last time

Electrostatics \rightarrow negative spring constant

Tuning: good
Comb drives: can be bad

\[F = \frac{1}{2} \varepsilon_0 V^2 A \left[\frac{1}{(x_0 - x)^2} - \frac{1}{(x_0 + x)^2} \right] \]

\[K_e = \frac{\partial F}{\partial x} \bigg|_{x=0} = 4 \left(\frac{1}{2} \varepsilon_0 V^2 A \right) / x_0^2 \]

Scratch drive
Somewhat run backwards (?)

High force
Compact

Low efficiency
Small step \times high freq = fast

Electrostatic Motors

Comb drive
Gap closers
Wobble motors
Scratch drive

Inchworms

Electrostatic
Inchworm
Inspiration from actin/myosin

\[\frac{1}{2} \varepsilon_0 V^2 A / g_2 \]

\[\text{if } V = 150 \text{ V, } g = 1 \text{ mm, } A = 1 \text{ mm}^2 \]

\[\Rightarrow \left(100 \text{ nA} \right) \frac{10^6 \varepsilon_0}{10^6 g^2} = 100 \text{ mN} \]

Bob a tiny stroke (1 mm)

Incremental

\[\text{gear tooth } \rightarrow \text{ shuttle } \rightarrow \text{ tooth } 180^\circ \]

Take many steps
Penskiy

Insulated sidewalls
work out

Efficiency = electrical \rightarrow mechanical

\[F_e = \frac{1}{2} \varepsilon_0 \frac{V^2}{g^2} \]

\[W = F_e x \text{ if constant load} \]

Electrical: \[\frac{1}{2} C(x_0 + x) V^2 - \frac{1}{2} C(x_0) V^2 \]

\[Q = C V \]

\[F_0 = \frac{1}{2} \varepsilon_0 \frac{V^2}{g^2} \]

\[Q_0 = C_0 V_0 \]

\[\varepsilon = \frac{Q^2}{\varepsilon_0 A} \]

\[F_s = \frac{1}{2} \varepsilon_0 \frac{V^2}{g^2} \]

\[Q_{adv} = \frac{1}{2} \left(V_0 \right) (3 C_0) = \frac{3}{2} Q_{adv} \]

\[F_s = \left(\frac{3}{2} \right) F_0 \]
Charging capacitor

\[Q = CV \quad U_c = \frac{1}{2} CV^2 \]

\[U_{bat} = (Q - Q) V = QV - QV \]

\[U_{sys} = U_{bat} + U_{cap} = QV - \frac{1}{2} CV^2 \]

Half energy goes to cap, half is lost as load

Energy stored in cap at step \(n \): \(\frac{1}{2} C (nV)^2 \)

Energy leaving battery at step \(n \): \(CV_0 (nV) \)

Total energy out of battery at step \(n \): \(\frac{2}{C} CV_0^2 n = \frac{C}{2} CV_0^2 n \)

\[\text{off} = \frac{\frac{1}{2} CV_0^2 n^2}{CV_0^2 n^2 + n^2} = \frac{n^2}{n^2 (1 + \frac{1}{n})} = 1 - \frac{1}{n} \]

- Can run in reverse. Pull charge off of cap.
 - Put back in battery.
 - Use caps charged in parallel instead of battery.

Micro Scooter energy

Battery = \(\frac{I}{m^3} \) mJ/m^3 \(= \frac{1 mJ}{Kg} \)

Specific altitude = perfect conversion of stored energy to mJ/m^3

\(\frac{I}{m^3} m = m J \)

\(h = \frac{1 mJ/kg}{7.8 \times 10^3} = 10 k = 100 km \)

Say robot is 10% battery.

Meters are 10% efficient battery -> reckoned.

\(0.3 \text{ m can climb } (10\%) (10\%) (100\%) = 1 \text{ km} \)

Lateral distance = vertical distance \(\frac{i}{1 - \text{off}} \)

E.g. walking distance vs. climbing stairs

\(\text{as be } > 10 \times \)