

Last time

\[t \] \[\text{--------} \] \[\rightarrow \]

\[\frac{1}{I(x)} = \frac{M(x)}{EI} \]

\(\Rightarrow \text{external loading} \)

\[E(x) = \frac{2}{P(x)} = \frac{2M(x)}{EI} \text{ for simple loads} \]

\[E_{\text{max}} = \frac{a F L}{2 EI} \]

\[K = \frac{3EI}{L^3} \text{ (linear beam theory)} \]

\[E_{\text{max}} = \frac{a (x L y(x)L)}{EI} \]

\[y_{\text{max}} \approx (1\%) \frac{2}{3} \frac{L}{a} \]

How far can you bend a spring?

- \(E_{\text{max}} \) is a function of material and local stress concentrations (nonlinear effect)

- Sharp corner - bad

- Rounded good

- "Fillet"

- \(E_{\text{max}} = 1\% \) - effects of lithography & etch? rounding? defects?

H\(_2\) anneal
Torsion

\[\tau = K \theta \]

\[K = \frac{J G}{L} \]

\[J = \frac{1}{2} \pi r^4 \]

\[\sigma = \frac{F_x}{\alpha b} \]

\[K_x = \frac{E a b}{L} \]

\[\frac{F}{E} \]

Axial spring constant

\[\frac{AL}{L} = \sigma = \frac{F}{E} \]

\[\varepsilon_y = \nu \varepsilon_x \]

Buckling - axial loading causes lateral deflection

\[F = \frac{\pi^2 E I}{(KL)^2} \]
Suspended Decay
- Specify stiffness in one or none axes
- "Large" stiffness in other axes
- No cross-axis response (ex. specific cross-axis)
- Long range, or non-linear effects

Common flexural suspension
- Assume rigid, \((\frac{d^3}{a}) \) stiffer
- Finite elements at corners to get exact, but what geometry?
- Process variation?
- Very stiff \(K_\Omega, K_x \)

What is \(K_y \)? how does it compare to
\[K_y = \frac{E a^3}{4 L^3} \]

Composite beams
beam 2: \(F_{x2} = F_x \)
\[F_{y2} = F_y \]
\[M_2 = M_0 \]

beam 1: \(F_{y1} = F_y \)
\[F_{x1} = F_x \]
\[M_1 = M_0 + F_x L_2 \]
SUGAR

\[K_y = 2K_1 \] guided

\[K_l = \frac{1}{2} K_0 = 4K_L \]
\[K_0 = \frac{E a^{33}}{4(\frac{1}{2})} = 8K_L \]
\[K_y = 2K_1 = 8K_L \]