As described, $\Delta L > 0$.

Load 1 /& 2 will shrink after release:

- Tensile stress: thin walls to be smaller
growth (can leave gaps, tension conserving)
(nm in L2)

in mm / size

Nucleation & growth on many separate steps

Rlastic stress

Residual stress

- 41

L, P, S, C, H_2O, T, F_2O

Doping w/ P, S
Annoyance. 24h daily.

- Level 0.5% LTO - Level 0.5% LTO
- Level 1.0% LTO

Similarly: undetected poly with fast etch.

To turn PIII gas on part way.
Some from some, stop just enough.

Level 0.5% LTO

Change this step to

- 80°F
- 30% pH
- 100°F
- Proprietary difference: gritty

PsL - Deposited poly (2x)
LTO - Undeposted poly
Conrad

(see deposed concrete)
Deposition: Deposition between similar oxides (polylines vs. stress orientation - many parts)

Residual Stress Good (visited)

Summary on nitride:

- Discuss: Bubles, flakes
- Ammonia/dilute 95% acetic
- Level 0.5% LTO
- Level 2.0% LTO/ply
- Level 0.5% LTO

Suggestion on nitride:

Fast etch.
PsL - Deposited poly
2N/3M NaClO3 and PbSO4

metal mix, then transfer to desiccator

PbSO4 used to dopepoly in mixes

but be cautious

HTO 5\% Cl₂ + 7\% CO₂ @ 800°C (contd.)

TEOS 5% (C₂H₅)₄ @ 900°C

Tetragonal

Other oxide dops

B₂H₆ - condensed by skin opening can result in explosion

B₂H₆ + 6H₂O → 2B(OH)₃ + 6H₂

Shipped mixed in 5% H₂SO₄ to avoid

PH₃ gas is fatal & corrosive

in steel, decomposes poly

Also low volatility - fast volatilization

Low temperature oxide

SiH₄ + O₂ = SiO₂ + 2H₂

1 ppm

Caution: explosive

Dangerous