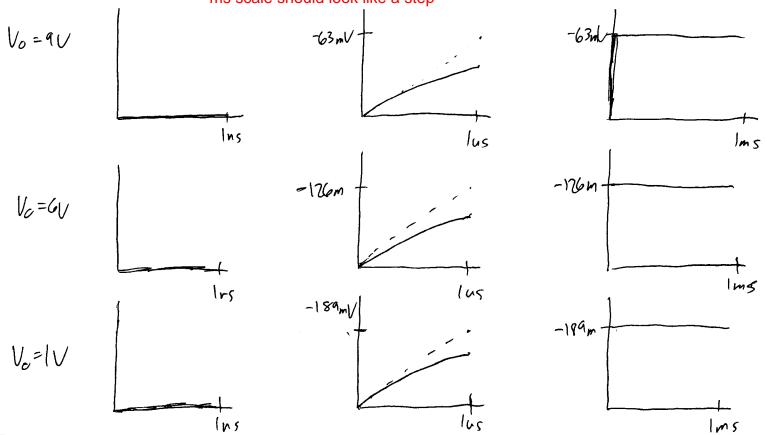
$$\begin{array}{l}
\theta \\
\end{array} \quad A_{vo} = -gmr_{o} = \frac{2}{\lambda V_{oV}} \\
\end{array} \quad V_{ov} = \int \frac{2J_{o}}{\lambda C_{ox} \frac{w}{c}}
\end{array}$$

$$A_{vc} = \frac{2}{\lambda \sqrt{2T_0}} = \frac{2}{\lambda \sqrt{2(V_{00} - V_o)}} +1 \text{ for an } A_{+1 \text{ if it is a}} +1 \text{ if it is a}$$

+1 for an Av equation and +1 if it is a function of Vo

$$T_{D} \quad gm \quad r_{c} \quad Avc \quad Wp \quad Wu$$

$$V_{o} = aV \quad 100 \text{ nA} \quad 6.3 \text{ mS} \quad 1M\Omega \quad 63 \text{ V} \quad 1M \text{ md/s} \quad 63 \text{ Mmd/s}$$


$$V_{o} = 6V \quad 400 \text{ nA} \quad 12.6 \text{ mS} \quad 250 \text{ kR} \quad 126 \text{ V} \quad 1M \text{ md/s} \quad 126 \text{ Mmd/s}$$

$$V_{o} = 1V \quad 400 \text{ nA} \quad 18.9 \text{ mS} \quad 111 \text{ kR} \quad 189 \text{ V} \quad 1M \text{ md/s} \quad 189 \text{ Mmd/s}$$

+0.5 per entry, within ~10-20% is fine, 1 sig fig is sufficient

$$= \int_{C} \mathcal{T} = \int_{US} \mathcal{T} = \int_{US} \frac{+1 \text{ per plot,}}{\text{ ns scale shown scale scale shown scale s$$

ns scale should be ~flat us scale should look exponential and end at 0.63 of the final value ms scale should look like a step

(2)
$$\int_{V} R_{L} = \lambda = 0.1 \sqrt{1}$$
(3)
$$\int_{V} R_{L} = r_{o} = \frac{1}{\lambda I_{D}} = \frac{1}{\lambda (V_{0D} - V_{c})}$$
(4)
$$\int_{V} R_{L} = r_{o} = \frac{1}{\lambda I_{D}} = \frac{1}{\lambda (V_{0D} - V_{c})}$$
(5)
$$\int_{V} R_{L} = 1 \quad \left[\frac{V_{0p} = 11 V}{V_{0p} = 11 V} \right]$$
(6)
$$\int_{V} I_{f} = V_{0p} = 2V \text{ and } V_{0,pc} = 1V$$
(7)
$$\int_{V} R_{c} = \frac{1}{\lambda I_{D}} = \frac{1}{0.1 (2-1)} = 10 R_{L}$$
(7)
$$\int_{V} R_{c} = R_{L},$$
(8)
$$\int_{V} R_{c} = R_{L},$$

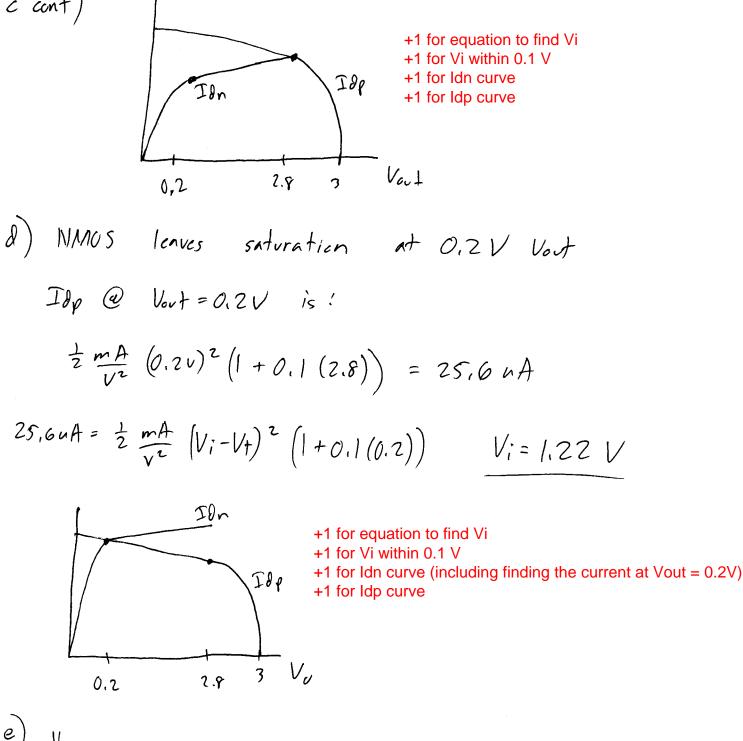
should approximate $= R_{L}$

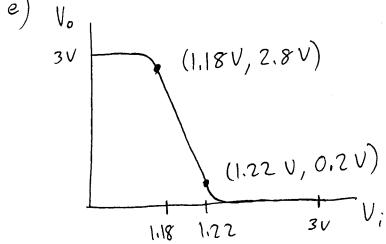
$$10R_{L}/|R_{L} = \frac{10R_{L}}{11} \approx 0.9R_{L}$$

Approximation is off ~10%

C)
$$A_v = -gmR_L$$
 $gm = 2I_D$
 V_{ov}
 $A_v = -\frac{2}{V_{ov}R_L}$, R_L $A_v = -\frac{2}{U_{ov}R_L}$

 $\frac{\Box_p = 2-1}{R_L} = \frac{1}{R_L}$


 $\left(\begin{array}{cc} A_{v} = & \frac{-2}{V_{ov}} \\ \end{array} \right) \begin{array}{c} +1 \text{ for a gain equation} \\ +1 \text{ for correct answer} \end{array} \right)$


(3) $A_{VO} =$ GBW = 101	100 10 20 MHz , 20 =	2MH2	+\ <u></u> f	equ MHモ and +1	for setting up lations for fp I fu for correct fp for correct fu	
fp has g	ain of 100	: ZOCMHZ TUC	= 2MHZ	-fp =	ZMHZ	
	air of 1-	ZOGMHZ	= 200 M Hz	$f_{\mu} =$	ZOOMHZ	
(4) Avo	i] wp Er	wn	gm [A/v]	[r] ro	CL ^[F]	
100	IM	loom	10-4	106	lρ	
200	IOM	26	2.10-3	100 k	Ιp	
100	lom	16	10-4	IM	100+	
106	10	IOM	10-4	10'0	10p	

+1 per blank (12 points total) 1 sig fig, but answers should be exact

(c)
$$Val_{n+1} = \frac{1}{2} \frac{3V}{V_{n}}$$

(c) $Val_{n+1} = \frac{1}{2} \frac{3V}{V_{n}}$
(c) $Val_{n+1} = \frac{1}{2} \frac{3V}{V_{n}}$
(c) $Val_{n+1} = \frac{1}{2} \frac{3V}{V_{n}}$
(c) $Val_{n+1} = \frac{1}{2} \frac{1}$

c cont)

7 pts total

- +1 nmos off and pmos off regions
- +1 nmos triode (roughly quadratic)
- +1 pmos triode (roughly quadratic)
- +2 for the high gain start (x,y) points
- +2 for the high gain end (x,y) points

$$f)_{AV} = \frac{DV_0}{DV_{in}} = \frac{2.6V}{A_V = -65 \frac{V}{V}}$$

$$output \quad (argc \quad is \quad 0.2V \quad t_o \quad 2.8V \quad (2.6V \quad swing))$$

$$input \quad rangc \quad is \quad 1.18 \quad V \quad t_o \quad 1.22 \quad V \quad (40 \quad mV)$$

$$f) \quad A+ \quad V_{o,pc} = 2.8V \quad +1 \text{ for gain estimate within 20% of -65 } V/V$$

$$f) \quad range (to within 0.1V is fine)$$

$$gm = \frac{2T_0}{V_{oV}} = \frac{2(20.4 \text{ uA})}{(1.18 - 1)} = 230 \text{ uS}$$

$$r_o = \frac{1}{2} \quad \frac{1}{\lambda T_D} = \frac{1}{2} \quad \frac{1}{0.1 (20.4 \text{ uA})} = 245 \text{ kA}$$

$$Or \quad Av = -gm r_c = \frac{-1}{\lambda V_{oV}} = \frac{-1}{(0.1)(0.18)} = -55.6 \quad V/V$$

$$A+ \quad V_{o,pc} = 0.2V, \quad T_p = 25.6 \text{ uA} \quad +1 \text{ for gain at high Vo} \\ A_v = -\frac{1}{\lambda V_{oV}} = \frac{-1}{0.1 (0.22)} = -45.5 \quad V/V \quad +1 \text{ for gain at high Vo} \\ +1 \text{ for gain at high Vo} \quad +1 \text{ for gain at high Vo} \\ +1 \text{ for gain at high Vo} \quad +1 \text{ for gain at high Vo} \\ +1 \text{ for gain at high Vo} \quad +1 \text{ for gain at high Vo} \\ +1 \text{ for gain at high Vo} \quad +1 \text{ for gain at high Vo} \\ +1 \text{ for gain at high Vo} \quad +1 \text{ for gain at high Vo} \\ +1 \text{ for gain at high Vo} \quad +1 \text{ for gain at high Vo} \\ +1 \text{ for gain at high Vo} \quad +1 \text{$$

$$\begin{array}{l} A+V_{0,DC}=1.5V, \ \ I_{0}=\frac{1}{2}\ mA/V^{2}\left(0.2V\right)^{2}\left(1+0.1\left(1.5\right)\right)=23\ nA\\ A_{V}=\frac{-1}{2}\ \left(\frac{-1}{2}\right)=-50\ V/V \qquad (NMCS\ V_{ov}\ mvst be\ 0.2V)\\ \hline I_{N}\ Svmma(y:1)V=250\ V/V \qquad (NMCS)V_{ov}\ mvst be\ 0.2V) \end{array}$$

In summary:
$$V_{0,pc} = 2.8V$$
 $A_v = -55.6 V/V$
 $V_{0,pc} = 1.5V$ $A_v = -50 V/V$
 $V_{0,pc} = 0.2V$ $A_v = -45.5 V/V$

HW3 grading rubric

1) 28 pts total
 1a) 2
 1b) 4
 1c) 2
 1d) 2
 1e) 9 (0.5 for each entry in the table)
 1f) 9, 1 for each plot
 2) 8 pts total

2a) 2 pts
2b) 4 pts; 1 for right answer, 1 for some reasoning, 2 for error calc
2c) 2 pts.

3) 4 pts, 2 for each frequency

4) 12 pts, 1 per blank

5) 33 pts total

5a) 4 pts

5b) 6 pts: 2 for plot, 2 each for min/max ldp

5c) 4 pts: 2 for Vi ; 2 for plot

5d) 4 pts: 2 for Vi ; 2 for plot

5e) 7 pts: 1 for "nmos off" region, 1 for pmos triode, 1 each for the X and Y location of the beginning of high gain, 1 each for the X and Y location of the end of high gain, 1 for nmos triode. The triode regions should be vaguely quadratic, and the high gain region should be a straight line.

5f) 2 pts 5g) 6 pts