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Abstract

For many applications of small wireless devices, secure communication is an important requirement. In this

paper, we quantify the energy costs of authentication and key exchange based on public-key cryptography on an 8-

bit  microcontroller platform. We  present a comparison of two public-key algorithms,  RSA and Elliptic  Curve

Cryptography (ECC), under two authentication scenarios. In the first scenario, an untrusted client authenticates itself

to a trusted authority. This scenario applies, for example, to a contactless smart card authenticating itself to a trusted

reader. In the second scenario, we consider mutual authentication and key exchange between two untrusted parties

such as two nodes in a wireless sensor network. For authentication and key exchange, we use a simplified version of

the Secure Sockets Layer (SSL) handshake tailored to the constraints of small devices.

Our  measurements  on  an  Atmel  ATmega128L  low-power  microcontroller  indicate  that  public-key

cryptography is  viable on 8-bit  energy-constrained  devices  even  if  implemented in  software.  For single-party

authentication, we found that challenge-response authentication based on ECC-160 used only 1/12 of the energy of

its RSA-1024 counterpart. With a given amount of energy, we were able to perform 4.2 times the number of key

exchange operations (including mutual authentication) with ECC-160 compared to RSA-1024. The benefits of ECC

over RSA manifested not only in less computation, but also in the amount of data transmitted and stored.  While the

relative cost  of public-key cryptography depends on the application,  we show that for applications that require

infrequent  authentication and  key  exchanges,  the  energy  cost  of  public-key  cryptography  is  minimal,  if  not

negligible.

1. Introduction

The availability of inexpensive radio transceivers has enabled new types of applications and created new

research  challenges.  Applications  range  from wireless  sensor  networks  (WSNs)  that  can  be  used  for  health

monitoring, industrial control, and building automation to smart cards that enable seamless user authentication and

signing of digital  documents.  Depending on the application, these devices may not only exchange information

locally with peers, but also  globally with entities on the Internet. They are often deployed in large quantities and in

environments where they may be exposed to tampering, eavesdropping, and attempts to modify transmitted data and

insert  unauthorized messages into the network.  To counter such threats,  flexible and effective mechanisms for

secure communication are essential. 

 For many applications and devices under consideration, energy is a critical and limited resource. To assess
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the  energy  demands  of  public-key  cryptography,  we  quantify  the  energy  cost1 of  optimized  software

implementations of public-key algorithms. Since the true benefits and accurate analysis of any particular algorithm

is closely tied to how it is used within a security protocol, we also consider protocols that provide single-party and

mutual authentication. In addition, we consider the impact of public-key cryptography on battery life and compare

public-key cryptography to other factors influencing energy consumption, such as idle listening, data reception and

transmission,  symmetric cryptography,  etc. Our analysis  can be generalized to estimate the cost of  public-key

cryptography in other security protocols and applications with varying characteristics. 

This  paper  is  structured  as  follows.  Section  2  gives  an  overview  of  related  work.  Section  3  covers

cryptographic primitives and the two authentication scenarios we analyzed. Section 4 presents our energy analysis

of the authentication scenarios. Finally, we summarize our conclusions in Section 5. 

2. Related Work

Earlier work by Gura et al. [4] showed public-key cryptography to be computationally  feasible on  8-bit

devices. However,  the paper only considers processing time and memory requirements and does not analyze energy

costs or the application of public-key operations in security protocols.

Carman et al. [8] estimate the energy usage of several public and private-key algorithms. Similarly, Yuan

and Qu [9] estimated energy requirements for RSA, DSA and ElGamal on various processors and proposed a power

control mechanism for processors with dynamic voltage scaling (DVS) support. Potlapally et al. [10] analyzed the

energy consumption  of  SSL on  the  Compaq iPAQ running a  StrongARM processor.  With  the  exception  of

Potlapally, the aforementioned papers only use estimates rather than actual implementations and do not consider

ECC in their analysis. Potlapally et al. ran their analysis on a powerful 32-bit processor exceeding our targeted range

for unit cost, energy consumption, and memory size.

Goodman and Chandrakasan [11] implemented an energy-efficient  public-key coprocessor for RSA and

ECC. Hardware-based crypto solutions for embedded and smart card applications are also available from ARM [16],

but they come at a cost of larger die size and monetary cost. 

Security in WSNs has lately received increased attention. However, in almost all cases, non-public-key-

based key distribution and authentication schemes have been presented [12, 31, 32, 33, 34, 35], with the underlying

assumption that public-key cryptography is too costly or impossible to incorporate in WSNs. Unfortunately, none of

the schemes are capable of providing the flexibility and security offered by public-key-based solutions.

Non-public-key solutions for authentication employ, for example, one-time passwords [17] or keyed hash

schemes [18], which inhibit flexible key distribution. In addition, non-repudiation, which is essential for signing of

digital documents, cannot be provided.

3. Public-key Authentication

1 In this paper, cost always refers to the energy cost, unless stated otherwise. 
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We first introduce cryptographic primitives used to secure communications and then consider two scenarios

where public-key cryptography can be applied to small devices. As a first scenario, we examine an untrusted client

that  authenticates itself to a trusted gateway. Smart cards are a good example, where the card – representing its

holder – is the untrusted entity and must authenticate itself to a trusted reader. Second, we consider a scenario where

two parties perform mutual authentication and key exchange. A typical field of application are WSNs, where two

nodes authenticate each other and exchange keys for data encryption and decryption. 

Cryptographic Primitives

Secure communication can be achieved by employing strong cryptography to  ensure confidentiality (non-

disclosure of secret information), integrity (prevention of data alteration), authentication (proof of identity), and non-

repudiation (unique, non-contestable  message origin).  Modern  encryption  algorithms can  be divided into two

primary  categories, symmetric and asymmetric. Symmetric-key (aka. private-key) algorithms such as AES, DES,

and RC4, rely on a secret key shared by the communicating parties to encrypt and decrypt the transmitted data.

Symmetric-key cryptography is computationally inexpensive, and can provide confidentiality and authentication

based on challenge-response protocols. In combination with symmetric algorithms, cryptographic hash functions

such as MD5 or SHA can provide integrity by  generating unique “fingerprints” of messages. However, symmetric-

key approaches are inflexible with respect to key management as they require pre-distribution of keys. For example,

in a network consisting of n nodes, if each node needed to communicate securely with any one of the other nodes, a

pairwise key distribution scheme would require n choose 2 keys at each node. Another option is to use one global

key. However, the loss of this key would compromise security on the entire network.

Asymmetric-key (aka. public-key) algorithms use a pair of keys to encrypt and decrypt. The two keys are

related mathematically; a message encrypted using one key can be decrypted by the same algorithm using the other

key. Most Internet security protocols (e.g. SSL [1], IPsec) employ a public-key cryptosystem for authentication and

to derive shared  secret keys. These keys are then used in fast symmetric-key and hashing algorithms to ensure

confidentiality, integrity and source authentication of bulk data. While public-key cryptography allows for flexible

key management and authentication, it requires a significant amount of computation. However, the capabilities of

light-weight devices are often limited in terms of energy, clock frequency, and memory size. RSA [2] is by far the

most widely used public-key algorithm on the Internet today. However, ECC [3] offers equivalent security at much

smaller key sizes. ECC is especially attractive for constrained wireless devices because the smaller keys result in

memory, bandwidth and computational savings. 

Public-key algorithms provide primitive operations that make higher level key exchange and authentication

protocols possible. The primitive operation for RSA is modular exponentiation. Using RSA, a ciphertext C can be

generated from a message M by computing C = Mx mod N, where the exponent x is either the public or private key.

Party A can encrypt a secret for party B by using B's public key (eB) as the exponent of M. Only B can decrypt the

secret by using its private key (dB) as the exponent of C. To generate a signature, A uses its private key (dA) as the

exponent of the data to be signed. The signature can be verified by using A's public key (eA) as the exponent. Unlike
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the private key, an RSA public key need not be very long; a 17-bit value (typically 216 + 1) is sufficient. Thus, verify

and encrypt operations take significantly less time than sign and decrypt operations. A detailed description of the

RSA algorithm, its parameters, and a mathematical proof of correctness can be found, for example, in [2]. The

elliptic curve equivalent to RSA modular exponentiation is scalar point multiplication Q = k * P, where P=(xP,yP) is

a point on an elliptic curve, k is a (large) integer, and Q=(xQ,yQ) is another point on the elliptic curve resulting from

the point multiplication of k and P. A well-known key exchange algorithm for ECC is the Elliptic Curve Diffie-

Hellman (ECDH) algorithm [5]. Two communicating parties A and B first agree on an elliptic curve and a base

point G. They generate private keys kA and kB and the corresponding public keys QA = kA * G and QB = kB * G. To

perform the key exchange, both parties first exchange their public keys QA and QB. A computes kA * QB  and B

computes kB * QA such that both arrive at a common shared secret S=kA * QB = kB * QA = kA * kB * G = kB * kA * G.

ECC-based signatures can be generated and verified with the Elliptic Curve Digital Signature Algorithm (ECDSA).

A description of ECDSA would exceed the scope of this paper, but can be found in [6]. 

Digital certificates are commonly used to verify the identity of a party sending a message, and to provide the

recipient with the means to encode an encrypted reply. A digital certificate issued by a certificate authority (CA)

typically  contains the applicant's  public key,  the CA's  digital  signature,  and other fields such as issuer name,

applicant name, expiration date, etc. The CA makes its own public key readily available so that a recipient of a

digital certificate can use the CA's public key to verify the  CA's signature on the certificate  and then use the

applicant's  public  key  and  identification  information  held  within  the  certificate.  For  example,  for  mutual

authentication of arbitrary nodes in a WSN, each node only needs to store the CA's public key in addition to its own

private key and certificate. The most widely used standard for digital certificates is X.509 [7]. 

Due to expected advances in cryptanalysis and increases in computing power available to an adversary, both

symmetric and  public-key sizes must grow over time to offer acceptable security for a fixed protection life span.

RSA with 1024-bit keys (RSA-1024) is the currently accepted security level, and is equivalent in strength to ECC

with  160-bit  keys  (ECC-160). To protect  data  beyond  the year  2010,  RSA Security  recommends  RSA-2048

(equivalent to ECC-224) as the new minimum key size [37]. Symmetric key sizes in use today are mostly 128 bits

or greater.

Single-Party Authentication: Smart Cards

In this section we describe a protocol based on public-key cryptography, with which an untrusted party

authenticates to a trusted party. While we talk about authentication in the context of smart cards, the underlying

protocol for authentication can be used in other applications as well.

Modern smart cards are suitable for cryptographic implementations as they contain security features that

enable the protection of sensitive cryptographic data and provide for a secure processing environment. Applications

of smart cards range from authenticated access to facilities to signing of digital documents and national IDs [15].

For our analysis we assume contactless  smart cards powered by internal batteries (aka. active cards), which are

available from several vendors [13, 14]. 
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We consider an authentication protocol using a challenge-response scheme for both ECC and RSA as

shown in Figure 1. The reader sends a challenge to the nearby smart card, where the challenge is a random number

or a combination of known data and a random number. The smart card signs the challenge with its private key and

transmits its ID and the signature back to the reader. The reader can use this information along with the card's public

key to verify the signature, which establishes the authenticity of the card, and thus its holder. Figure 1 assumes that

the card's public key is available to the reader from a trusted  directory containing a table of card IDs and their

corresponding public keys. Alternatively, the card can transmit a certificate containing its public key (signed by a

trusted CA) to the reader.  In this case, the reader has to both verify the signature on the certificate and the signature

on the challenge.

Figure 1: RSA and ECC-based authentication protocols for smart cards. Payload message sizes, in bytes, are shown

in brackets. 

Mutual Authentication and Key Exchange: WSNs

Two parties operating in an open environment that potentially includes adversaries seeking to impersonate

or eavesdrop on communication, will want a mechanism to separate friends from foes and keep the content of their

conversations secret.  Mutual  authentication and key exchange using public-key cryptography is  a well-known

mechanism that enables exactly that. 

A  pervasive network, such as a WSN, deployed in an untrusted environment is one examplary area for

public-key  authentication.  Numerous  applications  of  WSNs  including  health monitoring, military  surveillance,

industrial control, and building automation require some level of security. Since the number of nodes deployed can

range from a handful to thousands, if not millions, flexible key distribution is essential, which is a hallmark of

public-key cryptography. 

The mutual authentication and key exchange protocol presented below is a simplified version of the SSL

handshake [1]. Using SSL terminology, we refer to the party initiating the communication as the client and to the

responding party as the server. Figure 2 shows the exchange of data between the client and the server during an SSL

handshake process for both RSA-based and ECC-based algorithms. 

In the first message (C.Rand), the client indicates the versions of SSL it implements and provides a random

value later used for key derivation as well as  an ordered list of supported asymmetric, symmetric, and hashing

algorithms known as  cipher suites.  For constrained devices, a single cipher suite may be used such as ECDH-
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ECDSA-AES-SHA1 or RSA-AES-SHA1. With the second message, the server selects one of the proposed cipher

suites and responds to the client with a 32-byte random value and its ECC or RSA-based certificate. If RSA is used,

the client must perform an RSA verify operation to verify the server's certificate, an RSA encrypt operation with the

server's public key to encrypt a random 48-byte secret key, and an RSA sign operation on a derivate of the 32-byte

random number proving possession  of  its  private key.  If ECC is  used, the client performs an ECDSA verify

operation to verify the server's certificate and an ECDH operation to calculate the shared secret. The third message,

sent  from the  client to  the server, includes the client's  certificate  and a  finished message,  which is  the  first

symmetrically encrypted message based on the shared secret. If RSA is used, the third message also includes the

encrypted secret key and the client's signature. In the RSA case, the server can now verify the client's identity by

verifying the client's signature and prove its identity to the client by being able to decrypt the secret key with its

private key.  In the ECDH case, the server computes the shared secret using ECDH and performs an ECDSA

operation to verify the client's certificate. Mutual authentication is achieved through mutual possession of the shared

secret (client and server will compute a different ECDH secret if one party's public and private key do not match).

For both RSA and ECC-handshakes, the server ends the handshake with a finished message containing a keyed hash

of the data exchanged thus far.

To conserve energy, we reduced the amount of data exchanged in a typical Internet-based SSL handshake.

We assume the WSN administered by a single organization such that many of the parameters can be fixed a priori

and need not be negotiated in the handshake (e.g. cipher suite and protocol version). 

Figure 2: Simplified RSA and ECC-based SSL handshake with mutual authentication. Payload message sizes, in

bytes, are shown in brackets. 

SSL specifies the use of X.509 certificates, which contain fields for validity period, holder's public key, CA

signature, etc. Since we assume that all certificates are issued by the same authority for a common validity period,

which  may  even be  the  life  time  of  the  WSN, a  simplified  certificate  representation  can  be  used. Without

compromising the security of the handshake, certificates can be shortened to only contain a unique device ID, a

public key and a signature (see  Appendix A). Depending on the individual fields, a traditional X.509 RSA-1024
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certificate is on the order of  700 bytes long, while the simplified certificate is only 262 bytes long. The difference is

even more significant for ECC-160, for which a certificate is reduced from approximately 530 bytes to 86 bytes.  

4. Energy Analysis

We conducted our experiments on the Berkeley/Crossbow motes platform, specifically on the Mica2dots

[19], which are a popular platform for WSN research. The major energy consumers on these sensor devices are the

Atmel ATmega128L [20] 8-bit microcontroller and the Chipcon CC1000 [21] low-power wireless transceiver. The

Atmega128L contains 128kB of FLASH program memory, 4 kB of data memory and runs at a clock frequency of 4

MHz. We supplied the Mica2dot with an operating voltage of 3 Volts and configured the wireless transceiver to use

a carrier frequency of 915 MHz and the maximum transmission power of 3 mW (5 dBM). Our program code was

written in a combination of nesC [22], C and assembly language, where optimized assembly code was used to

implement RSA and standardized ECC over integer fields GF(p), as presented in [4].

We found that  while  the  ATmega128L is  designed  for  low  power  applications,  it  does  not  employ

techniques such as  gated  clocks to  shut down processor modules  that  are  temporarily  unused.  Therefore, we

approximated the energy consumption for individual cryptographic algorithms and other activities such as data

transmission by measuring the current drawn from the power supply. An earlier, more accurate approach using an

oscilloscope and a sense resistor showed the error to be less than 5%.

Table  1  presents  characteristic  data  for the Mica2dot platform that  we  measured and calculated. It  is

interesting to note that the power required to transmit 1 bit is equivalent to roughly 2090 clock cycles of execution

on the microcontroller alone. This confirmed our assumption that the energy cost of computation is cheap compared

to data transmission. The cost of receiving one byte (28.6µJ) is roughly half of that required to transmit a byte (59.2

µJ). During transmit and receive, the microcontroller is powered on along with the wireless transceiver. We used a

packet size of 41 bytes, 32 for the payload and 9 bytes for the header. The header,  ensuing a 8-byte preamble,

consists of source, destination, length, packet ID, CRC, and a control byte. Receiving one 41-byte packet (including

8-byte preamble) costs 49*28.6uJ=1.40mJ and transmitting one 41-byte packet costs 49*59.2uJ=2.90mJ.

Field Value
Effective data rate 12.4 kbps
Energy to transmit 59.2 µJ/byte
Energy to receive 28.6 µJ/byte
ATmega128L active mode 13.8 mW
ATmega128L power down mode .0075 mW
ATmega128L MIPS/Watt 289 MIPS/W

Table 1: Characteristic data for the Mica2dot sensor platform. 

Energy Cost of Primitive RSA and ECC Operations

Table 2 compares the energy consumed by RSA and ECC for generating and verifying signatures. While the

cost of an RSA verify is small, it is overshadowed by the more expensive sign operation, both of which are required
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for authentication. In comparison, ECDSA2 signatures are significantly cheaper than RSA signatures and ECDSA

verifications are within reasonable range of RSA verification. Note that when transitioning from RSA-1024 to RSA-

2048 the energy cost of signing increases by a factor of more than seven, while ECDSA-224 signing is less than

three times as expensive as ECDSA-160 signing. To put these  numbers into perspective,  one RSA-1024 sign

operation is equivalent to transmitting 5,132 bytes, compared to 385 bytes for an ECDSA-160 sign operation. 

Algorithm Sign [mJ] Verify[mJ]
RSA-1024 304 11.9
ECDSA-160 22.82 45.093

RSA-2048 2302.7 53.7
ECDSA-224 61.54 121.983

Table 2: Energy cost of digital signature computations. 

Table 3 compares the energy cost of key exchanges not including authentication and certificate verification.

The RSA-based key exchange protocol relies on party A to encrypt a randomly generated secret key with party B's

public key, and party B decrypting the key using its private key. With ECC, both parties perform a single ECDH

operation to derive the secret key. 

Algorithm Client [mJ] Server [mJ]
RSA-1024 15.4 304
ECC-160 ECDH 22.3 22.3
RSA-2048 57.2 2302.7
ECC-224 ECDH 60.4 60.4

Table 3: Energy cost of key exchange computations. 

We do not present the cost of key generation. However, we note that for ECC, key generation only involves

generating a random number, which becomes the user's private key, and executing an ECDH operation to compute

the corresponding public key. RSA key generation is much more time consuming as it requires the generation of

large prime numbers. For details, we refer the reader to [23]. 

Energy Cost of Symmetric-Key and Hash Algorithms

For our analysis we chose to focus on AES with 128-bit keys for data encryption/decryption and SHA-1 for

hashing. We used an assembly-optimized AES implementation [24] and a C-implementation of SHA-1 [25]. Table

4 contains data for both implementations. The cost of block encryption and hashing is cheap compared to public-key

operations and wireless communication. For example, the energy required for an RSA-1024 and ECC-160 signature

operation is equivalent to encrypting 191kB and 14kB of data with AES-128, respectively. Similarly, the cost to

encrypt one byte is only 2.7% to that of transmitting one byte. For a more comprehensive discussion of energy

2 We estimated the energy numbers for ECDSA based on our measurements of ECC point multiplication and integer inversion.
In addition, ECDSA requires hashing, integer addition and multiplication operations, all of which we expect to consume only
a minimal amount of energy. 

3 Our ECDSA numbers assume that a signature verification requires two point multiplications. Known optimizations can
reduce this to roughly 1.2 point multiplications leading to further reduction in energy usage. 
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consumption of symmetric ciphers and hash algorithms see [8, 10]. 

Algorithm Energy
SHA-1 5.9 µJ/byte
AES-128 Enc/Dec 1.62/2.49 µJ/byte

Table 4:  Energy  numbers for AES  with 128-bit  keys  and SHA-1.  AES-128 numbers  include key-setup. The

numbers were averaged over inputs ranging from 64 to 1024 bytes.

Authentication Scenarios

In this  section we present a detailed analysis of the cost of security in the context of the two authentication

scenarios described in Section 3.  Assuming unique device IDs of 4 bytes and a 16-byte challenge as shown in

Figure 1, the smart card requires 25.5mJ for authentication with ECDSA-160 and 311.8mJ with RSA-10244. Figure

3(a) illustrates the energy consumption for a varying number of authentications. Figure 3(b) plots the operational

lifetime of a smart card based on the number of daily authentication operations. If on average one authentication is

performed each day, a battery with a minute 30 mAh capacity could theoretically5 last almost 3 years with RSA-

1024, but over 34 years with ECDSA-160. The 30 mAh capacity number was taken from one of the smallest

commercially available lithium coin batteries,  CR1025 [26].

(a) (b)

Figure 3: Energy consumption for single-party authentication: (a) Total energy consumed by public-key operations

and data communication. (b) Operational lifetime versus number of daily authentications. 

Single-party authentication favors the use of ECC over RSA because the primary purpose of the smart card

is to generate signatures, for which ECC is far more efficient. Since the amount of exchanged data is small, the cost

4 We only account for the payload data sent and received and assume that the smart card is active (powered on) only when it
comes into close proximity to a reader. 

5 There are several other factors that influence battery life. However, for simplicity we assume the battery will provide the
specified capacity.
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of communication has little impact on overall energy consumption; public-key computations account for 89.3% of

the consumed energy for ECDSA-160 and for 97.5% of the energy for RSA-1024.

Next, we consider the mutual authentication and key exchange handshake for nodes operating in a WSN. In

order to realistically quantify the impact of public-key cryptography on battery life, we first start by determining the

factors that influence energy consumption and then present our analysis.

For most applications of WSNs, energy is a scarce resource that is inconvenient or impossible to replenish.

For applications that do not require secure communication, three factors dominate the overall energy consumed; idle

listening,  application-specific  operations and  communication.  Secure  communication  through public-key-based

authentication and key exchange introduces two new factors: bulk data encryption/decryption including hashing and

public-key operations including communication. We briefly discuss these factors.

Considerable research has gone into designing low-power media access control (MAC) protocols [27, 28],

specifically towards duty cycle mechanisms seeking to eliminate idle listening. Duty cycles (i.e. receive time / sleep

time)  as low as .1% are  often used [29,  30],  while still  being flexible enough to  efficiently transfer different

workloads and adapt to changing network conditions. 

Application-specific computation and communication in most WSNs today ranges from polling sensors to

data aggregation and message forwarding. The amount of energy spent on communication is likely to vary based on

the functionality and placement of the node within a network. For example, a node serving as an intermediate hop

between a base station is likely to experience much more traffic than a node at the edge. Similarly, the amount of

energy spent on symmetric encryption/decryption will vary based on traffic characteristics.

The cost of a public-key security protocol can be broken down into computational cost (e.g. an ECDH

operation)  and  communication  cost  (e.g.  sending/receiving a  certificate).  The amount  of  energy spent  can be

minimized by choosing the best algorithm(s), reducing the communication overhead of the security protocol, and

limiting the number of authentication and key exchange handshakes. A network consisting of stationary nodes will

likely require handshakes to exchange secret keys at deployment time; symmetric encryption can be used thereafter.

Handshakes will be more frequent when nodes are mobile such as in ad-hoc networks and dynamic WSNs. In these

cases,  a demand-based authentication scheme may be more appropriate. For example, a node may discover its

neighbors, but perform a handshake only when it has confidential data to send/receive or otherwise remain dormant.

We analyze the energy usage of the simplified SSL handshake based on RSA-1024 and ECC-160. The

amount of combined energy spent by client and server is determined by public-key computation, transmitting and

receiving handshake messages, hash computation, and random number generation6. The first three factors depend on

the public-key algorithm used. Table 5 presents the energy consumed by the entire handshake for RSA-1024 and

ECC-160. Figure 4(a) shows the percentage of energy spent on each major part of the handshake process. For both

RSA-1024  and  ECC-160,  the  public-key  computation  dominates,  consuming 82%  and  72%  of  the  energy,

respectively. Communication costs are second, while random number generation and hashing costs are negligible.

6 We did not implement a random number generator. Based on commonly known algorithms we assume that a number that
meets the randomness criteria can be generated in a quarter of a second. 
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Figure 4(b) shows the ratio of the energy consumed using ECC versus RSA for each part of the handshake

process. The computational benefits of ECC-160 over RSA-1024 are apparent, where the RSA-1024 computations

consume 4.9 times the energy of ECC-160 computations. Compared to ECC-160, an RSA-1024 handshake also

consumes 2.7 times the energy in transmitting and receiving data. Communication costs for RSA-1024 are higher

because of the longer key sizes, thus making the certificates larger as well. With RSA-1024, the entire handshake

requires the client to transmit 490 bytes of payload and the server to transmit 314 bytes of payload. With ECC-160,

both parties transmit the same amount of payload data, 138 bytes.

Algorithm Client [mJ] Server [mJ]
RSA-1024 397.7 390.3
ECC-160 93.7 93.9

Table 5: Energy consumption of handshake protocol based on RSA-1024 and ECC-160. 

(a) (b)

Figure 4: (a) Decomposition of energy for mutual authentication and key exchange on the client side.

(b) Relative energy consumption on the client side. Percentages represent energy ratio E(ECC)/(E(ECC)+E(RSA)).

Figure 5 shows the number of handshakes possible as we vary the battery capacity from 30mAh to 1000

mAh and only a certain fraction, 5% or 10%, of the overall capacity is available for handshakes. The capacities

reflect those of common coin-based watch and general purpose batteries [26]. From the figure we can see that even

with 5% of the energy available from a miniature 30 mAh battery, a node can perform 173 ECC-160 and 41 RSA-

1024 handshakes. 

Next, we examine the cost of the handshake in a likely usage scenario. Consider a newly deployed WSN

consisting of an arbitrary number of nodes.  Each node has been assigned a public and private key pair along with a

digital certificate issued by a trusted certificate authority (CA) and the CA's public key. After deployment, nodes

authenticate themselves to their immediate neighbors and exchange secret keys for data encryption/decryption, for
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example, using the simplified SSL handshake described earlier. The next logical step would be to form a mesh

network, where all nodes, if possible, can communicate with one or more base stations. Having formed a mesh

network, the nodes can focus on application-specific tasks. 

Figure 5: Number of handshakes when only a 5% or 10% fraction of the battery capacity is available. 

After completing the handshakes, nodes use the agreed-upon secret keys for encrypting/decrypting all or

parts of the application data. The secret keys may be used for the lifetime of the nodes or while the nodes remain in

communication range. Figure 6(a)  plots the percentage of energy  consumed by a single handshake versus the

number of bytes that have been transmitted after being encrypted by the secret key. The initial cost of the ECC-160

handshake  falls  below  10%  after  transmitting 16kB and  is  almost  negligible (~2%)  after  64kB  have  been

transmitted. As expected, the relative cost of an RSA-1024 handshake takes longer to fall. While the number of

bytes encrypted and transmitted per handshake will vary based on the application, nodes near the base station will

generally experience more traffic, thus the cost of handshakes at these nodes will likely be small. 

As was mentioned earlier, the fraction of energy spent on listening over an idle channel can be significant.

Ignoring other factors such as application-specific computation and communication, Figure 6(b) considers three

nodes with varying duty cycles of .1%, .5% and 1%, where each node performs five handshakes over a one day

period. In all three cases, the five ECC-160 based handshakes represent less then 11% of the energy consumed per

day. 

The above results indicate that for applications where handshakes are relatively infrequent the cost of the

handshakes  is  negligible. The fraction of energy spent on  idle  listening, application-specific  computation and

communication will likely  dominate over the initial cost of the handshake.  When considering which public-key

algorithm to use, ECC is a better fit for this class of devices. In addition to  consuming significantly less energy, the

execution time and memory requirements for ECC are also much lower compared to RSA. For example, an ECC-

160 point multiplication takes just 1.61 seconds and 282 bytes of data memory, while an RSA-1024 private-key

modular exponentiation takes nearly 22 seconds and 930 bytes of data memory [4]. 
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(a) (b)

Figure 6: (a) Comparison of energy for handshake and subsequent bulk data encryption and transmission. 

(b) Comparison of energy spent on idle listening and energy spent on five handshakes over a one day period.

5. Conclusions

We analyzed the energy consumption of a single-party authentication protocol and a mutual authentication

and key exchange protocol in the context of two likely applications. Contrary to widely held beliefs [31, 32, 33, 34,

35], our results indicate that authentication and key exchange protocols using optimized software implementations

of public-key cryptography are very viable on small wireless devices. Depending on the frequency of public-key

computations, its relative energy cost may even be negligible. Furthermore, our analysis suggests that the use of

ECC over RSA can lead to significant energy savings. In addition to the computational benefits of ECC, its smaller

keys and certificates lead to significant savings in public-key communication costs.

For single-party authentication, we found that challenge-response authentication based on ECC-160 used

only 1/12 of the energy of its RSA-1024 counterpart. With a given amount of energy, we were able to perform 4.2

times the number of key exchange operations (including mutual authentication) with ECC-160 compared to RSA-

1024. While such absolute numbers are platform-specific, we expect the computational cost to fall faster than the

cost to transmit and receive. For example, ultra-low-power microcontrollers such as the 16-bit Texas Instruments

MSP430 [36]  can execute the same number of  instructions at  less than half  the power required  by the 8-bit

ATmega128L. A similar analysis conducted on such platforms is likely to show communication costs representing a

larger  fraction  of  the  overall  energy  spent  on  authentication  and  key  exchange  protocols.  The  benefits  of

transmitting smaller ECC keys and certificates will in turn be more significant. 

In addition to flexible key exchange and peer authentication, public-key cryptography can be the enabling

technology for numerous other WSN applications, including securely connecting pervasive devices to the Internet

and distributing signed software patches.
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Appendix A

Table 6 shows the required fields of a X.509 certificate. The three fields we kept for the simplified SSL

handshake are underlined. We assume that a single authority is responsible for managing the network and that all

certificates  have a fixed validity period. This applies, for example, to a WSN deployed by a single organization

where certificates are valid for the lifetime of the network. This simplification enables us to remove the following

fields: issuer name, issuer's ID, and validity period. Given the limited memory on constrained devices, we assume

that they implement one specific cipher suite and signature algorithm, for example, ECC-160 with AES-128 and

SHA-1. That is, the signature algorithm field can also be removed. Serial numbers are generally used for certificate

revocation, which we do not consider. Finally, we assume that a subject's ID is sufficient for identification and that

all entities in the network implement the same certificate version. Table 7 shows the fields and their sizes for the

RSA-1024 and ECC-160 certificates we used in our analysis.

Version Number Serial Number Signature Algo. Issuer Name Validity Period
Subject Name Subject's Public Key Subject ID Issuer ID Signature

Table 6: Fields required by a X.509-compliant (v. 3) certificate, optional extension fields are ignored.

Fields RSA-1024 Size [Bytes] Description
Unique ID 4 ID of the node to which the certificate was issued.
Modulus 128 RSA modulus.
Exponent 3 RSA public-key exponent.
Signature 128 RSA signature from a certificate authority (CA). 

Fields ECC-160 Size [Bytes] Description
Unique ID 4 ID of the node to which the certificate was issued.
EC Public Key 40 Elliptic curve point serving as the public key of the subject.
ECDSA-Signature 42 ECDSA signature from a CA.

Table 7: Certificate formats for simplified RSA-1024 and ECC-160 certificates.
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