Joey Greenspun

Wet

Dry

a

Lee, Nature 2012

Ð

Aa R1

2 µm

Isotropic

Anisotropic

(Black is Chrome)

Silicon Plasma Etch (RIE)

Pro: Arbitrary features

Con: Limited aspect ration (~10:1) Hard to etch deep (selectivity issues) KOH with {110} wafers

{110}

Pro: High aspect ratio > 600:1

Con: Extremely limited features

Wet

Dry

a

Lee, Nature 2012

Ð

Aa R1

2 µm

Isotropic

Anisotropic

Deep Reactive Ion Etching

 \sim

Source

Deep Reactive Ion Etching

 \sim

Source

Deep Reactive Ion Etching

for i = 1:N

Deep Reactive Ion Etching

for i = 1:N

Deep Reactive Ion Etching

Deep Reactive Ion Etching

Deep Reactive Ion Etching

Deep Reactive Ion Etching

Deep Reactive Ion Etching

Deep Reactive Ion Etching

Deep Reactive Ion Etching

for i = 1:N

Deep Reactive Ion Etching

for i = 1:N

DRIE Applications in CMOS

TSVs

DRIE and Silicon-on-Insulator

Buried Oxide (BOX)

DRIE and Silicon-on-Insulator

DRIE and Silicon-on-Insulator

DRIE Nonidealities - ARDE

Aspect Ratio Dependent Etch

Smaller holes/trenches etch more slowly

Fix

- Tune recipe
- Limit feature size variation

Bullseye Effect

Edges of wafer etch more quickly than center

Bullseye Effect

Edges of wafer etch more quickly than center

Bullseye Effect

Edges of wafer etch more quickly than center

Bullseye Effect

Edges of wafer etch more quickly than center

Fix

• Checkerboard

DRIE Nonidealities – Microloading

Microloading (RIE-lag)

Isolated areas etch more quickly than dense arrays

Fix

- Uniform layout
- Limit etched area

DRIE Nonidealities – Uniformity Recap

Cursor Height = 241.4 µm 100µm EHT = 3.00 kV Signal A = InLens Date :20 Jun 2005 Stage at T = 0.0 ° File Name = SOL_accurate_60min_20C_01.tif Mag = 432 X WD = 4 mm

ARDE Bullseye Microloading (RIE-lag)

Why do we care?

- Thermomechanical simulation
- Heat flux of 7 W/cm²
- Beams heat up by 0.1 C

- Thermomechanical simulation
- Springs fully footed
- Heat flux of 7 W/cm²
- Beams heat up to 517 C

Footing/Notching

Lateral silicon etching at oxide interface

Fix

- Aluminum etch stop
- LF platen source
- LF platen duty cycle

Kim, Journal of Micromechanics and Microengineering, 2011

DRIE Nonidealities – Grass

Grass

Thin pillars of silicon created at bottoms of trenches

Fix

- Limit exposed area
- Recipe tune

Docker, J. Micromechanics and Microengineering, 2004

DRIE Nonidealities – Sidewall Angle

Sidewall Angle

Sidewalls are not always 90°

Fix

• Recipe tune

DRIE Nonidealities – Sidewall Angle

Sidewall Angle

Sidewalls are not always 90°

Fix

• Recipe tune

DRIE Nonidealities – Mask Undercut

Mask Undercut

PR mask is naturally undercut by process

2 µm 2.5 µm

Fix

• Decrease etch time

Recipe Tuning

DRIE PROCESS TREND CHART for FIRST ORDER EFFECTS

Matt Wasilik; November 2010

LEGEND

* Assumes passivation-etch ratio maintained. ** Helium backside cooling value nona dju stable; wafer/chuck depen dent.

*** Increase in response implies rougher substrate surface.

**** in crease in response implies smaller "scallops", smooth er sidewall su fface.

Recipe Tuning – Design of Experiments

Factors

Response

	LO	н
Pressure	20 mTorr	45 mTorr
Duty Cycle	<u>25%</u>	<u>50%</u>
Period	<u>10 ms</u>	<u>20 ms</u>
APC	automatic	manual
Flow Rates	150/125	120/100
Cycle Times	6.7etch/5pass	16etch/12pass

TABLE 1

FIGURE 8 main effects plot for grass, (1-10)

Brian Kilberg

Motors

4 mm

The Pister Group