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1 IntrodutionMEMS is a fast growing researh area enabled by mirofabriation of sensors,atuators, and eletronis. Fine line lithography and high yield proessingmake it possible to reate omplex systems omposed of dozens to millionsof devies. Several MEMSCAD tools are appearing to help the design bothat the devie-level [11℄ [15℄ [9℄ and at the system-level [13℄ [6℄.However, most of them annot take into aount possible variation ofdesign after fabriation proess, whih may lead to non negligible e�et onthe overall struture behavior.Our intent is to address this issue by estimating bounds on the variationof performane spei�ations arising from proess variation in the geometridesign variables.There are several methods intended to deal with the problem of opti-mization with unertain data. The stohasti approah models unertain-ties as random variables, suh as in the Monte-Carlo algorithms [10℄, andgives estimates of the probability distribution on the performane param-eters. The robust optimization approah, instead, tries to estimate theworst ase among in�nite number of senarii. In our ontext, the latterapproah means omputing the smallest ellipsoid that enloses all possibleperformane parameter outomes [7℄.They are not mutually exlusive, and the designer should be given thepossibility to hoose between them, depending on the appliation. For ex-ample, the ellipsoidal alulus is partiularly suited for safety ritial appli-ation, but may be overonservative for some appliations.Both of these methods have been implemented and integrated into SUGAR1.0,a MEMS simulation software developed at UC Berkeley [4℄ and publilyavailable [2℄.The next setion desribes the model adopted for planar suspendedMEMS struture and desribes the e�et of proess variation on the per-formane. Setions 3 and 4 desribe the Monte-Carlo and the EllipsoidalCalulus algorithms and their implementations. In the Setion 5 severalsimulations are presented for ommon test strutures. Finally, Setion 6o�ers some onluding remarks and proposes future extensions.2 ModelWe are following the same methodology adopted in SUGAR to analyze asurfae miromahined MEM struture. This methodology is based on nodal2
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7Figure 2: A simple MEM struture where the nodes are expliitly enumeratedanalysis: it deomposes the whole struture into atomi elements, suh asbeams, anhors, gaps, omb drives, whose behavior is desribed by a simplelumped dynamial system (Figure 1). Finally these atomi elements areonneted together (Figure 2), giving rise to an internally oupled dynamialsystem. The displaements variables of eah element are modeled by anonlinear seond order mehanial model as follows:[m(x;q)℄�q+ [d(x;q; _q)℄ _q+ [k(x;q)℄q = f(q) (1)where q = (x1; y1; �1; x2; y2; �2)T is the vetor of nodal displaements,and x = (L1; w1; t1; E; �)T is the vetor of design variables, whih orre-sponds to the geometri dimensions, (L1; w1; t1), the Young's modulus, E,and the Poisson ratio for the material, �. The matries [m℄; [d℄; [k℄ are re-spetively the e�etive mass, damping and spring sti�ness of the dynamialsystem and they depend nonlinearly both on the design variables and on thedisplaement vetor.Sine in this analysis we are onsidering only the DC equilibrium state,we an neglet the mass and damping term, simplifying Equation (1) as[k(x;q)℄q = fDC(q) (2)3



For small displaements the fore vetor, fDC(q), and the sti�ness ma-trix, [k℄, are independent of q. In this ase the sti�ness matrix, [k℄, takesthe following expression for a simpli�ed planar view[4℄:[k(x)℄ = EL3 26666664 wtL2 0 0 �wtL2 0 00 12I 6IL 0 �12I 6IL0 6IL 4IL2 0 �6IL 2IL2�wtL2 0 0 wtL2 0 00 �12I �6IL 0 12I �6IL0 6IL 2IL2 0 �6IL 4IL2
37777775 (3)where E is the Young's modulus for the beam and I is the moment ofinertia of the beam ross setion given by:I = tw312 (4)Sine eah struture may have di�erent orientations, all loal oordinatesare transformed into global oordinates by a rotation matrix, T (�), where �is the orientation of the beam measured ounterlokwise from the positive xaxis [4℄. The sti�ness matrix in global oordinates is thus given by [k℄global =[T ℄T [k℄loal[T ℄.The assemblage of the set of individual matries [k℄ into the olletivesystem matrix, [K℄, and vetors fDC into FDC, where all strutures areoupled at ommon nodes, is aomplished by nodal superposition. Thus,the entire system DC equilibrium an be expressed as[K(x)℄q = FDC (5)where the nodal displaement q = (x1; y1; �1; :::; xn; yn; �n)T is the vetorof all nodal displaements, and x = (L1; w1; t1; :::; Ln; wn; tn)T is the vetorinluding all geometri design variables, and FDC is the vetor of appliedfores and torque. Note that this is a ommon linear equation of the formAy = b, if the geometry vetor, x, is �xed.If xnom is �xed, the previous system has (in general) a unique equilibriumsolution, qnom, whih an be eÆiently omputed by SUGAR. However,due to proess variations the design variables may be slightly di�erent fromtheir nominal values, thus giving rise to di�erent equilibrium solution. Thisphenomenon an be haraterized mathematially by adding an unknownperturbation term, Æx, to the nominal value of the design variables, xnom,i.e. x = xnom + Æx, where Æx belongs to a know set U . Therefore Equation(5) must be rewritten as 4
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2 nomFigure 3: The shaded region orresponds to the set of possible equilibrium pointsdue to proess variation. Note that even if the nominal designed equilibrium belongsto this set, it is not generally entered in the \middle" of the solution set. Ellipsoidalalulus tries to �nd the smallest ellipsoid that enloses this set, thus giving boundson displaement variations

[K(xnom) + �K℄q = FDC (6)where K(xnom) depends only on the nominal design vetor and is thusknown, while �K is the bounded and strutured unertainty in the sti�nessthat depends on the vetor Æx. It is now lear that the Equation (6) mapsthe set U into the set of all possible displaements Q, whih , of ourse,inlude the vetor qnom. Though this mapping seems harmless, it is veryomplex and not amenable to analyti solution.One option to takle this problem is to de�ne a probability distribu-tion for the vetor Æx and then to solve Equation (6) for many samplesdrawn from that distribution. This is the underlying idea of Monte-Carloalgorithms desribed in the next setion.Another possibility would be to alulate an ellipsoid of on�dene whihenloses all possible equilibrium points, q, as shown in Figure 3. This ap-proah is the basis of the Ellipsoidal Calulus method developed in [5℄ [7℄,This an be done via semide�nite-programming (SDP) as proposed in [3℄.The main diÆulty for this approah is �nding an appropriate form for thematrix �K in order to apply this algorithm. This is disussed in Setion 5.3 Monte-Carlo AlgorithmIn this approah, we modeled the proess variation assuming Æx to be avetor of independent random variables. Only the width and thikness vari-5



ations are onsidered, sine length is only slightly a�eted by proess varia-tion. Young's modulus, Poisson ratio, sidewall angles and stress are assumedto be onstant in order to simplify the following derivations.We allowed three di�erent random distributions: 1) a uniform distribu-tion in the interval (xnom � Æ; xnom + Æ), where Æ is a parameter de�ned bythe user, 2) a Gaussian distribution with mean xnom and variane Æ), 3)a uniform orner distribution where x = xnom � Æ takes value only at theextremes of the interval.The �rst two distributions are motivated by their ubiquitous use in mod-eling parameters variation in pratial appliations. The last distribution isinteresting beause it well models the worst ase senario for the performaneparameters. For simpliity, in our simulations the unertainty interval for Æis �xed for all the geometri variables.Sine the number of samples is �nite, it is neessary to give probabilistibounds on the estimates of performane. These bound are haraterizedby two parameters, the auray, �, and the on�dene, 1 � �. Suppose,for example, that we have drawn l samples and we have alulated thefration of samples, rl, whih have a performane between �� the nominalperformane. Then, we an say that the true fration of samples, r, satis�esthe following relation [14℄:P [jr � rlj > �℄ < 2 exp�2�2l = �; (7)where P stands for probability. Therefore, given any desired aurayand on�dene, we an �nd the minimum number of samples that must bedrawn to ahieve them, as follows:l > � 12�2 ln(�2 ) (8)4 Con�dene Ellipsoid AlgorithmAs mentioned above, a di�erent approah onsists in �nding the smallestellipsoid whih inludes all possible solutions, q, of Equation (6), as shownin Figure 3. This an be done through the solution of an SDP problemas long as the matrix �K takes a partiular form alled linear frationalrepresentation (LFR). A partiular ase of this representation is the aÆnerepresentation, whih has the following expression:(K + L�R)q = FDC (9)6



where the matries, K, L and R, are onstant and depend on the struture ofthe unertainty, i.e. on how the geometri perturbation a�ets the systemmatrix. The matrix � = fdiag(Æ1Ir1 ; : : : ; ÆmIrm) j Æ 2 Rm; jjÆjj1 � 1g,where m is the number of independent variables and Iri is the identitymatrix of size ri.These four matries an be found easily by onsidering the loal sti�nessmatrix (3). First, we assume that the length, L, does not vary. This isa reasonable assumption sine the relative variation of L is very small inomparison with the relative variation of the thikness, t, and of the width,w. Moreover the thikness, t, and the width, w, have maximum variationof �Æ. Then, we an notie that the elements of the matrix, [k℄, dependsonly on the area, A = wt, and the moment of inertia, I, of the beam. If weonsider these as independent variables, we an rewrite [k℄ as follows:
[k℄ = 26666664 EL 0 0 �EL 0 00 0 0 0 0 00 0 0 0 0 0�EL 0 0 EL 0 00 0 0 0 0 00 0 0 0 0 0

37777775A+ 26666664 0 0 0 0 0 00 12EL3 6EL2 0 � 12EL3 6EL20 6EL2 4EL 0 � 6EL2 2EL0 0 0 0 0 00 � 12EL3 � 6EL2 0 12EL3 � 6EL20 6EL2 2EL 0 � 6EL2 4EL
37777775 I= [kA℄A+ [kI ℄I (10)where the matries, [kA℄ and [kI ℄, are onstant, and only the area, A, andthe moment of inertia, I, may hange due to proess variations. Sine thevariables, A and I, belong to an interval, it is more onvenient to rewriteequation (10) in terms of the interval mean, �A = (Amax + Amin)=2, andinterval half-width, dA = (Amax �Amin)=2, as follows:[k℄ = �A[kA℄ + dA[kA℄ ÆA + �I[kI ℄ + dI [kI ℄ ÆI= [kA0℄ + [kA1℄ ÆA + [kI0℄ + [kI1℄ ÆI= [k0℄ + LA(ÆAIrA)RA + LI(ÆIIrI )RI (11)where the matries, [kA0℄ [kA1℄ [kI0℄ [kI1℄ and [k0℄, are onstant. Thevariables, ÆA and ÆI , may range in the interval [�1;+1℄, giving rise to allpossible senarii. The matrix [k0℄ = [kA0℄+[kI0℄, is the sum of the two meanmatries. The matries [kA1℄ = LARA and [kI1℄ = LI RI , are obtained byrunning the singular value deomposition (SVD) on the matries [kA1℄ and[kI1℄. Now, we an see from Equation (11), that the loal unertainty matrix7



has an aÆne representation. The global aÆne representation is simply ob-tained by staking all the matries Li, Æi and Ri into a single global matrixas in Equation (9).The algorithm that omputes the on�dene ellipsoid from this repre-sentation is quite omplex and it is desribed in [7℄. We simply mentionthat it reasts the problem as a Semide�nite Programming (SPD) problem[3℄, whih an be solved numerially by the LMITOOL toolbox in Matlab [8℄.Note: Before onluding this setion, we want to remark that the twovariables ÆA and ÆI are not independent, sine the area, A, and the momentof inertia, I, are stritly related. However, the assumption that they areindependent, simply results in adding infeasible solutions. Therefore, theellipsoid may be overpessimisti, i.e. there may be a gap between the set offeasible solutions and the ellipsoid boundary.5 SimulationsIn this setion we present some simulations of the previous algorithms onseveral MEM strutures. For the following simulations we hose the follow-ing parameters: Æ = 0:1�m, � = 0:01, � = 0:09, l = 328. Most of the beamsin these strutures have minimum width and thikness in order to magnifythe e�et of proess variations.The following plots show omparison between only two performane vari-ables for ease of visualization, but multiple omparisons are possible.Figure (4) shows a simple dog-bone-shape suspension, whih has 6 nodes,5 beams, 10 states (q0s), 10 independent proess variables (Æ0s). This stru-ture is designed to be symmetri so that a fore applied on the y-axis wouldgenerate a displaement only along the y-axis. However, due to variations ofgeometri variables, this is not true, as shown on the plots where for severalsamples the diplaement along the x-axis is nonzero. In the middle plot ofFigure (4) are shown some possible displaement outomes for Node 4 due toa uniform distribution. The ellipsoid of 100 % on�dene seems to be over-pessimisti, however it is tight, in the sense that there exist some possiblesolutions whih lie on its boundary, though they are very \unlikely". Thisis lear in the bottom plot, where we used a uniform orner distribution.In fat we an see that there are solution on the boundary. In the foldedspring of Figure (5), instead, we hose a Gaussian distribution instead ofa uniform distribution for the middle plot. This strutures has 8 nodes,7 beams, 20 states (q0s), 14 independent proess variables (Æ0s). Anotherinteresting property of the ellipsoid approah is that it also aptures the8
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Figure 4: A Dog-bone-suspension where a fore of -100 �N is applied at Node 4along the y-axis. Middle plot: uniform distribution. Bottom plot: uniform ornerdistribution
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orrelation among di�erent displaement variables, as shown in the bottomplot of Figure (5), even though this time the ellipsoid seems to be not sotight.6 ConlusionsIn this paper we have proposed and simulated two approahes to analyzethe e�et of proess variations on performane design. These approahesare reasonably exible, an be easily modi�ed by the user and seem to givemeaningful results. All the ode used for the simulations has been adapted torun with SUGAR1.0 and an be downloaded following the instrutions in [1℄.Easy extensions of our work, would be the introdution of di�erent geometribounds, Æ's, for the variation of eah geometri variable, the analysis proessvariations of the Young's modulus and the Poisson ratio for the material andthe study of 3-Dimensional strutures.As already mentioned above, the Monte Carlo approah and the robustoptimization approah are two omplementary methods. The former is moresuitable and omputationally eÆient when the probability distribution overthe geometri variables is known and simple, and when the auray andon�dene required are not too high. The latter, instead, is partiularly ap-propriate and omputationally eÆient for safety ritial appliations sine,given bounds on the geometri variables, it an alulate 100% on�denebounds with perfet auray, i.e. � = � = 0, over the performane param-eters in polynomial time with respet to the number of geometri variablesO(n5) [12℄. In the Monte-Carlo method, instead, the worst ase senariosales exponentially in the number of proess variation variable, m , sineit requires the solution of l = 2m di�erent senarii. In our simulations thiswould orrespond to l = 1024 for the struture in Figure 4 and to l = 16384for the struture in Figure 4. These examples show how this approah be-omes soon intratable also for simple strutures. A limiting fator for theextensive use of Ellipsoidal Calulus algorithm is the omputational time itrequires, although polynomial. This is mainly due to the overhead arisingfrom the implementation of a general purpose SDP solver. Future workmust be direted in the solution of this problem.Another interesting issue is understanding why the ellipsoid approah issometimes loose: it may either depend on the Lagrange relaxation [7℄ or onthe approximated aÆne representation in Equation (11). Moreover, we areurrently extending the Ellipsoidal Calulus towards design synthesis, i.e.tuning the nominal geometri dimensions of the original MEM struture in10
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