EE 290G MicroRobot Design Lab

Fall 2016

WF 2-3, 299 Cory

Class info, homework questions, discussion, etc: piazza

Grades: bcourses

My policy on CHEATING.  READ IT!

Instructor

 

Office Hours

Kristofer S.J. Pister, pister@eecs.berkeley.edu

512 Cory Hall 


Tu 3:30-4:30, F 3-4 or whenever my door is open (which is often)

TA

Office Hours

none

Required Texts

none

Useful Texts

none

Grading

show up, turn stuff in

Homework

Collaboration is encouraged; copying is not.

Lectures

hopefully mostly run by students



Schedule

Week

Date/

Notes

Topic

Reading / Resources (see links below)

Homework

1

8/24

8/26

Introduction – why microbots today?

Dan Contreras: Two-mask SOI process, motors, linkages, 2 DOF leg, TinToy design

 

2

8/31

9/2

David Burnett: Single-Chip micro Mote for Digital Control of Microbots

Solar cells, batteries; commercial microphones (WM7331E) & cameras (OVM7690, OV6946)

computation: Meyers16

robots: Hollar03

mechanisms: Mehta06

motors: Yeh02, Penskiy13

hw1

3

 

9/7

9/9

Labor Day

Robot design discussions

 

Bellew03

Braam15

Ostfeld16

 

4

9/14

9/16

Joey Greenspun: solar cell + HVCMOS process

Dan Drew: Ionocraft; John Doe: Piezoelectric actuators

 

hw2

5

9/21

9/23

 

 

hw3

6

9/28

9/30

 

 

 

7

10/5

10/7

 

 

 

8

10/12

10/14

Abhinav Gaikwad, Small batteries

2 layer SOI design reviews

 

 

9

10/19

10/21

 

 

 

10

10/26

10/28

Ken Saito - Hexapod-Type Microrobot System with Artificial Neural Networks Integrated Circuit

Igor PaprotnyNanoscribe and two-photon lithography

 

 

11

11/2

11/4

 

 

 

12

11/9

11/11

 

 

 

13

11/16

11/18

 

 

 

14

 

 

Thanksgiving – no 290G class this week

 

 

15

11/30

12/2

 

 

16

12/7

12/9

RRR Week

Final projects due 5pm Monday 12/12 by both email and hardcopy at 512 Cory Hall.

 

Papers

Historical Vision

[Feynman59] Feynman, There’s plenty of room at the bottom

[Feynman83] Feynman, Infinitesimal Machinery

[Flynn87] A. Flynn, “Gnat robots (and how they will change robotics)”, MIT Working Paper 295, 1987.

[Flynn89] A. Flynn, “Twilight Zones and Cornerstones: A Gnat Robot Double Features”, MIT AI Lab memo 1126, 1989.

Robots

[Hollar03] S. Hollar, A. Flynn, C. Bellew, K. Pister, “Solar Powered 10 mg Silicon Robot”, MEMS 2003.

[Donald06] B. R. Donald, C. Levey, C. McGray, I, Paprotny, and D. Rus. "An Untethered, Electrostatic, Globally-Controllable MEMS Micro-Robot," JMEMS 2006.

[Wood08] R. Wood, “The first takeoff of a biologically inspired at-scale robotic insect”, IEEE Trans. Robotics, V24N2, 2008.

[Saito14] K. Saito et al., “Locomotion Control of MEMS Microrobot Using Pulse-Type Hardware Neural Networks”,

[Kuo14] P-H Kuo et al., “A Remotely Controlled Locomotive IC Driven by Electrolytic Bubbles and Wireless Powering”, ISSCC 2014

[Saito16] K. Saito et al., “Miniaturized Rotary Actuators Using Shape Memory Alloy for Insect-Type MEMS Microrobot”, Micromachines V7N58 2016.

Actuators

[Yeh02] R. Yeh, S. Hollar, K. Pister, ‘Single Mask, Large Force, and Large Displacement Electrostatic Linear Inchworm Motors”, JMEMS 2002.

[Kovac12] M. Kovac, M. Bendana, R. Krishnan, J. Burton, M. Smith, R. Wood, “Multi-stage micro rockets for robotic insects”, Robotics: Science and Systems, Sydney 2012.

[Penskiy13] I. Penskiy and S. Bergbreiter, “Optimized Electrostatic Inchworm Motors using a Flexible Driving Arm,” Journal of Micromechanics and Microengineering, vol. 23, no. 1, p.015018, January 2013.

Mechanisms

[Yeh96] R. Yeh, E. Kruglick, K. Pister, “Surface-micromachined components for articulated microrobots”, JMEMS V5N1, 1996.

[Mehta06] A. M. Mehta and K. Pister, "Planar two degree-of-freedom legs for walking microrobots," in in the IARP Workshop on Micro & Nano Robotics, Paris, France, 23-24 Oct. 2006.

Power

[Bellew03] C. Bellew, S. Hollar, K. Pister, “An SOI process for the fabrication of solar cells, transistors, and electrostatic actuators”, Transducers 93.

[Karpelson11] M. Karpelson et al., “Design and fabrication of ultralight high-voltage power circuits for flapping-wing robotic insects”, Appl. Power Electronics Conf. 2011.

[Braam15] K. Braam, V. Subramanian, “A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator”, Advanced Materials 2015.

[Ostfeld16] A. Ostfeld, A. Gaikwad, Y. Khan, A. Arias, “High-performance flexible energy storage and harvesting system for wearable electronics”, Nature Scientific Reports 2016.

Computation

[Meyers16] J. Meyers et al., “A subthreshold ARM cortex-M0+ subsystem in 65nm CMOS for WSN applications with 14 power domains, 10T SRAM, and integrated voltage regulator”, IEEE JSSC V51N1 2016.