A Communication-Optimal N-Body Algorithm for Direct Interactions

Michael Driscoll, Evangelos Georganas, Penporn Koanantakool, Edgar Solomonik, and Katherine Yelick

Motivation
- N-Body requires n^2 interactions = lots of communication
- Lower bounds from [Ballard, Demmel, Holtz, S. 2011a]
 $S = \Omega \left(\frac{n^2}{M} \right)$, \hspace{0.5cm} W = \Omega \left(\frac{M^2}{M^2} \right)
- N-Body: at most M^2 force evaluations
 $S_{NB} = \Omega \left(\frac{E}{M^2} \right)$, \hspace{0.5cm} W_{NB} = \Omega \left(\frac{E}{M} \right)
- M in the denominator = using extra memory can decrease lower bound.

No cutoff (all-pairs)

Naïve Algorithm
- n particles, p processors
 - local copy
 - replica buffers
 - $S_{naive} = \Theta \left(\frac{n^2}{p} \right) = \Theta \left(\frac{n^2}{p} \right)$
 - Each processor sends p messages of size n/p
 - Communication-optimal.

CA-allpairs Algorithm
- n particles
 - local copy
 - replica buffers
 - $S_{CA-allpairs} = \Theta \left(\frac{n}{p} \right) = \Theta \left(\frac{n}{p} \right)$
 - Replicate over c layers
 - Shift teams particles along diagonal
 - For p/c^2 stages
 - Shift replicas by c teams
 - Compute interactions
 - Reduce across column

Bounded: $l = \Theta \left(\frac{n}{c} \right)$

CA-allpairs (n, p), replication factor c = $\Theta \left(\frac{n}{c} \right)$

Cutoff (1D)

Assumptions
- Particles are uniformly distributed.
- Cutoff distance (r_c) spans multiple processor areas.
- Particles have $1D$ coordinates

Algorithm
- m teams
 - local copy
 - replicas

Bounds
- Let k be #interactions per particle.
 $k = \frac{m}{p/c^2}$ \hspace{0.5cm} n = \frac{mn}{p}$

$S_{CA-allpairs} = \Theta \left(\frac{n}{p} \right) = \Theta \left(\frac{n}{p} \right)$

Performance

Hopper: 24,576 cores, 196,608 particles
- Communication (Reduce) $\frac{n}{c}$
- Communication (Shift) $\frac{n}{c}$
- Computation $\frac{n}{c}$

Intrepid: 32,768 cores, 262,144 particles
- Communication (Reduce) $\frac{n}{c}$
- Communication (Shift) $\frac{n}{c}$
- Computation $\frac{n}{c}$

Conclusions
- Using extra memory (c) copies reduces
 - Latency by a factor of c^2
 - Bandwidth by a factor of c.
- Communication avoidance decreases overall execution time for communication-bound problems.

Cutoff (2D)

Assumptions
- Particles are uniformly distributed.
- Cutoff distance (r_c) spans multiple processor areas.
- Particles have $2D$ coordinates

Algorithm
- p/c processor teams
 - c layers
 - c^2 teams
- $S_{CA-allpairs} = \Theta \left(\frac{n}{c} \right)$

Performance

Hopper: 24,576 cores, 196,608 particles
- Communication (Reduce) $\frac{n}{c}$
- Communication (Shift) $\frac{n}{c}$
- Computation $\frac{n}{c}$

Intrepid: 32,768 cores, 262,144 particles
- Communication (Reduce) $\frac{n}{c}$
- Communication (Shift) $\frac{n}{c}$
- Computation $\frac{n}{c}$

- Observed up to $11.8 \times$ speedup over the non-CA version.
- Negligible benefits on compute-bound problems.
- Tunable replication factor $'c'$ in cases where cost of reduction comprises most of the communication cost.