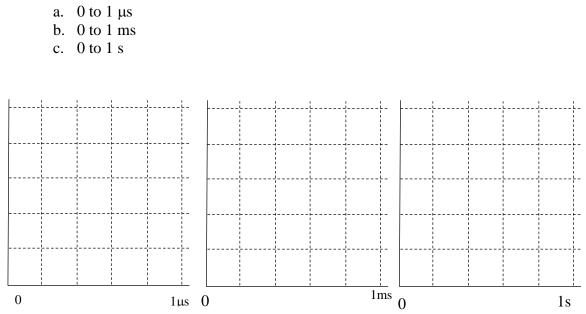
EECS140 Midterm 1 Spring 2017

Name_____

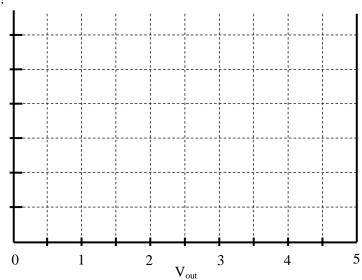

SID_____

Page	Score
1	/12
2	/10
3	/20
4	/18
Total	/60

 [4] A single-pole amplifier has a low frequency gain magnitude of 500 and a gain magnitude of 5 at 1 GHz. What are the pole and unity gain frequencies?

- 2. [8] You have made a new NMOS transistor. You measure the drain current as a function of the gate-to-source and drain-to-source voltage, and find that it is $I_d = \alpha (V_{gs}-1V)^{1.5} (V_{ds})$ when $1V < V_{gs} < 10V$ and $0 < V_{ds} < 10$, where α is a positive constant with appropriate units.
 - a. Write an expression for the transconductance in terms of just voltages, and in terms of I_d and some voltages.
 - b. Write an expression for the output resistance in terms of I_d
 - c. Write an expression for the intrinsic gain in terms of the bias point
 - d. To maximize the gain, where would you bias this device (what voltages)?

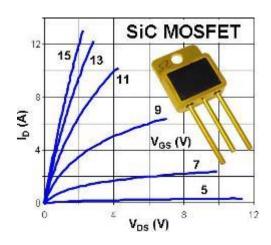
3. [5] A voltage source with a $1M\Omega$ output impedance drives an amplifier with a 1nF input capacitance. At t=0, the voltage source jumps from 0 to 1V (a step input). Carefully sketch by hand the voltage seen at the input to the amplifier on three different time scales:


4. [5] By hand, sketch the response of the RC filter above to an input sine wave with a 1V amplitude and a frequency of 1,000 rad/s. Draw the input for reference, and then the output. Label both axes. Label the input and output sine waves.

5. [8] You have an NMOS-input common source amplifier with a PMOS load and a large load capacitance. Both transistors are biased in saturation, and the quadratic model is appropriate. The magnitude of the gain is large (>100). You try two independent changes to the circuit. Case 1: doubling the width of both devices. Case 2: doubling both the width and the length of both transistors without changing anything else. How do these changes affect the operating point and performance of the amplifier?

Process specs $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, $\lambda = 1/(10V)(L_{min}/L)$, $-V_{tp} = V_{tn} = 1V$, $V_{DD} = 5V$, $L_{min} = 1um$, $C_{ox} = 5fF/um^2$, $C'_{ol} = 0.5 fF/um$.

$(DD \circ (, DI))$									
	ID	V _{ov}	g _m	Ro	Av	ω _p	$\omega_{\rm u}$	C _{in}	
Case 1									
Case 2									


- 6. [12] In the same process described above, you have made a similar amplifier with $(W/L)_N=10u/1u$, $(W/L)_P=20u/1u$. You choose $V_{GSN}=1.2V$.
 - a. [4] Carefully sketch I_{DN} vs. V_{out}. Put a dot at the transition between triode and saturation. Get the slope right in saturation.
 - b. [2] What input voltage V_{Pmid} will result in an output voltage of 2.5V?
 - c. [2] Sketch the magnitude of the PMOS current vs. V_{out} if the input is held at $V_{\text{Pmid}}.$
 - d. [4] What is the output swing?

gm	Ro	C _L	A _{v0}	ω _p	ω _u
		1uF	1000		10 M rad/s
		1nF	10 ⁶	10 rad/s	

7. [12] Fill in the following table for a single-pole amplifier. Each row is a different amplifier.

- 8. [6] Here's a power MOSFET made at Virginia Tech. The vertical axis is in Amps, from 0 to 12. The horizontal axis is in Volts, from 0 to 12.
 - a. What is a rough guess at the threshold voltage?
 - b. Roughly what is g_m when $V_{GS}=V_{DS}=7V$?
 - c. Roughly what is r_0 when $V_{GS}=V_{DS}=7V$?

