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                          ABSTRACT

This paper presents the development of a simulation
program (SUGAR) for planar MEMS devices. The approach
is based on nodal analysis to solve coupled nonlinear differ-
ential equations. The current version SUGAR v0.5 can per-
form DC, steady state, and transient analysis. It is
implemented in Matlab[1] and the accuracy of the program
is comparable with analytical solutions, experimental data
and FEM simulations. The preliminary work shows that this
approach could lead to an accurate, fast, and high-level sim-
ulation package for MEMS.

Keywords: MEMS, SUGAR, nodal analysis, nonlinear
model, Matlab

INTRODUCTION

Rapid development of MEMS technology requires
CAD tools for support. Most of the research in the MEMS
simulation area have focussed on process modeling[3, 4],
finite element analysis (FEA) and boundary element meth-
ods (BEM) for electromechanical functional modeling[5, 6].
They are generally device and analysis oriented rather than
design oriented. When users want to design higher level sys-
tems with dozens or even thousands of components, it is far
beyond the reach of traditional FEA/BEA based tools.

Nodal analysis has been widely used for formulating
system equations in circuit analysis such as SPICE. It is done
by decomposing the circuit into N-terminal devices. Each
device is modeled by ordinary differential equations (ODEs)
with coefficients parameterized by device geometry, and
material properties derived from measurements or process
specifications. Devices are linked together at their terminals,
or nodes, and the resulting coupled differential equations can
be solved as a system of nonlinear ODEs using nodal analy-
sis [7].

SUGAR uses a similar approach to simulate MEMS
devices. It abstracts the MEMS structures in terms of three
basic elements (i.e. beams, gaps, and anchors), and builds
the ODE models for each kind. The system equations can be
formulated according to the node connectivity information
provided in the input file, and solved using nodal analysis.

In the following sections, some details of applying
nodal analysis in MEMS design are described. The model
implementations and the numerical algorithms for DC,
steady state and transient analysis are also presented with
some simulation examples.

NODAL ANALYSIS APPROACH

In a MEMS device the law of static equilibrium is
applied to each node such that the summation of the for
and moments on the nodes are equal to zero. This is an
gous to Kirchhoff’s current law in circuit analysis (e.g
forces can be seen as branch quantities like currents w
displacements at each node can be thought as node quan
like voltages). The forces and displacements on each no
can be related by structural models.

To demonstrate the method of assemblage, the struct
shown in Figure 1 is chosen. It contains three anchor e
ments, one beam element and an electrostatic gap elem
Since anchor elements are fixed to the substrate with
degree of freedom, we only need to include beams and g
in the analysis.

To formulate the total system, we must formulate th
individual element first. For the beam element that exten
from node1 to node2 we have

and for the gap element (nodes 2,3,4,5) we have

where fn represents the forces{Fx,n , Fy,n , Mn} applied at
noden, andqn represents the node displacements{xn , yn ,

θn}. The super- and subscripts onf indicate the element num-
ber and node number respectively. Each node has th
degrees of freedom in the planar case: x, y direction a
rotation. Bear in mind that thef’s are the internal nodal
forces. When two sets of equations are assembled, the s
of such internal forces at each node point is equal to t
external loadP, which in this example are the equivalen
electrostatic forces generated at nodes2, 3, 4, and 5. We
must also be aware that nodal displacements at the elem
levels are the same as those after assemblage.

Following these guidelines, the assembled system eq
tions for each node are
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Figure 1.  A simple MEMS structure.
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Since the displacements for anchor nodes1, 4, and5 are
zero they are removed. The final system equations become

By using this method we can formulate the system’s
equations of motion.

MODELS

Models for linear beam, nonlinear beam, and nonlinear
electrostatic gap have been developed. As with SPICE, there
are different model levels in SUGAR which allow the user to
trade off accuracy and speed.

Linear Beam Model
Traditional finite element analysis attempts to describe

the behavior of beams by dividing them up into smaller parts
and summing the contribution of each of these sub-elements.
Instead of breaking the beam up into numerous finite ele-
ments we model simple beams more efficiently by using
ODE’s which are parameterized by displacements and forces
at the beam’s end nodes.

Coupled beams will have common deflection and slope
at shared nodal points. This condition satisfies the continuity
of both the deflection and slope. The transverse deflection
v(x), axial displacementu(x), and the angle of rotation
θ(x)=(dv/dx)can be described by three degrees of freedom at
each node (Figure 2).

In the region between nodes, the equation of equilib-
rium [8] for a beam with uniform cross section is

The solution to Eq. (5) is a cubic polynomial function of x,

Imposing the boundary conditions at both end nodes yield

four equations and four unknowns,

Solving for the coefficients ofv(x) andθ(x) in terms of
vn andθn at noden = 1, 2, and grouping like-terms results in

For a bar element with constant axial stress or strain, t
axial displacementu(x) is assumed to be a linear in x,

where the cubic functionsHi(x) are the Hermitian shape
functions:

The transverse (Eq. 8) and axial (Eq. 9) displaceme
are used to determine the bending and tensile strain ene
respectively. For the simplified linear case we have

whereE is the modulus of elasticity,I the moment of inertia,
and A the cross sectional area of the beam. The Young
modulus and layer thicknessh are defined in a process file.

Hence, the stiffness for the beam can be obtained
using Castiglianos theorem[8]

whereFi represents the six force componentsFx1, Fy1, M1,

Fx2, Fy2, M2, andqi represents the six displacement compo
nentsx1, y1, θ1, x2, y2, θ2. Substituting Eq. (11) into Eq. (12)
yields the stiffness

which gives

for beam structures.
A mass matrix can be found by equating internal an

external work due to virtual displacements[9]. This results
in
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Figure 2. A bent beam showing nodal forces, moments, and
coordinates.

x
4

4

∂

∂
v x( ) 0= (5)

v x( ) a0 a1x
1

a2x
2

a3x
3

+ + += (6)

a0

a1

a2

a3

1
L
---

L
3

0 0 0

0 L
3

0 0

3L– 2L
2

– 3L L
3

2 L 2– L

v1

θ1

v2

θ2

= (7)

v x( ) H1 x( )v1 H2 x( )θ1 H3 x( )v2 H4 x( )θ2+ + += (8)

u x( ) H5 x( )u1 H6 x( )u2+= (9)

H1 x( ) 1 3
x
L
--- 

  2
– 2

x
L
--- 

  3
+= H2 x( ) x 2

x
2

L
----- 

 –
x

3

L
2

-----
 
 
 

+=

H3 x( ) 3
x
L
--- 

  2
2

x
L
--- 

  3
–= H4 x( ) x

2

L
-----– x

3

L
2

-----+=

H5 x( ) 1 x
L
---–= H6 x( ) x

L
---=

(10)

S
EI
2
------

x
2

2

∂

∂




v x( )


 2

x
EA
2

-------
x∂

∂

 u x( )

 2
xd

0

L

∫+d

0

L

∫= (11)

Fi qi∂
∂S= (12)

kij EI H''i x( )H'' j x( ) x EA H'i x( )H' j x( ) xd

0

L

∫+d

0

L

∫= (13)

k[ ] E

L
3

-----

AL
2

0 0 AL
2

– 0 0

0 12I 12I 0 12I– 6IL

0 6IL 6IL 0 6IL– 2IL

AL
2

– 0 0 AL
2

0 0

0 12I– 12I– 0 12I 6IL–

0 6IL 6IL 0 6IL– 4IL

= (14)

mij ρ x( )A x( )Hi x( )H j x( ) xd

0

L

∫= (15)



it
ing
n
it’s

ses

e
s
la-
as
int

m

to
e-

n

al

ed
d-
ith

er-

c-
n-
whereρ(x) and A(x) are the density and cross sectional area at
position x respectively. For uniform beams,ρA is constant
along the length of the beam and we have

For level-1 damping we use a simple Couette flow
model considering only the region between the structure and
substrate.

We approximate the damping matrix to be

wherec = µw/∆ is the viscous damping per unit length. This
results in

whereµ is the viscosity of the fluid environment between the
device and substrate, ∆ is the distance from the device to the
substrate, andw is the width. Bothµ and∆ are defined in a
process file.

Since each structure may have differing orientations, all
local coordinates are transformed into global coordinates by a
transformation matrix

whereθ is the orientation of a structure measured counter-
clockwise from the positive x axis. For example, to transform
the stiffness matrix from local coordinates to global coordi-
nates, the transformation matrix is applied in the following
way:

The assemblage of the set of individual matrices [k],
[m], and [c] into collective system matrices, [K], [M], and [C]
respectively, where all structures are coupled at common
nodes, is accomplished by nodal superposition. Thus, the
equation of motion describing the dynamics of the entire sys-
tem can be expressed in the familiar form

where the nodal displacements{q} = {x 1 y1 θ1 ... xN yN θN}

and nodal forces{F} = {F x1 Fy1 M1 ... FxN FyN MN} are both
1x3N column vectors, andN is the total number of dynamic
(non-constrained) nodes.

Nonlinear Beam Model
In the linear beam model,{qi} is proportional to{Fi}.

This model is satisfactory for small deflections; however,
doesn’t consider the nonlinearity such as the axial shorten
and the effect of axial force on the stiffness of the beam. A
axially applied compressive force on a beam decreases
bending stiffness and an axially applied tensile force increa
it’s bending stiffness.

A level-2 (nonlinear) beam model was developed for th
small rotation condition. Only the geometric nonlinearity i
considered. This model starts from cubic and linear interpo
tion functions for the lateral and longitudinal displacements
in Eq. (8) and Eq. (9), and calculates the strain at every po
[10]

whereη is the distance from the neutral axis. The middle ter

in above equation is the average of(dv/dx)2/2 along the beam.
Compared with the linear model, a new term is introduced
take into account the contribution of the longitudinal displac
ment to the strain.

Substituting Eq. (22) into the following gives the strai
energy

Then substituting Eq. (23) into Eq. (12) yields the nod
forces as a function of displacement.

Figure 3a shows a simulation of a clamped-clamp
beam with a central concentrated load. Simulation of the loa
deflection response (Figure 3b) is in close agreement w
ABAQUS [2] over a typical range of operation.

Nonlinear Gap Model
Electrostatics forces on parallel conducting plates gen
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ally have a1/d2 dependence for first order approximations.
Considering electrostatically attracted parallel beams (gaps),
if the distance between the two beamsd is much less than the
widths of the beamsh (layer thickness), the total force gener-

ated can be approximated to be simply(-1/2)ε0V2A/d2. How-
ever, as the gap distance between the beams increase, the
attractive force between the beams decrease, and charges that
have accumulated near the gap spacing spread out further
due to their repulsive forces. This spreading of the charges is
not uniform, in that surface charge density near the edge of
the beam is greater than the center. This increase in surface
charge density at the edges results in a significant fringing
field contribution term in the overall capacitance[11]. Tak-
ing the fringing field contribution into account, the total
force generated by our level-2 gap model is approximated to
be

where the factorα > 1 is the fringing field contribution. For
the range of gap distancesd such that0 < d < h, we assume
α to vary linearly. The level-1 gap model is similar to level-2
except the bending and fringing field contributions are not
considered.

For conditions where interacting beams are not parallel
but are subject to say, bending, the varying gap distance
along the length of the beam must be considered. As
described previously, the transverse displacements along the
length of the beam can be described by nodal coordinates
and Hermitian shape functions. Referring to Figure 4,

the distance between the beams at positionx is

whered0 is the original gap spacing, andv1(x) andv2(x) are
the transverse displacements of the beams at positionx. The
nodal forces due to a distributed force per unit length are

For the electrostatic case, the force per unit length is
approximated to be

In solving the integral in Eq. (26) for a general analytical
expression the equivalent nodal forces and moments on each
beam are obtained. This analytical expression is parameter-

ized by voltage and nodal coordinates only, as required to
the nodal analysis scheme of SUGAR. These nodal forc
are added to the system force vector in Eq. (21) for furth
analysis.

Gap Model With Contact Forces
With the linear beam model and nonlinear electrosta

gap model, SUGAR can find the equilibrium position of th
structure before and after pull-in. To simulate the conta
behavior between the beams of an electrostatic gap, rep
sive nodal forces are added to the interacting beams. The
spacing and contact penetration depth of the beams
determined by Eq. (25). The equal and opposite cont
forces prevent the absolute gap distance from approach
zero so that the electrostatic force model will not approa
infinity.

A model for contact forces is chosen such that|Fc| >>

|Fe| whend < dc and|Fc| << |F e| whend > dc, whereFc, Fe,
anddc are the contact force, electrostatic force, and critic
gap distance respectively. Since the electrostatic forces

attractive and proportional tod-2, we chose the contact force

to be repulsive and proportional tod-3. To avoid convergence
problems, we made modifications for this function whend is
very close to zero and less than zero.

An electrostatic gap (level-1) pull-in simulation is
shown in Figure 5. The test structure is shown in Figure 5
The pull-in voltageV as a function of beam lengthL is
shown in Figure 5b. A good fit to the experimental data w
obtained with a Young’s modulus of 140 GPa.

ALGORITHMS AND RESULTS

This section describes the algorithms implemented
SUGAR. The DC algorithm deals with finding an the equ
librium state of a MEMS device when constant mechanic
forces or voltages are applied. The steady state algorit
takes care of the response of a system subjected to dam
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Figure 4. The level-2 model of an electrostatic actuator.
There is a distributed electrostatic force p(x) along the
length of the beam which varies due to bending.
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and sinusoidal excitation forces. Finally the transient analy-
sis algorithm uncovers the instantaneous state of a system as
a function of time.

DC Algorithm
In DC analysis, the equilibrium position due to con-

stant mechanical forces and voltages are calculated accord-
ing to

Since the electrostatic force and possibly the stiffness are
nonlinear functions of displacement, numerical methods are
needed to solve Eq. (28).

In general, there is no recognized “best” way for solv-
ing nonlinear equations. However, some methods are effec-
tive in finding the roots provided we know the approximate
locations of those roots. SUGAR uses the Newton-Raphson
Method.

Eq. (28) is a special case of the general form

First, an initial guess{q0} is taken which is sufficiently near
a root. In general, the Newton-Raphson method approaches
the solution by the iteration

where is the system Jacobian matrix. The itera-

tion will proceed until

whereζ is the tolerance.

DC simulation of common flexural supports indicates
that SUGAR can accurately model these structures. SUGAR
analysis of serpentine suspensions (Figure 6) is identical to
FEA simulations done by Fedder[12]. SUGAR also agrees

with Fedder’s analytical and measured data. Simulation
crab leg suspensions from[12] is equally accurate.

Steady State Algorithm
In steady state analysis the following equation

solved

where  is the sinusoidal external excitation
The solution to this equation is the real part of the fo

lowing complex equation:

where . A particular solution of

Eq. (33) is of the following form

where {V}, a complex vector, contains the magnitude an
phase information of the system response. Substituting
(34) into Eq. (33) gives

Once Eq. (35) is solved, the magnitude and pha
response for each node is evaluated. The steady state vi
tion of the structure can be animated.

SUGAR simulations of the multi-mode resonator
reported by Brennan et al.[13] show the mode shapes an

K[ ] q{ } F{ }– 0= (28).

f q{ }( ) 0= (29)

qn 1+{ } qn{ } f′ qn{ }( )[ ] 1–
f qn{ }( ){ }–= (30)

f
′

qn{ }( )[ ]

qn 1+{ } qn{ }– ζ< (31)
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Figure 8. Simulations of the linear-drive multi-mode reson
tor showing the Bode magnitude and phase plot of the d
placement at the base of the semaphore mass as a functiof
driving frequency.
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Bode plot of the semaphore mass displacement (Figure 8a
and 8b). These simulations use a simple Couette flow model
for damping under all moving structures. Simulations of the
first three modes agree with Brennen’s experimental fre-
quency data to within 5%.

Transient Algorithm
For transient behavior, we simulate nodal displace-

ments of the system as functions of time by ordinary differ-
ential equation solvers such as (Runge-Kutta) ode45[15]
and central difference methods[14, 7] such as the summed
form and Wilson-θ.

The dynamical equation of motion for a general system
may be described by a form similar to Eq. (21) where the
matrices may be functions of position, velocity, and time.

The central difference method offers the least complex-
ity. The crux of the main loop is similar to

where∆t < ∆tcrit is the critical time step for stability[14].
For systems that are vastly nonlinear, the time step∆t may
need to be adaptive.

The instantaneous nodal positions for the entire system
are calculated by integrating the displacements (solutions) of
Eq. (21) from the given initial conditions at timeti to a final
time tf where{F}, [M], [C], and[K] are continuously evalu-
ated and updated throughout the simulation.

CONCLUSION

A practical MEMS simulation program for planar
devices has been demonstrated. The algorithms are not as yet
optimized for speed as commercially available software is
(i.e. ABACUS, SABER). However, SUGAR demonstrates
efficient methods for handling nonlinearities due to electro-
statics and stiffness for many types of planar devices.
Another appealing benefit is that the software is portable
across all Unix, PC, and Macintosh platforms; the minimum
requirement being Matlab (version 5 or greater). Because the
program runs in a Matlab environment it is simple to use and
easy to modify. Most importantly, SUGAR gives results that
are in agreement with traditional finite element simulation,
analytical models, and experimental data. The code for
SUGAR v0.5 is available on the web at http://www-
bsac.eecs.berkeley.edu.
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