Homework Assignment #7

Due by online submission Wednesday 3/15/2017 (Thursday at 9am)

- Check out the datasheet for the <u>K2-W</u> tube op-amp. This op-amp, released in 1952, was the first production op-amp. It runs from a +/-300V supply, and has a BW of 300kHz (or k-cycles/s, as they said back then the unit Hertz not having been established yet). There's a schematic on page 2. Pins 1, 2, and 6 on the bottom of the figure are V+, V-, and Vout. VR1 and VR2 are neon bulbs that provide a low impedance level shift of roughly 100V to center the output between the rails. Identify (circle and label):
 - a. input differential pair
 - b. diff-pair load resistor
 - c. tail current resistor. Estimate the common mode gain of the first stage and write it near the tail resistor.
 - d. Common-cathode gain stage (like CS or CE)
 - e. Cathode-follower output stage (like source-follower or emitter follower, CD, CC)
 - f. Miller-multiplied compensation capacitor from the output back to the input of the gain stage.
 - g. Bonus points if you can identify positive feedback in this amplifier, designed to increase the low-frequency gain (which ended up at about 20,000).
- 2. Estimate the output resistance of a CMOS differential amplifier with current mirror load. You may assume that $g_m r_o >> 1$ for all combinations of g_m and r_o . The following steps may help.
 - a. Estimate the impedance seen looking into the source of M1A
 - b. Estimate the impedance seen looking down from the source of M1B
 - c. Estimate the impedance seen looking into the drain of M1B
 - d. For the Ro calculation, estimate i_{d1B} as a function of vo.
 - e. The current in i_{d2B} is due to both the output resistance and the mirrored current. Estimate both parts.
 - f. Estimate the total output current io = $i_{d1B} + i_{d2B}$
 - g. Show that R_{o} . is equal to $(r_{o1B} \parallel r_{o2B})$. Magic!
- 3. Design a 2-stage NMOS input CMOS op-amp with the following specs:
 - a. 200uA tail current
 - b. able to sink 1mA from the load
 - c. output swing to within 200mV of the rails
 - d. input common mode range to within 200mV of the top rail, and 1.4V of the bottom rail.

Process specs $\mu_n C_{ox}=200\mu A/V^2$, $\mu_p C_{ox}=100\mu A/V^2$, $\lambda=1/(10V)$, $-V_{tp}=V_{tn}=1V$, $V_{DD}=5V$, $L_{min}=0.5um$, $C_{ox}=5fF/um^2$, $C'_{ol}=0.5fF/um$. You may use 1 resistor in your design.

- Draw the schematic, label the device size of each transistor and the bias current flowing in each leg. 4. For the amplifier in the previous problem,
 - a. Calculate the variation in tail current over the common mode input range.
 - b. Assuming Vic=2.5V, calculate and tabulate I_d, V_{ov}, g_m, r_o, for all devices; and C_{gs}, and C_{gd} for all devices in the signal path
 - c. calculate the 1st and 2nd stage gain, and the overall gain for both differential and common mode signals.
 - d. Calculate the uncompensated 1st and 2nd stage pole locations with a 1pF load
 - e. Calculate the compensation capacitor necessary for 45 degree phase margin with a 1pF load (ignoring the effect of the RHP zero) and the resulting compensated pole locations
 - f. Sketch a Bode plot of the gain with a 1pF load capacitance, including the RHP zero, and the mirror pole/zero doublet.
- 5. For the differential amplifier in the figure below, estimate the change in V_{tail} , I_{d1a} , I_{d1b} , and Vo due to

- a. An increase of ΔV in both V+ and V-
- b. An increase of ΔV in just V+
- c. An increase of ΔV in just V-
- d. What is the common mode rejection ratio of this amplifier?

6. [240A] Show that the gain from v_{id} to v_{tail} in a diff pair with a current mirror load is +1/4.