Homework Assignment #3.1

Due by online submission Monday 2/6/2016 (Tuesday 9am)

- 1. An NMOS common source amplifier has a 10V supply and a 10k Ω load in parallel with 100pF. Assume $\mu_n C_{ox}=20uA/V2$, W/L=10,000/1, V_{th}=1V, $\lambda=0.01V$. You should be able to do all of the calculations by hand (without calculators). One-ish significant digits is fine.
 - a. Write an expression for I_D as a function of output bias point. How much does I_D change as the output voltage varies from 9V to 1V?
 - b. What is the change in the input and overdrive voltage as the output varies from 9V to 1V?
 - c. Write an expression for g_m and r_o as a function of output bias point.
 - d. Write an expression for A_{v0} as a function of output bias point.
 - e. For each of the output bias points {9V, 6V, 1V}, calculate the current in the device, g_m , r_o , A_{v0} , ω_p , and ω_u . Fill in a table with those columns.
 - f. Plot the output response to a 1mV input step on 3 time scales: 1ns, 1µs, 1ms.
- 2. A common source amplifier has a resistive load R_L and $\lambda = 1/(10V)$. For parts b and c assume $V_{DD}=2V$, and the output bias point is 1V.
 - a. At this bias point, if the resistive load has the same impedance as the output resistance of the transistor, what is the supply voltage V_{DD} ?
 - b. Now with $V_{DD}=2V$ and a different load resistor, should we approximate the output resistance R_0 as R_L or r_0 ? Why? What error in output resistance do we get if we make that approximation?
 - c. With that approximation, write an expression for the gain that involves only voltages and a constant (no resistances, transconductances, etc.)
- 3. A single-pole amplifier has a low frequency gain of 100. At 10MHz the gain is 20. What are the pole frequency and the unity gain frequency?

A _{v0}	ω _p	ω _u	gm	r _o	CL
100	1M				1p
	10M	2G		100k	
		1G		1M	100f
	10	10M			10p

- 4. Fill in the following table. Each row represents a different single-pole amplifier.
- 5. For the common source amplifier, assume $\mu C_{ox}(W/L)=1mA/V^2$, $|V_t|=1V$, and $\lambda=0.1V^{-1}$ for both devices.
- A) Assuming $V_{BP} = 1.8$ V, calculate V_{dsatp} and I_{dp} at Vdp=V_{DD}-|Vdsatp| for the PMOS transistor.
- B) Plot |Idp| vs. Vout. What is the minimum and maximum value for Idp with the PMOS device in saturation in this circuit?
- C) What is the approximate value of V_i for which the PMOS device is just on the edge between the saturation and linear regions? (you calculated the current and output voltage at which this happens in part A above). Considering just the current/ voltage relationship for the NMOS device, plot Idn at this Vi on the same plot as step B.
- D) What is the value of V_i for which the NMOS device leaves saturation? Again, considering only the NMOS device, plot Idn at this value of V_i on the same plot as B.
- E) Based on these values, plot V_{out} vs V_i , paying careful attention to the location of the endpoints of the high gain region (calculated in parts C and D above).
- F) Based on the (Vi, Vout) pairs that you calculated in C & D, what is the gain of the amplifier? What are the input and output range over which this gain is achieved.
- G) Calculate the gain for this amplifier using the small signal model evaluated at 3 different operating points for Vout: the edges of the high gain region, and the center of the high gain region.

