
Simulation of Process Control with WirelessHART Networks Subject to
Clock Drift

Mauro De Biasi, Carlo Snickars, Krister Landernäs, and Alf Isaksson
ABB AB, Corporate Research
SE-721 78 Västerås, Sweden

{mauro.d.biasi,carlo.snickars, krister.landernas, alf.isaksson}@se.abb.com

Abstract— This work describes simulation of wireless control
using the WirelessHart standard. Specifically issues concerning
clock drift between controllers and wireless network are ad-
dressed. The simulations have been done using an extension of
the Simulink package TrueTime.

I. INTRODUCTION

Wireless technologies are becoming more and more im-
portant both in public and in industrial environments. The
apparent benefit of wireless communication is to remove
the restriction of being attached to expensive and messy
cables. The advantages given by wireless technology are
several. First of all, it permits to carry the capability of wired
networks to areas that cables cannot reach. Considering
industrial plants, wireless technologies can significantly facil-
itate deployment and reconfiguration by eliminating the need
for installing and maintaining cabling, reducing both cost
and time. However, due to the lack of maturity and failure
to provide real-time performance no wireless technology
has been widely adopted for process automation. This may
change with the introduction of WirelessHART.

WirelessHART is an optional HART Physical Layer that
provides a low cost, relatively low speed (e.g. compared
to IEEE 802.11g), wireless connection. It adopts the IEEE
802.15.4 physichal layer and it works in the 2.4GHz ISM
radio band using 15 different channels. The communication
between the devices is performed using Time Division Mul-
tiple Access (TDMA) with time slots of 10 ms. A series
of time slots form a superframe which can be of arbitrary
length. WirelessHART also enables channel hopping to avoid
interferences and reduces multi-path fading effects. One or
more sources and one or more destination devices may be
scheduled to communicate in a given slot. The slot may be
dedicated to communication from a single source device or
a slot may support shared communication. In this last case,
the MAC protocol used is CSMA/CA.

This work addresses the problem of clock drift between
controller and the WirelessHART network that occurs when
no synchronization exists between the two. Our theories have
been verified using an extension to the simulation environ-
ment TrueTime [7]. This extension has added the possibility
to simulate the newly released standard WirelessHART [1].
The rest of this paper is organized as follows: Section II
is a general introduction to the WirelessHart protocol. Then
Section III gives a brief introduction of TrueTime. In section

IV the controller and the network is described in some detail,
and in Section V some compensation methods are descried.
This is followed by simulation examples in Section VI and
some conclusions in the last section.

II. WIRELESSHART NETWORK DESCRIPTION

The Structure of a WirelessHART network is shown in
Fig. 1. All communications of the WirelessHART Network
pass through the gateway. Consequently, the gateway must
route packets to the specified destination (network Device,
host application, or network manager). The gateway uses
standard HART commands to communicate with network
devices and host applications. The plant automation network
could be a TCP-based network, a remote IO system, or a
bus such as PROFIBUS DP. The Network Manager creates
an initial superframe and configures the Gateway. A detailed
description of the components of a wirelessHART network
is given in [2] and [3].

Fig. 1. The structure of a WirelessHART network.

A. MAC Protocol Description

The main tasks of the Medium Access Control (MAC)
protocol are:

• slot synchronization;
• identification of devices that need to access the medium;
• propagation of messages received from the Network

Layer;

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

1357

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.163

1357

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.163

1355

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 18, 2010 at 16:55 from IEEE Xplore. Restrictions apply.

• to listen for packets being propagated from neighbors
WirelessHART uses Time Division Multiple Access
(TDMA) and channel hopping to control access to the
network. TDMA is a widely used Medium Access Control
technique that provides collision free, deterministic commu-
nications. It uses time slots where communications between
devices occur. A series of time slots form a TDMA super-
frame (see Figure 2).

Fig. 2. The SuperFrame structure [1]

All devices must support multiple superframes. Slot sizes
and the superframe length (in number of slots) are fixed
and form a network cycle with a fixed repetition rate.
Superframes are repeated continuously. For successful and
efficient TDMA communications, synchronization of clocks
between devices in the network is critical [8]. Consequently,
tolerances on time keeping and time synchronization mech-
anisms are specified to ensure network-wide device clock
synchronization. It is imperative that devices know when
the start of a slot occurs. Within the slot, transmission
of the source message starts at a specified time after the
beginning of a slot. This short time delay allows the source
and destination to set their frequency channel and allows the
receiver to begin listening on the specified channel. Since
there is a tolerance on clocks, the receiver must start to listen
before the ideal transmission start time and continue listening
after that ideal time. Once the transmission is complete
and the destination device indicates, by transmitting an
ACK, whether it received the source device data-link packet
(DLPDU) successfully or with a specific class of detected
errors. Communicating devices are assigned to a superframe,
slot, and channel offset. This forms a communications link
between communicating devices.

III. DESCRIPTION OF TRUETIME

This section describes the use of the original
Matlab/Simulink-based simulator TRUETIME [7], which
permits to design networked control systems simulating
real-time kernels, network transmissions (using wired
or wireless networks), and continuous plant dynamics.
TrueTime is constituted by a six blocks library and by a
collection of C++ functions with corresponding MATLAB
MEX-interfaces. These functions are divided into two
groups. One permits to configure the simulation by creating
tasks, interrupt handlers, monitors, timers, etc. The other

functions are real-time primitives that are called from
the task code during execution and provides for AD-DA
conversion, changing task attributes, entering and leaving
monitors, sending and receiving network messages, etc.

A. The TRUETIME Kernel Block

One of the blocks contained in the library is the Kernel . It is
a MATLAB S-function that simulates a CPU with a real-time
kernel, A/D and D/A converters, a network interface, and
external interrupt channels. The kernel is designed following
a real-time model with a ready queue and a time queue. It
is also characterized by records for tasks, interrupt handlers,
monitors and timers that have been created for the simulation.
The kernel executes an arbitrary number of user-defined tasks
and interrupt handlers that may also be created dynamically
at run-time. Tasks may be periodic to simulate activities such
as controller and I/O tasks, or aperiodic to represent activ-
ities like communication tasks and event-driven controllers.
Aperiodic tasks are executed by the creation of task instances
(jobs).

B. The TRUETIME Network Block

The TRUETIME network block permits to simulate medium
access and packet transmission in a local area network choos-
ing different communication protocols: CSMA/CD (e.g. Eth-
ernet), CSMA/ AMP (e.g. CAN), Round Robin (e.g. Token
Bus), FDMA, TDMA (e.g. TTP), and Switched Ethernet.
Only packet-level simulation is supported. It is, in fact,
assumed that the messages have been divided into packets
at higher protocol levels. When a node tries to transmit
a message (using the primitive ttSendMsg), a triggering
signal is sent to the network block on the corresponding
input channel. At the end of the transmission, the network
block sends a new triggering signal on the output channel
corresponding to the receiving node. Each receiving node
has a buffer in which the transmitted message is put.

C. The TRUETIME Standalone Network Blocks

The standalone network blocks are two, the ttSendMsg
and the ttGetMsg. They can be used to send messages
using the network blocks without using kernel blocks. This
permits (not having to initialize kernels, create and install
interrupt handlers, etc.) to build quickly a simulation, without
creating any M-files.

D. The TRUETIME Wireless Network Block behaviour

The wireless network block simulates medium access and
packet transmission. Originally it implemented two kinds of
communication protocols, 802.11b/g (WLAN) and 802.15.4
(ZigBee). The possibility to use also WirelessHART has
been added. The block permits to simulate WirelessHART
communication and study issues such as clock drift, delay
and packet loss.

135813581356

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 18, 2010 at 16:55 from IEEE Xplore. Restrictions apply.

IV. DESCRIPTION OF THE CONTROL NETWORK

Most industrial controllers, for example AC800M in the
ABB 800xA distributed control system [4] [5], are not
synchronized with the I/O communication. Each executing
task typically consist of a number of control loop calculations
and works according to a scenario like the one in figure 3.
Each execution cycle is begun by reading the value of all

Fig. 3. AC800M typical scenario

the sensors from their respective registers. In the context
of WirelessHART, then all sensor slots would have to be
before any control tasks. AC800M then writes the control
signals to the output registers as soon as the corresponding
computation has been completed. Hence, one does not need
to wait until all control signals have been computed before
actuator communication can start. The reason for reading all
sensor at once, is that when there are control loops with a
direct connection to each other, they need to be executed
together. An example of such a situation is cascaded loops.
Here the outer, so called master controller, provides the
setpoint to the inner slave controller, which in turn calculates
the actuator signal. This means that two sensor signals are
needed to calculate one actuator signal. Obviously both
sensor readings need to be available before calculation can
start. It is however, highly unlikely that with a large number
of loops in one network they are all directly connected
in this manner, why the requirement to have all sensor
signals available up front is an unnecessary (but obviously
convenient) restriction.

A. Causes of clock drift in the Control Network

Consider a system like the one shown in the figure 4.

Fig. 4. A possible scenario.

The sensor sends the data to the gateway over a wireless
network. The gateway writes the data in the I/O board of
the controller through a wired connection. When the control
signal is computed, the information is sent back to the
gateway by wire and to the actuator using the wireless
network. Using a wireless protocol like WirelessHART all

devices that are part of that network, are synchronized. The
controller, however, is not part of the wireless network and
in the case in which no synchronization with the wireless
nodes can be guaranteed. Thus, if periodic tasks are used to
execute sensing, actuating and control calculation and if the
controller is affected by clock drift, a delay can appear in
the closed loop system. This is illustrated in figure 5. The

Fig. 5. Delay caused by clock drift.

control signal computated at time t4 uses the sensor value
from t1, but will not actuate until t6. The total delay in this
case is not equal to the standard delay L = t3−t1 but instead
equal to D, where

D = t6 − t1 = H + L (1)

From (1) it is clear that clock drift between the controller
and the WirelessHART network can cause a delay equal to
one superframe.

V. COMPENSATION METHODS

In the simulations below we have studied two different
controller types:

• A conventional PI controller because of its frequent use
in industry.

• A special case of delay compensating controllers; the
predictive PI (PPI) controller

A. PI Controller

The continuous-time parametrization of the PI controller is

C(s) = Kc

(
1 +

1
TIs

)
(2)

where Kc and TI are the controller gain and integral time
respectively. A digital implementation has been used where
the control signal is calculated according to

uk = uk−1+Kc((1+Ts/TI)(rk−yk)−(rk−1−yk−1)) (3)

We will in this paper use controller settings in accordance
with the lambda tuning technique [9], which assumes that
the process is described by a first order system with time
delay

G(s) =
K

Ts + 1
e−Dsyss (4)

135913591357

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 18, 2010 at 16:55 from IEEE Xplore. Restrictions apply.

Using an approximation of the deadtime and cancellation
of the open-loop denominator the following tuning rules
result

TI = T, Kc =
T

K(λ + Dsys)
(5)

where λ is the desired time constant of the closed-loop

system.

B. The PPI controller

The predicting PI controller (PPI) is a particular Smith
predictor [9]. Consider:

G(s) =
K

Ts + 1
e−Ds (6)

As in lambda tuning, the design method is to chose a
controller that cancels the process pole and makes the other
closed-loop pole equal to s = −1/λ, where λ is the desired
response time of the closed-loop system.

Fig. 6. The PPI controller.

The controller parameters obtained are the following:

Kc =
T

λK
, TI = T (7)

The controller is:

C(s) =
1 + sT

Ksλ

1
1 + 1

sλ (1 − e−Ds)
(8)

The controller can be seen as a PI controller that acts on
a predicted error, which is the actual error compensated for
past control actions that have not yet appeared at the output.
From that it takes its name, Predicting PI controller.
Choosing λ = T gives the controller a particularly simple
form also depicted in figure 6.

U(s) = KcE(s) +
1

1 + TIs
e−sDU(s) (9)

Defining:

Z(s) =
1

1 + TIs
U(s) (10)

then (9) becomes

U(s) = KcE(s) + Z(s)e−sD (11)

To implement a digital PPI, it is necessary to convert to the
discrete domain:

zk =
(1 − a)q−1

1 − aq−1
uk (12)

where a = e
− Ts

TI . The equation to update zk is :

zk = azk−1 + (1 − a)uk−1 (13)

Considering (11) and (13) it is possible to obtain the digital
control command:

uk = Kcek + zk−1 (14)

In figure 13 the reference tracking for this implementation
of the PPI is compared with the PI performance. A similar
simulation comparison for delay compensation in wireless
communication also deploying the PPI has been presented
in [6].

VI. SIMULATIONS OF SYSTEMS WITH DELAY DUE TO

CLOCK DRIFT USING WIRELESSHART PROTOCOL

In this section the problem of delay due to the clock drift
in the controllers like the AC800M will be treated. All the
tests have been made using simplified plants with one loop
in which the devices communicates using the WirelessHART
protocol.

A. Simulation setup

The model considered is a stable first order system:

G(s) =
0.25

2s + 1
(15)

The global scheme of the control system is illustrated in
figure 7. It has been constructed in a Simulink environment,
using the TrueTime modified wireless network block.

Fig. 7. Representation of the simulated control system

In this control system there is only one loop. The sensor
sends the measurement to the gateway that is responsible
to communicate with the controller using a wired protocol
(like Profibus or Fieldbus) and to send the control signal to
the actuator using the wireless network. The communication
between sensor, gateway and actuator is provided by the
WirelessHART protocol with a superframe size of 1 s and a
time slot of 10 ms. The communication schedule is shown
in figure 8.

Looking at this schedule, it is possible to notice that after
the transmission between the sensor and the gateway (S →

136013601358

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 18, 2010 at 16:55 from IEEE Xplore. Restrictions apply.

Fig. 8. Communication schedule

GW) there are some empties slots. These slots are left
empty to simulate the same idle time of the case in which
there are several loops. In this specific scenario the time
elapsed between sensing and actuating (dead-time) is 0.5 s.
If the controller is affected by the clock drift the dead-time
increases, influencing the system performance. The clock
drift in digital devices is usually around 10−5 but this value
would require several hours of simulation before the delay
appears in the system. Using a bigger value of the clock
drift, the simulation needs less time and the results are not
changed. For this reason the clock drift value has been fixed
equal to 0.005 in the controller kernel block.
This setting means that the controller clock is faster than the
simulation clock and it gains 5 s every 1000 s.

B. Simulation comparison of PI and Predictive PI control

In this section the performances of a PI controller and a
Predictive PI will be compared in order to understand how
much improvement a PPI may lead to for the problem of
the clock drift. Consider the first order model (15) and a
square wave reference with a 50% duty cycle and period
of 60 s. The controller parameters are computed following
the lambda tuning rules. With λ = T = 2 for this plant
the resulting setting is Kc = 4, TI = 2. In this specific
case has been chosen K = 0.25, λ = T = TI = 2 and Ts=1.

In case the controller suffers from clock drift, the perfor-
mance decreases as it is shown in figure 9, where it is
compared to the case without drift.

Fig. 9. Reference tracking using the PI controller both with drift and
without

In fact, as it is explained in Section IV-A the drift of the
clock causes a delay of one cycle (in this scenario 1 s) when
the control signal is computed after the actuation so the

dead-time becomes equal to 1.5 s instead of 0.5 s. Looking at
figure 9, it is possible to notice an overshoot in the reference
tracking when the system is affected by the extra delay.
This overshoot disappears when the drift is equal to one
cycle and the actuator task executes again after the controller.

Looking at figure 13, it is possible to notice that when the
system is affected by the delay, the step response of the PPI
is better than the one of the PI. However, it is of course
worse when the system has no extra delay, since the PPI is
implemented considering a fixed delay of 1 s.

VII. A HYBRID PPI CONTROLLER

To increase the performance of the controller, it is possible
to notice that the control signal of the PPI (9) in case of
no delay (D=0) is equal to the PI control signal. Looking at
(11) and considering the PPI implementation (14) the hybrid
controller can be described with the following equations:

uk =
{

Kcek + zk, if D=0;
Kcek + zk−1, if D=1.

(16)

When the system is not affected by the delay, the controller
is a normal PI. Then, when the drift of the clock causes
a delay, the control switches to the Predictive PI. Like it
is shown in figure 10, the controller can be described as a
finite state machine with two states: one state is D=0 (no
delay) and the controller is a normal PI, the other state is
D=1 (delay of one cycle) and the controller is the Predictive
PI. The status changes depending on a variable that depends
on the drift.

Fig. 10. Finite state machine: D=0 no delay, D=1 delay of 1 cycle

1) Detection of the delay due to the drift: The detection
of the exact instant in which the drift introduces the delay
is fundamental for the correct operation of the finite state
machine. Consider a time stamp in the sensor data, ts, and
to compare it with the instant in which the gateway transmits
the control signal to the actuator (tGW) (see Fig. 11).
Notice that all the times are referred to the internal clock of
each device. Considering these notations the detection of the
delay can be explained with the following equations:

D =
{

0, if tGW − ts < td;
1, else.

This solution permits to detect the presence of the delay in
the system. In this way the transition between D=0 and D=1
is detected a cycle later. This is due to the fact that when

136113611359

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 18, 2010 at 16:55 from IEEE Xplore. Restrictions apply.

Fig. 11. Scheme of the detection of the delay due to the drift

the gateway executes, the controller has already done the
computation for that cycle. An improvement to this law is
obtained considering the trend of the difference tc − ts.

Fig. 12. Detection of the delay due to the drift improvement, an example.

Fig. 12 illustrates an example in which the controller clock
is faster than the WirelessHart network one. The difference
between tc and ts is constant and changes only in the instant
when the drift introduces the delay. Defining:

∆t
cs = tc − ts (17)

the rule to switch between the two states becomes:

D =
{

0, if tGW − tsc < td;
1, if ∆t

cs �= ∆t−1
cs .

Considering (16) the hybrid controller can be described by
the following equations:

uk =
{

Kcek + zk, if tGW − ts < td;
Kcek + zk−1, if ∆t

cs �= ∆t−1
cs .

(18)

In this way the transition between the PI and PPI happens
immediately without loosing any cycle. In figure 13 the
performance of the hybrid controller is compared with the
behaviour of the previous implementation of the PPI and
with the performance of a normal PI.

Fig. 13. Performance comparison between the hybrid controller, the PPI
and the PI.

VIII. CONCLUSIONS

In this work we have investigated the impact of clock drift
on control performance in WirelessHART network where no
synchronization exist between the controller and the wireless
network. The obvious solution to avoid clock drift is to have
synchronized controller and wireless network. When this is
not possible our work show that detecting when you are out
of synch and using a predictive controller can significantly
reduce the problem caused by clock drift.

IX. ACKNOWLEDGMENTS

The authors would like to thank the European Commis-
sion and the partners of the European IST FP6 project
(SOCRADES - www.socrades.eu), for their support.

REFERENCES

[1] HART communication foundation, TDMA Data Link Layer,
HCF SPEC − 075 Revision 1.0, 30 August 2007.

[2] HART communication foundation, Wireless Devices Specification,
HCF SPEC − 290 Revision 1.0, 5 September, 2007.

[3] HART communication foundation, Network Management Specifica-
tion, HCF SPEC − 085, Revision 1.0, 27 August, 2007.

[4] IndustrialIT 800xA - System (version 5.0) - System guide: Technical
data and configuration information- ABB Automation Technology
Products

[5] IndustrialIT 800xA - Control and I/O (System version 5.0) -
Application programming introduction and design- ABB Automation
Technology Products

[6] M. Nixon and T. Blevins, Process Control Requirements for Wireless
Communication, Report from Emerson Process Management, submit-
ted to HCF Wirelesss Hart Working Group, 2007.

[7] M. Ohlin, D. Henriksson, A. Cervin, Department of Automatic Control
Lund University - TRUETIME 1.5-Reference Manual - January 2007.

[8] R. Tjoa, K.L Chee, P. K. Sivaprasad, S.V. Rao and J.G. Lim - Clock
Drift Reduction for Relative Time Slot TDMA-based Sensor Networks
- PIMRC 2004, 15-th IEEE symposium, Volume 2, pages 1042-1047,
2004.

[9] K. J. Åström, T. Hägglund, Advanced PID control - ISA, 2006

136213621360

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 18, 2010 at 16:55 from IEEE Xplore. Restrictions apply.

