Homework Assignment #6 solutions

Due by online submission Wednesday 3/9/2016 (Thursday at 9am)

- 1. Check out the datasheet for the <u>K2-W</u> tube op-amp. This op-amp, released in 1952, was the first production op-amp. It runs from a +/-300V supply, and has a BW of 300kHz (or k-cycles/s, as they said back then the unit Hertz not having been established yet). There's a schematic on page 2. Pins 1, 2, and 6 on the bottom of the figure are V+, V-, and Vout. VR1 and VR2 are neon bulbs that provide a low impedance level shift of roughly 100V to center the output between the rails. Identify (circle and label):
 - a. input differential pair
 - b. diff-pair load resistor
 - c. tail current resistor. Estimate the common mode gain of the first stage and write it near the tail resistor.
 - d. Common-cathode gain stage (like CS or CE)
 - e. Cathode-follower output stage (like source-follower or emitter follower, CD, CC)
 - f. Miller-multiplied compensation capacitor from the output back to the input of the gain stage.
 - g. Bonus points if you can identify positive feedback in this amplifier, designed to increase the low-frequency gain (which ended up at about 20,000).

[7 pts, 1 for each for parts abdef, 2 pts for c. +1 bonus for g] See scanned solutions.

- 2. Estimate the output resistance of a CMOS differential amplifier with current mirror load. You may assume that $g_m r_o \gg 1$ for all combinations of g_m and r_o . The following steps may help.
 - a. Estimate the impedance seen looking into the source of M1A
 - b. Estimate the impedance seen looking down from the source of M1B
 - c. Estimate the impedance seen looking into the drain of M1B
 - d. For the Ro calculation, estimate i_{dlB} as a function of vo.
 - e. The current in i_{d2B} is due to both the output resistance and the mirrored current. Estimate both parts.
 - f. Estimate the total output current io = $i_{d1B} + i_{d2B}$
 - g. Show that R_0 is equal to $(r_{01B} \parallel r_{02B})$. Magic!

[14 pts. 2 each, 1 for effort. Propagating errors only count against you once] See scanned solutions.

- 3. Design a 2-stage NMOS input CMOS op-amp with the following specs:
 - a. 20uA tail current
 - b. able to sink 100uA from the load
 - c. output swing to within 100mV of the rails
 - d. input common mode range to within 100mV of the top rail

Process specs $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, $\lambda = 1/(5V)$, $-V_{tp} = V_{tn} = 0.5V$, $V_{DD} = 2V$, $L_{min} = 0.5um$, $C_{ox} = 5 f F/um^2$, $C'_{ol} = 0.5 f F/um$. You may use 1 resistor in your design.

Draw the schematic, label the device size of each transistor and the bias current flowing in each leg. [20 pts. 1 for each W and L of the 8 transistors, 1 for labeling each of the four leg currents.] See scanned solutions. There aren't many things that you get to pick in this problem. You can pick L_5 , and then L_3 and L_6 should be the same. You can pick L_{2A} , and then L_{2B} and L_4 should be the same. You can pick L_{1A} , and then L_{1B} should be the same. (W/L) for M3, M4, and M5 are all fixed by the specs. You have some flexibility in the overdrive voltage for M1, but V_{ov2} must be the same as V_{ov4} (which is set by spec) to get the right bias. Some things to remember:

 $(W/L)_{1a}+(W/L)_{1b}=(W/L)_3$ if their overdrives are the same

 $(W/L)_4 = (W/L)_5 (\mu_n C_{ox})/(\mu_p C_{ox})$ if their overdrives are the same

 $(W/L)_{2a}+(W/L)_{2b}=(W/L)_4 (I_{D3}/I_{D5})$

If you pick minimum length (0.5um), minimum overdrive (100mV) for M1, and I_{D6}=10uA, then

you get the following table (with additional info for 4b)

	M1ab	M2ab	M3	M4	M5	M6
W/L	10	20	20	200	100	10
W	5u	10u	10u	100u	50u	5u
I_D	10uA	10uA	20uA	100uA	100uA	10uA
V_{ov}	100mV	100mV	100mV	100mV	100mV	100mV
g_{m}	200uS	200uS	400uS	2mS	2mS	200uS
$r_{\rm o}$	500kΩ	500kΩ	250kΩ	50kΩ	50kΩ	500kΩ
C_{gs}	12.5fF	25fF	25fF	250fF	125fF	12.5fF
$C_{ m gd}$	2.5fF	5fF	5fF	50fF	25fF	2.5fF

4. For the amplifier in the previous problem,

[total for the whole problem is 43 pts] See scanned solutions for detail.

a. carefully draw the allowed input common mode range and output swing [8pts. 2 for each line]

b. calculate and tabulate Id, V_{ov}, g_m, r_o, C_{gs}, and C_{gd} for all devices

[18pts $-\frac{1}{2}$ pt for each entry in the table above] c. calculate the 1st and 2nd stage gain, and the overall gain for both differential and common mode signals.

[5 pts. 2 each for 1st and 2nd, 1 for overall] -50, -50, 2500

- d. calculate the common mode input range, and the variation in tail current over that range. [2 pts] 24%
- e. calculate the gain across Cgd1a.

[2 pts] I did not mean for this to be a tough problem, but it is if you want to do it right. The simplest answer is $-g_{m1a}/g_{m2a}=-1$. A better answer would take into account the commonmode effect on Vtail, and come up with -1/2. The best answer would use the result from problem 5, and come up with -1/4. Any of those answers is fine. Bottom line: there's not much gain across that node, so not much Millerized input capacitance.

f. calculate the output pole frequency with a 100fF load capacitance.

[2 pts] $\omega_{p2} = 1/(R_o C_L) = 1/(25k \ 0.1p) = 400 \text{ Mrad/s}$

g. calculate the input capacitance of the second stage below the output pole frequency [2 pts] Below the output pole C_{gd4} is Millerized, so C_{in2}=250fF+2550fF=2.8pF.

h. calculate the first stage output pole frequency

[2 pts] 1.4 Mrad/s

i. calculate the input capacitance of the second stage above the second stage unity gain frequency

[2 pts] 0.3pF

5. [240A] Show that the gain from v_{id} to v_{tail} in a diff pair with a current mirror load is +1/4.