What's The Latest?
A Question Driven News Chatbot

Philippe Laban - philab@berkeley.edu
John Canny and Marti Hearst
Talk organization

Part 1
Demo

Part 2
Conversation State Tracking Method

Part 3
User Study And Results
News is organized into stories, each forming a chatroom.

Example stories: Iran Plane Crash, Boeing 737 MAX...
A chatroom starts with a timeline of events.

Each event is composed of multiple sources.
Questions are recommended to the reader.

Questions are updated as information is revealed.
Information is gathered from news and Wikipedia sources.
The reader can ask their own questions.

An extractive Q&A system finds a likely answer.
Method

Leveraging question answering to keep track of conversation state
You said that already...

For a given story, there is a wealth of redundant text content. Throughout the conversation, new information must be provided.
You said that already...

The two paragraphs answer the same questions.

For a given story, there is a wealth of redundant text content. Throughout the conversation, new information must be provided.
In Australia...

Firefighters in ...

Although humans ...

The loss of ...

As Australians ...

Thousands petitioned ...

For those who fled ...

As the fire ...

Insurance claims ...

The destruction of ...

Start with all the paragraphs in a story ...
In Australia...
Firefighters in ...
Although humans ...
The loss of ...
As Australians ...
Thousands petitioned ...
For those who fled ...
As the fire ...
Insurance claims ...
The destruction of ...

Use a standard Question Generator to generate many questions
In Australia...

Firefighters in ...

Although humans ...

The loss of ...

As Australians ...

Thousands petitioned ...

For those who fled ...

As the fire ...

Insurance claims ...

The destruction of ...

Now we have many paragraphs, and many questions.
Use a Q&A system to see what paragraphs answer what questions.

Two paragraphs are redundant if they cover the same questions.
As content is given to the user, keep track of the answerable questions.
In Australia...

Firefighters in...

Although humans...

The loss of...

As Australians...

Thousands petitioned...

For those who fled...

As the fire...

Insurance claims...

The destruction of...

Some content becomes redundant: all questions it answers are already covered. We can also recommend unanswered questions.
User Study

Can recommending questions help users have longer conversations?
Study Setting

Three groups of study:

- **NOQR**: No Question Recommendation but the users can ask their own questions

- **RANDQR**: Questions recommended are randomly sampled from the set of available questions

- **TOPQR**: Questions Recommended are chosen in a greedy order, selecting questions that answers most unanswered paragraphs first.
Study Settings

Research Questions:

- **Q1**: Does recommending *any* questions help users have longer conversations?

- **Q2**: Does the *order* of questions recommendation help users have longer conversations?

- **Q3**: When users see recommended questions, do they still ask their own question?
Study Results - Statistics

Q1: confirmed. **TOPQR** users have the longest conversations.

Q3: confirmed. **TOPQR** and **RANDQR** still ask their own questions.

<table>
<thead>
<tr>
<th>Measured Value</th>
<th>TOPQR</th>
<th>RANDQR</th>
<th>NOQR</th>
</tr>
</thead>
<tbody>
<tr>
<td># participants</td>
<td>18</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td># chatrooms opened</td>
<td>3.2</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td># turns / chatroom</td>
<td>24.9 *</td>
<td>15.3 *</td>
<td>8.1</td>
</tr>
<tr>
<td># rec. questions asked</td>
<td>11.9 *</td>
<td>8.2 *</td>
<td>-</td>
</tr>
<tr>
<td># own questions asked</td>
<td>1.5</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Latency (seconds)</td>
<td>1.84 *</td>
<td>1.88 *</td>
<td>4.51</td>
</tr>
</tbody>
</table>

* is statistically significant with p < 0.05 (comparison with NOQR)
Users prefered the TOPQR interface on **4 out of 10 metrics asked** in QUIS survey. No statistical difference on the other 6.

<table>
<thead>
<tr>
<th>User Survey (7-pt Likert)</th>
<th>TOPQR</th>
<th>RANDQR</th>
<th>NOQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dull ... stimulating 7</td>
<td>5.28 *</td>
<td>5.06</td>
<td>4.20</td>
</tr>
<tr>
<td>1 frustrating ... satisfying 7</td>
<td>5.00 *</td>
<td>4.43</td>
<td>4.00</td>
</tr>
<tr>
<td>rec. questions are clear</td>
<td>5.78 *</td>
<td>4.87</td>
<td>4.28</td>
</tr>
<tr>
<td>answers are informative</td>
<td>5.07 *</td>
<td>4.44</td>
<td>3.64</td>
</tr>
</tbody>
</table>

* is statistically significant with p < 0.05 (comparison with NOQR)

Norman, K., & Shneiderman, B. (1989). Questionnaire for user interface satisfaction Vers. 5.0. *Maryland, College Park, USA: University of Maryland, HCI-Lab.*
Thanks!

Any questions?

Come to the Live Q&A.

phillab@berkeley.edu
https://newslens.berkeley.edu

NewsLens is also on Android & iOS

We thank our sponsors: