Homework Assignment #2.1

Due by online submission Monday 1/30/2017 (Tuesday at 9am)

- 1. How much does V_T vary over the industrial temperature range, -40 to +85 C?
- 2. Do this problem without using a calculator. You have a bag full of identical diodes. You measure one and find that it will pass 10uA when a voltage of 600 mV is applied at room temperature.
 - a. if you apply 626 mV at room temperature, what do you expect the current to be?
 - b. if you apply 660 mV at room temperature, what do you expect the current to be?
 - c. if you use a current source to push 1nA through the diode at room temperature, what voltage do you expect to see?
 - d. if you use a current source to push 10uA through the device at -40C, what voltage do you expect to see?
 - e. If you put 10 diodes in series and run 10uA through them, what voltage do you expect to see across all 10 diodes?
 - f. If you put 10 diodes in parallel and run 10uA through the parallel combination, what voltage do you expect to see?
- 3. From the datasheet for the 2N3904,
 - a. From figure 4 at 25C estimate the base-emitter voltage change required to increase the collector current by a factor of 10, from 0.1 to 1 mA, or 1 to 10 mA.
 - b. Estimate the same thing, but at -40C and 125C
 - c. Are your answers consistent with your answer to problem 1?
 - d. At a constant current of 1mA, what is the change in the base-emitter voltage from -40 to 25 C, and from 25 to 125 C? What is the temperature coefficient of $V_{BE,on}$ in mV/K? Is it close to what we said a diode should be? Should it be?
- 4. Look at the 2014 paper on the Intel 14 nm FINFET.
 - a. From Figure 5, estimate gm, ro, and intrinsic gain for NMOS and PMOS transistors when V_{GS} =0.5V and V_{DS} =0.5V (PMOS values are negative). Note: the vertical axis in Figure 5 is mislabeled! It should be mA/um, not A/um. Figure 6 is correct.
 - b. From Figure 5, estimate roughly what V_{TH} is for NMOS and PMOS devices. Do these devices look quadratic, or velocity saturated? Why?
 - c. From Figure 6, estimate the subthreshold slope and the parameter "n" for NMOS and PMOS devices.
- 5. For an NMOS transistor with W/L=100u/1u, with $\mu_n C_{ox}=100\mu A/V^2$, $V_{DD}=3V$, $\lambda=1/(10V)$, and $V_{TH}=1V$.
 - a. Carefully sketch by hand the drain current vs. $V_{DS}=0$ to 3V at constant $V_{GS}=0$, 1, 2, 3V.
 - b. Do the same for a PMOS transistor of the same size with the same parameters except $V_{DS}=0$ to 3V and $V_t=-1V$. You should get exactly the same plot, just rotated 180 degrees and with different axis labels.
- 6. For an NMOS transistor, roughly sketch
 - a. I_D and g_m vs. W/L for constant $V_{GS} > V_t$.
 - b. I_D and g_m vs. V_{GS} for constant W/L.
 - c. V_{ov} and g_m vs. I_D for constant W/L
 - d. W/L and g_m vs I_D for contant $V_{GS} > V_t$
- 7. [ee240A] Find a novel transistor in a research paper from the last five years. (e.g. a nanotube, nanowire, 2D material like MoS₂, organic, ...) and characterize it along the lines of problem 3. What are the important small signal parameters, and over what range of voltages are they valid?