative values for 
the interval and random methods remain the same for this cost as 
well. 

Evaluation of the methods based.on transmit events is shown in 
Figure 12. Since the transmit-receive pattern is symmetric in 
methods not requiring local communication, the same ordering of 
these methods as in Figure 10 is observed. The benefit of the 
limited edge method is only in reducing the number of receive 
events so it is back to the same level as the other local 
communication methods in this metric. 

For more complex fields (>150 sources) the local communication 
methods do not require significantly more transmission events 
than the simpler ones. Again, the additional transmit events 
required for node selection is counterbalanced by a lesser 
requirement for multi-hopping messages back to the basestation. 

7. PROPAGATION OF UNCERTAINTY 
Given that the range of data lies in the interval [0, 2 7  and that 
mean error is unlikely to drop significantly below 1, it is 
ineffective to use many more than 7 or 8 bits to represent sensor 
data at each node. The quantization step q represents the 
resolution of the value reported by the node. For example, with q 
= 64 the node must send one of the symbols (0,64}, whichever is 
closer to the actual sampled value. This corresponds to using a 
single bit to represent the sensor data: a sending node either sends 
a high (value closer to 64) or a low (value closer to 0). The mean 
error o f  this method is expected to be (64-0)/4 = 16. Decreasing 
the quantization step, equivalently increasing the number of 
representative bits, reduces the error in the reconstructed field. 
This phenomenon is depicted in Figure 13. 

As the quantization step is decreased below a certain threshold 
value, the mean reconstruction error ceases to be reduced. This 
threshold is a function of the number of nodes reporting data: 

Mean error over 100 trials with different quantization steps 
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Figure 13. Mean error increases with the quantization step. 
Each curve represents the average of 100 random node 
samples. The curves all approach the point (64,16). i 

more nodes allow for the benefits of smaller quantization steps. It 
is inefficient to send a number of bits resulting in a quantization 
step value below this threshold. This also illustrates that using 
double-precision numbers in simulation does not falsely enhance 
the reconstruction - for one thousand nodes the majority of the 
error arises from mechanisms other than the quantization step. 

For simulating uncertainty in node positions, instead of increasing 
the quantization step to induce errors in reconstructing the field, 
the x and y positions of each node are falsely reported to the 
basestation. The position error is drawn from a zero-mean normal 
distribution with a parametric variance. This variance is shown on 
the x-axis of Figure 14. 

Certainly the slope of the curves in Figure 14 is highly-dependent 
on the complexity of the field. However, this plot does confirm 
qualitative intuition: imprecise knowledge of node locations 
obviates the benefits of more reporting nodes. A more detailed 
analysis of this trade-off could consider the resource cost of 
localizing nodes in the network and how this relates to the overall 
effectiveness of data recovery. The simulation in Sections 5 and 6 
artificially introduces a mean position uncertainty of up to 0.05R 
in the earlier trials as each node samples only from a discrete set 
of grid values. According to Figure 14, this uncertainty does not 
impact the results. 

8. CONCLUSIONS AND FUTURE WORK 
Through simulation of 100 test fields without discontinuities and 
the resultant cost-complexity curves, the considered algorithms 
can be summarized in a few key comparisons. The addition of a 
hop-based penalty to the other methods is possible and should 
result in a similar 4-5% cost decrease of recovery without 
incurring any additional local communication. For example, the 
hop-based and extremum methods could be combined to reap the 
benefits of both. The optimization of the penalty is a worthy 
pursuit to further minimize costs: there is no reason why the 
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Figure 14. Adding position uncertainty to the reporting nodes 
increases the error in reconstruction. The variance is given in 
units of R. Values of the curves at the far left of the plot (those 
without uncertainty) correspond to the appropriate number of 
nodes in Figure 7. 

quadratic penalty chosen arbitrarily for this study should be the 
optimal selection. However, a poorly selected penalty, even if 
monotonic, can adversely impact results as compared to 
completely random selection. 

the field area is increasing appropriately or the communication 
radius is decreasing), the negative impacts of local communication 
as an become less taxing and the relative benefits of the 
edgelextremum algorithms become more attractive. This is 
because the mean reporting paths become longer from the self- 
selected nodes while the local communication costs remain the 
same. However, increasing the mean connectivity of the network 
while keeping other field and network parameters constant results 
in local communication becoming relatively more costly. The 
limited methods discussed can be used to circumvent this penalty. 
The size and density of the network to be implemented will 
determine the best approach for data recovery. 

One particularly useful future direction is the determination of the 
optimal number of nodes reporting to meet a particular error 
requirement. For a given selected from the 100 considered, what 
is the minimum number of data points required to reconstruct the 
field? What are the properties of these optimal nodes relative to 
their close neighbors? Finding this bound would motivate further 
algorithm discovery and limit what is possible with local 
communication. The same analysis repeated with a maximum 
instead of a mean error metric might result in a different ordering 
of the methods. 

It is apparent that no single scattered data recovery method is 
singularly superior to the others in consideration for all levels of 
complexity. A decision on which method to use is dependent on 
the complexity of the field as well as the real energy costs of the 
atomic operations considered herein: sensing, transmission, 
reception and potentially even computation. If receiving is cheap 
compared to transmission then the local communication methods 
provide better bandwidth properties for a modicum of extra 
energy cost to the network. 

Attempting to map contours as in the interval method requires that 
each node sample its sensor but does slightly improve the other 
costs. This tradeoff merits consideration if local communication is 
to be avoided but not if the energy cost of sensing is on the same 
order of communication. The interval method might also be better 
suited to a different reconstruction technique specific to contours 
or a different error metric. 

The next logical step is to compare the scattered data methods to 
those performing intra-network processing using the same cost 
and complexity metrics for evaluation. It may be that under 
certain conditions, the random method is the best method for 
recovering data from sensor networks even when compared to 
data fusion methods. 

The one-step local communication in the extremum and edge- 
based methods offer significant improvements in the selection of 
representative data for recovery but may require a higher total 
number of transmit and particularly receive events. One additional 
benefit not captured by the results presented is that the local 
communication methods are adaptive: by setting the selection 
threshold for the network, more complex fields will automatically 
result in more nodes reporting and a higher-resolution 
reconstruction of the field. The network parameter set in other 
methods is simply a probability of reporting and will result in the 
same number of data points regardless of the complexity of the 
field. If this parameter is set assuming a simple environment is to 
be monitored, there will be no feedback to indicate when this 
assumption has failed. 

The analysis above applies only to networks of 2000 nodes with 
the particular communication distances considered. While a 
general quantitative assessment of the scaling properties of the 
scattered data collection as functions of the number of nodes and 
their connectivity patterns is beyond the scope of this paper, there 
are a few statements that can be made at this point. If the number 
of nodes increases while maintaining a constant node density (i.e. 
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