

Doppio: Tracking UI Flows and Code Changes
for App Development

Pei-Yu (Peggy) Chi, Sen-Po Hu, Yang Li

Google Inc.
{peggychi, senpo, liyang}@google.com

ABSTRACT
Developing interactive systems often involves a large set of
callback functions for handling user interaction, which
makes it challenging to manage UI behaviors, create
descriptive documentation, and track code revisions. We
developed Doppio, a tool that automatically tracks and
visualizes UI flows and their changes based on source code.
For each input event listener of a widget, e.g., onClick of
an Android View class, Doppio captures and associates its
UI output from a program execution with its code snippet
from the codebase. It automatically generates a screenflow
diagram organized by the callback methods and interaction
flow, where developers can review the code and UI
revisions interactively. Doppio, as an IDE plugin, is
seamlessly integrated into a common development
workflow. Our studies show that our tool is able to generate
quality visual documentation and helped participants
understand unfamiliar source code and track changes.

Author Keywords
Software documentation; IDEs; screenflow diagram;
Android; mobile apps; screencast videos; demonstrations.

ACM Classification Keywords
H.5.2. User Interfaces — prototyping, input devices and
strategies, graphical user interfaces.

INTRODUCTION
Interactive systems, such as a mobile or web application,
often heavily involve dynamic visual behaviors in response
to user input, including complex UI changes and animated
feedback. To manage UI behaviors and track revisions, it is
common that developers rely on software documentation,
which describes the purpose and behavior of a system and
its source code in human understandable language.
Documentation serves a crucial role to help developers
comprehend what the program is intended to achieve and
how each element behaves [28] and further modify it.

However, writing documentation is time-consuming, and
developers tend to take it on in haste, which results in
incomplete, imprecise, or outdated content [42].

Previous work has investigated automatic approaches for
generating text documentation from source code [39, 49,
58] or program execution [40]. Nevertheless, it can be
difficult to describe visual, interactive behaviors in words.
As a result, developers often resort to providing
screenshots, animated GIFs, or screen-recording videos in
documentation (e.g., README files or code change
requests) to visually describe these behaviors. Again, this
method requires manual creation of multimedia materials in
a separate process from code development environment.
Developers have to carefully select representative states of
a program, which incurs enormous efforts and can be
challenging to maintain as a program evolves.

We introduce Doppio, Demonstration of application I/O, an
IDE tool that automatically creates callback-based
documentation for visualizing the interaction UI flow and
revisions (see Figure 1). Doppio does not require any
additional effort from developers other than running and
testing the program as they would typical do in a common
development workflow (see Figure 2). As a first step,
without loss of generality, our work is designed to enhance
an Android IDE for mobile development. During a test
session, Doppio monitors the behavior of each input event

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5620-6/18/04.
https://doi.org/10.1145/3173574.3174029

Figure 1. Doppio is an IDE plugin that enables developers to

review their programs and track UI revisions with a callback-
based screenflow diagram. It presents the screenshots, video

clips, code snippets, UI regions, and run-time argument values
for each user input, such as a click event.

listener defined by the Android framework in the
background, e.g., onClick of a View class. It automatically
intercepts the invocation of a method and identifies the
change on the UI from the runtime execution of the
program. Based on the captured data, Doppio then analyzes
the user source project, segments a screencast video, and
generates useful information such as relevant screenshots,
video clips, and code snippets shown in a screenflow
diagram for interactive review. It also inserts a new Javadoc
tag “@look” to the block comment of each captured method
in source code that links to the corresponding screen states.
These enhancements enable developers to easily inspect the
behavior—abstract logic—of each individual method with
concrete runtime examples.

To find out how well Doppio extracts visual demonstration,
we tested it on 10 open source Android projects and
investigated its usability with 16 professional Android
developers. Our experiments indicate that Doppio
effectively helped participants understand unfamiliar source
code and further make modifications. In particular, our
work makes the following contributions:

• An automatic approach for tracking methods’ behaviors
of an interactive program, by automatic code structure
analysis, runtime method interception, and screencast
video analysis from a test session.

• A novel visual documentation presenting an interaction
flow of a mobile application based on its input sequence
and callback functions.

• An integrated solution that enhances a mainstream IDE
and supports developers’ existing workflow of
application development.

• A set of experiments that examined the feasibility of this
approach, and insights into future directions.

RELATED WORK
We discuss three research topics that our work touches on,
including tools for visualizing program execution,
generating software documentation, and capturing user
workflow from demonstrations.

Interactive Program Visualization
Researchers have suggested that by visualizing aspects of
source code and enabling direct manipulation of code
components, software tools can lower the complexity of
programming [51, 43] and reduce time of code
understanding [1]. There have been a variety of software
visualization techniques integrated into code editors [15].
Examples include showing concrete examples and
documentation [54], call graph structures [35], effects of
user action [44] or camera input [36, 37], changes with code
highlights [57], and interaction flows among multiple
interactive devices [10]. Editors can also be enhanced to
provide on-demand [8] or context-sensitive supports [46]
and runtime value visualization [34]. Inspired by these
approaches, Doppio assists developers in code

understanding by presenting visual examples, but we focus
on the visual traces of UI state changes and their code
snippets based on input methods in order to connect
abstract source code with runtime visual examples.

Prior research has investigated the benefits of interactive
version control for code or design revisions [41]. Methods
include managing alternatives [30] and through a design
gallery [29], navigating in code history [59, 61, 32], and
preserving editable code history [18] or micro changes [50].
Doppio shares the same vision through automatic code
tracing for reviewing key changes, but we do not claim our
contribution on a novel versioning tool overall.

Software Documentation Enhancement
Documentation is important for developers to comprehend
and maintain source code [28], especially for large-scale
software projects. Popular languages have defined formats
for describing code behaviors. For Java, comments of a
method, typically textual, include parts such as input (a list
of arguments, each denoted by the tag “@param”), output
(return values by the tag “@return”), and summaries that
can be automatically transformed into documentation [55].

However, writing comments is a manual, time-consuming
task. Developers are often reluctant to spend effort on
documentation, which results in incomplete and outdated
code comments [42]. Previous work has been devoted to
tools for automatic documentation generation. Method
behaviors can be summarized from source code [58],
comments [39], and application context [49]. For type-loose
languages such as JavaScript, types can be captured from
program execution to complete documentation [40]. Code
comments can embed information beyond text, such as
multi-media material recorded by developers [27]. In the
same vein, our work follows the paradigm of automatic
approaches to enhance documentation. However, we focus
on a unique aspect—generating multimedia demonstrations
that can visually describe the code logic and behavior—by
capturing the UI states of a program affected by specific
methods in the program from its execution.

Workflow Capturing
A significant body of previous work provides techniques to
record user demonstration and replay program states, often
through program tracing or reverse engineering source
code, such as for debugging [3], code understanding [4, 53],
reusing web pages [6, 47], or testing mobile apps [56]. In
particular, Whyline visualizes a captured trace for reasoning
system behaviors after the program execution [38]. Doppio
also adopts a post mortem approach, but while Whyline
traces every detail for general-purpose reasoning, we focus
on tracing a specific set of code elements for input-based
visualization. Another project, Unravel, allows users to
review and replay method calls and DOM changes of a
website in a web browser [31]. It injects an observation
agent into a site to track DOM differences during the
recording phase. Doppio employs a similar approach by
intercepting a program without functional interference.

However, Doppio is designed based on a fundamental
understanding of the target system framework (Android).
Instead of reverse engineering source code from recording,
our tool analyzes code structures and provides accurate
code tracing, which is critical for developers. We focus on
capturing UI state changes and visible on-screen behaviors
(from a screencast video) to present behaviors in a diagram.
These aspects distinguish Doppio from the prior art.

Finally, Doppio is built upon previous work on capturing
and presenting software UIs from user demonstration for
workflow understanding. By recording user input events
(e.g., a mouse click), useful information can be extracted
from the screen pixels of an application, such as detailed
views of manipulating an image or 3D model [24, 9, 7] or
macro actions [60]. Visual summaries have been shown
effective in learning unfamiliar concepts [48], and videos
are helpful for understanding software behaviors [25, 26],
especially for continuous operation or animation [9].
Doppio provides an integrated solution by capturing events,
code, and screencast videos and allowing programmers to
interactively review method-specific images and videos.

DESIGN GOALS
Based on our experiences with Android development and
discussions with app developers, we identify three
objectives that guide our design decisions.

Lightweight Workflow. For Android applications, developers
commonly use an IDE (e.g., Android Studio [19]) to
manage a project, write code, and deploy the app to devices
or emulators for testing. A tool should support the existing
workflow and minimize additional efforts from developers.
Complete Code Coverage. A highly-complex project may
contain a large number of classes and methods, which
imply complicated dependencies and relationships in code.
A tool should cover the codebase completely based on a
good understanding about the project and the underlying
framework. Ideally, it should not rely on developers to
specify code segments of interests.
Code-Centric Interactive Playback. To help developers
focus on the code and its behavior, a tool should understand
the code structure and provide information based on the
software project. It should respond to the specific point of
the document that developers are interested in.

USING DOPPIO
Doppio is a tool that automatically tracks and documents UI
behaviors of a target interactive program based on the
corresponding source code elements. We designed Doppio
as an IDE plugin to enhance the current development
workflow (see Figure 2). To discuss the detailed workflow
with Doppio, assume a developer, Marilyn, is developing
an Android application for providing quizzes1 for her
students using the Android Studio IDE with the Doppio
plugin. Similar to common mobile applications, her
application provides a main menu where users can select
different question types. It also includes interactive
components, such as buttons, sliders, checkboxes, and text
fields for answering questions.

Capturing Application Execution
With her Java-based project opened in Android Studio (see
Figure 3a), Marilyn opens the menu bar of the IDE and
selects “Run & Capture” provided by the Doppio plugin
(see Figure 3b). This is similar to what she usually does to
“run” or “debug” her program on a connected mobile
device. To test the application, Doppio flexibly supports
either a session where developers manually provide the
program input or a test session where the interaction flow is
automatically executed by a pre-captured or pre-defined
script, such as using the Android Espresso testing
framework2 [21]. Assume Marilyn runs a test script to avoid
repetitive manual input in her development process.

After the application is installed and brought up on the
mobile device, Marilyn sees a notification “Doppio starts
recording” in the IDE. Our Instrument automatically
records a screencast video of the target device to capture all
the screen activities. Internally, it identifies and intercepts
UI methods based on an understanding of Android code
structure without the developer noticing the underlying
mechanism. At compile time, the Doppio Gradle plugin
traverses the Android program and looks for a specific set
of UI methods that we identify, such as onClick of a View

1 This example is inspired by the open source sample “android-topeka” by Google
[22] that we also present in Figure 1 and 3.
2 To support motion design and make interaction visible, we require a time gap
between input actions in a test script via Thread.sleep(long millis). This gap can
be set depending on the app design. We recommend at least 3,000 milliseconds to
ensure UI transitions are completely rendered.

Figure 2. The Doppio pipeline: In an IDE, developers hit “run” to test the program. The IDE builds the app that weaves our

interception logic and installs on the device or emulator. When the app is running, Doppio logs the execution details and records
the device screen. Once the test is finished, it analyzes the captured information and renders interactive documentation.

class. In this way, while the test input, such as clicking on a
button, triggers an intercepted method call, information
about the runtime behavior is recorded. If needed, Marilyn
can manually annotate and monitor any method of her
interest with a Java annotation “@capture”, which would
be useful for system-driven UI changes.

When the test session finishes, Doppio automatically
analyzes the execution logs and segments the screen
recording. Once the process is completed, a notification
“Doppio: playback ready (7.2 seconds used)” shows in the
IDE, and meanwhile the viewer is automatically launched
in a Web browser. The video and its metadata are stored in
developers’ source code repository locally.

Reviewing Method Behaviors
In the Doppio’s Viewer (see Figure 3c), Marilyn sees an
overview of interaction flow captured from her test session.
For each user input (such as clicking on a View item),
Doppio shows the screen state before the method execution.
On the screenshot, the target View is highlighted, with an
arrow pointing from this item to the next screen state. Each
state also shows the details that respond to the interaction,
including the class and method names and its runtime
argument values (see Figure 3d). When the mouse hovers
over the state, the corresponding code snippet and its video
clip is shown (see Figure 3e), where video can be replayed
with a mouse click. These help Marilyn quickly verify the
app behaviors visually at a glance.

When Marilyn navigates source code of her project back in
the IDE, she notices that the methods invoked by the test

session were tagged by Doppio in the comment blocks with
a Javadoc tag “@look” (see Figure 3f). An icon next to the
code line helps her visually identify these links. When she
right-clicks on the link, corresponding screen states to the
method are highlighted in the Viewer, from which she can
also search by keywords. This assists her examining the
method’s abstract logic in the context of the source project.

Iterating App Design
After reviewing the execution, Marilyn decides to modify
her code to enhance one specific user interaction. She adds
a confirm dialog in the click callback of the “submit”
button. She reruns the test script of the app using Doppio
and then sees a new screenflow diagram in the Viewer, with
a revision indicator “ ” that allows her to
compare the revisions. The changed state and code different
from the last version are highlighted, which helps her focus
on the UI revision (see Figure 3g). For any changed code
that Doppio tracks but is not captured in a test session, our
tool provides a warning message to developers.

THE DOPPIO SYSTEM
We elaborate on the underlying mechanisms of Doppio
pipeline (see Figure 2) and the system components (see
Figure 4) that realize the presented scenario.

UI Event Logging by Program Interception
Android applications respond to user input events through
event listeners. In the Android API, the View class defines
event listener interfaces, such as OnClickListener.
Developers, who follow the Model-View-Controller (MVC)
design pattern, usually implement and register custom event

Figure 3. In an IDE (a), developers “run and capture” an app via the plugin menu (b). Execution will be logged, analyzed, and
presented in the Doppio’s Web Viewer (c) as an interactive screenflow diagram. The interaction flow and execution details are

organized by callback methods (d), with the video and code snippet attached (e) and code change highlighted (g). Developers can review
and search in this Viewer or from the source code in the Editor (f).

listeners in controller classes, which typically extend
Android’s Activity or Fragment class. The following code
snippet, extracted from a class in an open source project
[22], shows how an extended Activity defines the logic:

1
2
3
4
5
6
7
8

View.OnClickListener mOnClickListener =
new View.OnClickListener() {
 @Override
 public void onClick(final View v) {
 // Executes business logic for a click event.
 }};

View mBackButton = findViewById(R.id.back);
mBackButton.setOnClickListener(mOnClickListener);

Here, Line 1-2 create a listener for click events. The
application behavior responding to user input is defined
inside the callback method in Line 4. Then, Line 7 finds a
specific View object by the Android resource ID (the back
button in this example), and Line 8 registers the listener to
the button object. In the real world, mobile applications
often consist of a large number of input callbacks. It
requires a significant amount of time and effort of
developers to trace source code and test run an application
in order to gain a thorough understanding about the UI
behavior associated with each event handler.

Based on this event handling framework, our goal is to
capture UI event logging about timing and details of each
method invocation, which serves three purposes: 1)
segmenting a screencast video into snippets that show the
corresponding UI events, 2) identifying the corresponding
code, and 3) presenting useful execution information to
developers interactively. Table 1 presents the detailed
elements of an UI event we capture.

To add UI event logging to existing projects with minimum
intervention, a compile-time Aspect-Oriented Programming
(AOP) technique is used to avoid modifying developers’
source code. To add instrumented behaviors (e.g., logging)
to specific execution points in a program, AOP “weaves”
extra logic at compilation time. Similar instruments have
been used for different purposes, such as providing on-
device deep links [2]. Android applications, typically
written in Java, are commonly built by the Gradle system
that compiles Java source code into bytecode for execution.
Therefore, we developed a Gradle plugin, Doppio
Transformer, that can be included in a developer’s Android
project. It defines the logging logic for a set of interface
methods defined by the Android SDK (see Table 2, which

can be expanded easily). The Doppio Transformer is built
based on the Gradle Transform API and Javassist (Java
Programming Assistant), a library that simplifies bytecode
weaving [11, 12]. Intercepted UI events are logged using
the standard utility logger to minimize the runtime overhead
on devices, which will be parsed by the Log Parser of our
IDE plugin via Android Debug Bridge (ADB).

Screencast Video Segmentation
While Doppio Transformer provides useful information of
when a method execution starts and ends, a remaining
challenge is to identify the exact time when UI elements are
actually rendered on the screen. Recent UI design trend for
mobile applications, including Google’s Material Design
[23], highly adopts motion. “Motion design” uses animation
to provide a smooth transition between UI changes, such as
adding visual elements or switching between views. To
help developers observe the method behavior, Doppio aims
to capture the entire animation in response to a user action.

To detect the states of UI rendering, one approach is to grab
UI hierarchy continuously and observe if elements are
rendered, similar to how prior work parses mobile
interfaces [13, 14]. However, our goal is to provide a
lightweight tool with minimum runtime overheads.
Therefore, we adopt an approach similar to MixT [9],
which segments the screencast video based on timestamps
and screen activities after an interaction flow is captured.

We assume that user interaction is initiated at least 0.3
seconds after animation finishes. Given a screencast video
and a set of method executions {E1, E2, … En} in an
interaction flow, where each Ei starts at time !"#$%&$ and ends

Information Execution Example (Corresponding to Figure 3d)
Class name SignInFragment

Method name onItemClick

List of
arguments and
their runtime
values

Type Name Runtime Value
Adaptiv
eView

parent android.widget.GridView
- Absolute position: 0,530-1080,1734
- Package:type/entry: app:id/avatars

View view com.google.samples.apps.topeka.w
idget.AvatarView
- Absolute position: 0,730-1080,1154
- Package:type/entry: app:id/avatar

int position 9
long id 9

Timestamps Start time Tstart and finishing time Tend of the method execution at
the system time.

Table 1. Key information that Doppio captures for every run-
time execution of target input method.

Class Method UI Components
View onClick, onDrag,

onLongClick
View elements, e.g., a Button,
Image, TabItem, and TextView.

AdapterView onItemClick,
onItemLongClick,
onItemSelected

Items of a ListView or
Spinner.

ActionMenuView onMenuItemClick Items of a menu (e.g., a
Toolbar).

AppCompatActivity onMenuOpened,
onMenuItemSelected

Items of a menu.

Activity onBackPressed,
onOptionsItemSelected

The back button; items of an
options menu.

Table 2. UI-related methods that Doppio automatically
intercepts at compilation time.

Figure 4. Doppio’s system architecture, including an IDE plugin

and a build system plugin in users’ application. The colored
blocks show the Doppio components.

with time !"'() (mapped to the video timeline), we adjust
!"'() by examining the frame differences until the next
method start time !"*+#$%&$ or the end of the video. For video
frames {F1, F2, … Fm} between [!"'(), !"*+#$%&$], we compute
the pixel difference δj between consecutive frames Fj and
Fj+1 in grayscale. When a sequence of differences {δj, δj+1,
… δk} within 0.3 seconds is all smaller than a threshold
(0.1% of screen change), we set the end time !"'()	to be the
video time of frame Fk. We repeat this process until all the
segments are adjusted. Our implementation processes
videos in the MP4 format (recorded via ADB) using
OpenCV3 in Java. The length of a demonstration is limited
to the device storage when it is tested on device.

Method Identification and Matching
After acquiring the information of method executions and a
segmented screencast video, our goal is to identify the
corresponding source code of developers’ project. As an
IDE plugin, Doppio accesses the detailed code structure
beyond plain text of the code. This is achieved using
Program Structure Interface (PSI) [33] provided by IntelliJ
IDEA4, an open source project that Android Studio IDE is
based on. PSI provides a powerful API to locate a program
element in a hierarchy, including a class, method, variable,
source code, and comment.

Our plugin traverses the codebase and identifies all the
methods shown in Table 2. In the Android framework,
callbacks can be declared in multiple ways, and a declared
class may include more than one method of the same name
embedded in anonymous classes. Doppio is capable of
finding common types of method declaration, including:

• An override method declared in a class that extends UI
classes like FragmentActivity, annotated by the
Javadoc tag @Override.

• An anonymous callback assigned to a variable in a class
or a class’ method, such as the example on Page 5.

• An anonymous callback that is directly assigned to a
View object, such as the code below:
1
2
3
4
5
6

mAdapter.setOnItemClickListener(
 new CategoryAdapter.OnItemClickListener() {
 @Override
 public void onClick(View v, int position) {
 // Executes business logic for a click event.
 }});

For each method execution Ei that contains the logged
names of the class and method (see Table 1), Doppio
matches the method element in user’s project through a
recursive process in every declared class. Via PSI, it then
retrieves the method’s code and automatically creates or
modifies the method’s comment block to include a unique
Doppio link in the form of /** @look doppio/UNIQUE_ID */.
This link can trigger state highlights in the Viewer via the
right-click menu in the IDE. This practice adopts the

3 Open Source Computer Vision Library. http://opencv.org/
4 https://www.jetbrains.com/idea/

Javadoc format that developers are used to [55]. In addition,
Doppio keeps a record of method’s code for each capture
and identifies the changed lines between versions by code
structure comparison.

Interactive Viewer
Finally, Doppio presents the processed execution results of
method behaviors in a Web-based Viewer that can be
interactively reviewed and shared with coworkers or online.

Diagram Layout. Our viewer visualizes the flow of method
executions in a screenflow diagram organized by classes.
Figure 5 shows the layout rendering mechanism, where 1)
each column represents a unique class with one or more
methods, and 2) the flow progresses along the axes. Doppio
starts from the first method execution Ei, rendering it in the
first available grid at (columni, rowi) where i=1. For the
following execution Ei+1, if it comes from the same class
with Ei, place in the same column but the next row
(columni, rowi+1); otherwise, move to the adjacent column
(columni+1, rowi) for a new class, or the next row in its class
column (columni, rowi+1).

Our layout algorithm might not be screen real-estate
efficient as the resulted diagram can be sparse especially
when consecutive executions span multiple classes
horizontally or one class vertically. However, it provides
potential benefits. First, it helps developers focus on the
project structure. The columns imply functionality grouping
derived by class design based on software engineering
practices. Second, if the same method is executed multiple
times, a column presents all the examples that can be
compared visually, similar to a design gallery [29].

Execution Review. Once obtained the metadata, each
execution presents the screenshot captured before the
interaction, with the target View region highlighted and an
arrow pointing to the next execution (see Figure 3c-d). We
chose to visualize the UI region instead of a specific touch
point since regions are often what developers are interested
in when designing app layouts. If the region is not passed
by the arguments (e.g., by onBackPressed or customized
methods), arrows will be pointed from the screen border.

Figure 5. Mechanism how Doppio layouts a class-based

screenflow diagram based on method execution sequence.

In the IDE, any line with a Doppio link will be decorated
with an icon, and developers can right-click on “View
Execution” from the menu (Figure 3f) to highlight the
method in the Viewer. The Doppio IDE plugin runs a local
Web server to host the Viewer that renders the screenflow
diagram, replays videos dynamically, and handles user
interaction using HTML5, D3.js, and jQuery.

RESULTS
To examine the generality of Doppio and the quality of the
captured documentation, we conducted an experiment (i.e.,
Pre-Study) using Doppio’s automatic approach. We
gathered 10 open source repositories from different authors
by looking for Android projects on GitHub. The projects
were selected from the search results sorted by popularity
based on the number of stars. We also specified projects
from the samples that Google provides [20]. We filtered out
projects that have few or no interactive components, such as
a test tool. The final list of testing apps contains a variety of
UI elements, including lists, menu bars, tabs, cards, buttons,
sliders, checkboxes, text fields, and popup dialogs (see
Appendix I). Motion design was seen in 8 of the 10 apps.

Test Environment. We ran applications with an Android
Studio 2.3 IDE with Doppio. The software was running on
a Mac Pro desktop machine with 32 GB memory and a
3.5GHz 6-Core processor. Each app was running on a Pixel
smartphone with 4 GB memory and 32 GB storage running
Android 7.1.2, connected to the desktop via USB.
Screencast videos were recorded as 1080x1920 pixels from
the 5-inch display of the phone.

Methods and Results. For each application, we defined an
interaction flow using Espresso by demonstration. We
measured the processing time and the accuracy for
capturing each method’s execution. In particular, we
examined how well the video segment covered the method
behavior. We repeated the test for each app three times for
acquiring aggregated statistics.

Table 3 shows the performance of Doppio. Each row
presents the average result from 3 tests of an app. Out of the
90 total clicks in the flows we tested, 82% (74 events) were
handled by 26 unique callbacks, where 22 handlers were
automatically identified by Doppio and 4 were customized
methods from 3 apps that we had to manually annotate.
Doppio successfully captured all the execution information
of these events and their UI responses. Handlers for other
operations that were not specified in the source projects,
such as text input, were not traced by our tool. On average,
raw videos of a 36.85-second length are extracted to present
active UI changes of 16.17 seconds in total.

Figure 6 presents selected results from these applications
(with the arrows removed to preserve space). Doppio
effectively identifies useful segments that demonstrate user
interactions. Doppio precisely highlights UI views to
present the moments when user interactions were initiated
and how UIs responded for a method. For example, App#5

contains multiple View Fragments and buttons. The
captured screenshots are effective in showing the UI
progress (see Figure 6a). For App#4 that heavily uses
animated transitions between views, Doppio accurately
identifies the ends of animations such that the video
snippets show the exact transitions (see Figure 6b). It also
contains multiple class extensions, where Doppio
effectively points out how elements on the same screen are
handled by different classes (see Figure 3c). In App#3, #7,
and #9 that all contained a menu, Doppio illustrates how
each menu item is mapped to a different View—these menu
items are handled by the same method but with different
runtime argument values (e.g., position of the clicked
item in a list). Appendix II presents more example results
from the 10 apps we tested; Appendix III shows an example
with a long input sequence of 25 input actions that span 8
classes and 10 methods in a 2-minute long demonstration.

App Raw
video
length
(sec)

Total
clip

length
(sec)

Process
time
(sec)

of
video

frames

of
input

actions
tested

of input
methods
executed

Start time
of video

(%)*

End time
of video

(%)*

#1 55.94 38.25 16.57 1769.3 18 18 (100%) 0 / 100 / 0 0 / 100 / 0
#2 20.55 14.27 9.02 961.3 5 5 (100%) 0 / 100 / 0 0 / 100 / 0
#3 20.23 7.18 4.17 352.3 7 4 (100%) 0 / 100 / 0 0 / 100 / 0
#4 51.75 26.11 11.34 1295.7 20 9 (100%) 0 / 100 / 0 0 / 100 / 0
#5 32.09 15.86 68.3 727.3 8 8 (100%) 0 / 100 / 0 0 / 100 / 0
#6 27.07 13.67 7.27 616.7 6 6 (100%) 0 / 100 / 0 0 / 100 / 0
#7 47.97 16.84 12.45 1460.7 6 6 (100%) 5.5 / 94.5 / 0 0 / 100 / 0
#8 46.97 8.29 12.66 1363.5 7 7 (100%) 0 / 100 / 0 0 / 100 / 0
#9 31.81 8.78 5.78 621.3 5 5 (100%) 0 / 100 / 0 0 / 100 / 0
#10 34.15 12.56 8.59 881.7 8 6 (100%) 0 / 100 / 0 0 / 100 / 0

AVE 36.85 16.17 9.47 1005.0 9.0 7.4 (100%) 0.55 / 99.45 / 0 0 / 100 / 0

Table 3. Doppio’s captures from 10 Android apps.
* Screenshots taken too early / at exact timing / too late.

Figure 6. (a) The classes, methods, key argument values, and
screenshots captured by Doppio for App#5 (Music Player).

(b) A series of intermediate frames from a video segment for
App#4 (Topeka) that uses motion design. Video is effective in

showing the exact transition between the start and end screens.

USER EVALUATION
We evaluated Doppio’s usability via two laboratory studies
using the materials generated by Doppio with 16
participants. The first study with 8 engineers focused on
how the method-specific visual examples support code
understanding. Instead of showing the entire screenflow
diagram, we specified a set of methods and presented only
their associated visual examples. The second study with
another 8 engineers tested if the class-based screenflow
diagrams assist code finding and gathered users’ feedback
on Doppio’s code change tracking capability.

In these studies, we selected three from the 10 open source
projects used in the Pre-Study, including App#3
“Navigation Drawer” as a warmup and App#5 “Music
Player” and App#4 “Topeka” for the main tasks. The main
projects were chosen because their features are easy to
understand, but the code has a moderate degree of
complexity and includes a variety of methods that handle
user input. We slightly modified the test scripts to simplify
the interaction flows for both apps. We used the same
smartphone and desktop computer that we used for the Pre-
Study. The computer was connected to a dual 24-inch LCD
displays, each with a 1920x1200 pixel resolution.

We compared Doppio with a Baseline that provided a
standard Android Studio IDE with counterbalanced order of
conditions. Participants were selected via an internal
invitation and all had experiences using Android Studio for
app development. None of them had seen the projects used
in the studies. Each participant was compensated with a $25
gift card for their participation in a one-hour session.

Study 1: Effectiveness for Code Understanding
Building upon prior studies that suggested the benefits of
visual or video materials for learning unfamiliar concepts
[48, 9], we hypothesized that programmers can understand
a method’s behavior of an unfamiliar project more
accurately with the visual examples that Doppio captured
than existing practice in constrained time. We conducted an
informal within-subject study with 8 software engineers (1
female), aged 25 to 42 years (Mean=32.5) from an IT
company. In the Doppio condition, we only showed the
captured information of the target methods, while each
visually presented only the screenshots, video clip, and
runtime argument values.

Each session started with the warm-up project to help
participants familiarize with the environment. Then, we
presented App#5 by walking through the same interaction
flow from the test script we used in the Pre-Study. We
asked participants to describe the behaviors of three
specified methods in text in 15 minutes as if they were
documenting source code for their everyday work projects
(Task 1). Documentation of parameters and return values
was not required. We then introduced App#4 and the other
condition and asked to write for another three methods
(Task 2). Details about the selected methods and their
behaviors are listed in Appendix IV.

Results. All participants but one completed both tasks. One
user failed to initiate writing for Method 3 in the Baseline
condition under the time constraint. We found that
participants constantly replayed the videos to observe the
UI changes with Doppio. On average, videos were replayed
33.3 times (SD=31.4) for Task 1 and 27.8 times (SD=14.6)
for Task 2. Without Doppio, participants mainly focused on
code reading and tracing; only two users reran the apps.

Of the 47 completed descriptions from the two tasks, the
average length was 19 words (SD=13.4) for the Baseline
and 22 words (SD=23.7) for Doppio. While the average
word length in the Doppio condition was slightly longer
with larger variation, participants made more concise
descriptions when we looked into how a method’s behavior
was documented by its content. Specifically, descriptions
from the Baseline mainly were verbosely translated from
code logic, line by line. For example, for Method 1 in Task
1, 75% of the Baseline descriptions listed all the three
detailed if-else conditions one by one (e.g., “Either plays
the selected media (with the given ID) when it’s playable or
browses the selected media when it’s browsable. Throws an
exception if the item is not in both cases.” by P5), where the
descriptions using Doppio’s visual examples were less
verbose (e.g., “Plays the media item if playable or
navigates to the selected item.” by P2). We also noted that
with Doppio, descriptions included the concrete visuals
more, such as “disappear”, “grid”, “pop up”, “bigger”,
“inside”, “transition”, “animation” for Task 2 that applied
motion design.

Doppio helped participants correct errors. For example,
P8’s strategy was to first comprehend through reading
source code and then verify via the visual examples. For the
method that shows the full-screen view of the user-selected
song via “navigateToBrowser(item.getMediaId())” in Task
1, P8 originally wrote “opens it in a browser”. After seeing
the video, he immediately changed to “opens it for
browsing” as the method name did not infer an actual
browser but an abstraction. P8 pointed out the difference as
“When looking at completely unfamiliar code, I had
assumptions on what some of the method are doing based
on their names. Being able to see what happens in the UI
allowed me to be more confident in my assumptions, and
saved me some digging.”

Participants found the screenshots useful in understanding
the methods’ behaviors (Median ratings=4.5 out of the 5-
point Likert-scale), so is the videos (Median=4.5), similar
to MixT’s results of mixed-media tutorials [9]. P3
explained, “In the context of debugging, it was extremely
helpful to see activities/fragments transitions to validate the
code logic.” P4 commented, “Nothing is more intuitive than
seeing the effects of a method the way a user perceives it.”
These results suggest that Doppio helped developers
understand and verify code behaviors via visual examples.

Study 2a: Effectiveness for Code Finding
After verifying how Doppio’s segmented information
supported developers in understanding methods’ behaviors,
we aimed to test if it would be useful to present the method
overview of an interaction flow while preserving the visual
demonstrations. We conducted another within-subject study
with 8 software engineers different from Study 1 (all males,
aged 22 to 39 years, Mean=28.25), from the same IT
company. The first part of Study 2 hypothesized that
programmers can efficiently find methods of interest in an
unfamiliar project with Doppio than existing practice. In the
Doppio condition, we showed the Viewer as Figure 3c
presents. The entire study took 44 minutes on average,
including a 3-minute introduction to Doppio’s Viewer.

Similar to Study 1, each session included a warm-up and
the same two Android projects and interaction flows.
However, we assume that method finding can be more
challenging than Study 1 given that App#5 includes 42
classes and 459 declared methods in 5 packages and 1 sub-
package, and App#4 has 57 classes and 672 declared
methods in 7 packages and 4 sub-packages (see Table 4).
Therefore, for each project, we limited the tasks to find two
from the three methods of each project used in Study 1:

• Task 1 asked participants to find the methods given two
specific interactions and screens in App#5 (“Please find
the method that responds to song selection” and “(…)
handles play/pause of a song in the song full-screen
view”) in 10 minutes.

• Task 2 asked to find the methods that “responds to the
question type that user selects” and “handles and records
the answer submission” in App#4.

Results. All participants but one completed both the tasks.
One user failed to find one method in App#5 with the
Baseline condition. On average, participants spent 3.75 and
5.38 minutes with Doppio (all completed the tasks early),
which saved 55% and 23% of time from the Baseline where
participants spent 8.25 and 7 minutes for each task (while
three of eight participants used up their 10-minute limit). In
terms of performance comparing with self, each participant
completed the task twice faster with Doppio than without it.
All participants thought that it was faster to find target
methods with Doppio (Median ratings=5). We observed
that their strategy was to use Doppio to locate methods in
the projects and trace code to verify the behaviors, whereas
without Doppio, participants either relied on code search by
keywords (e.g., “pause” or “click” in Task 1 or “submit” in
Task 2) or traverse each class via breath-first search.

Correctness of method finding drew a difference between
the two conditions (see Table 5). In Task 1, using Doppio,
both of the user-identified methods were 100% correct;
with the Baseline, each method was 75% correct, which
included an incomplete answer and an incorrect method in
the correct class respectively. Task 2 had a major drop (see
Appendix V for detailed code snippets). Using Doppio, the

first method got 100% correctness; with the Baseline, one
participant was confused by a similar class−he chose the
class CategorySelectionActivity that handles the app’s
main control for account settings instead of the detailed
CategorySelectionFragment that presents and handles the UI
grids of quiz types). The second method was very
challenging because of the app design, which sets the input
callback dynamically via a base class. The behavior would
require time and programming experience to trace the
source code. None of the Baseline participants got this
method correctly; one participant using Doppio also gave
the same incorrect answer, who later explained how he got
confused and couldn’t figure out under the time constraint.

Similar to Study 1, participants found the screenshots useful
in understanding the methods’ behaviors (Median=5), so is
the videos (Median=4.5). They spent 17.5 seconds
(SD=5.4) in total reviewing detailed snippets for Task 1 and
32.4 seconds (SD=9.5) for Task 2. Video clips, mostly 2-3
seconds, were reviewed 10.75 times (SD=6.85) for 5 clips
in Task 1 and 7.75 times (SD=1.5) for all 9 clips in Task 2.

Study 2b: Support of Code Change Understanding
Finally, we investigated how Doppio’s code tracking
capability supports developers in understanding changes.
Immediately after each task in Study 2a, we asked
participants to modify the app behavior by adding a
confirmation dialog (after tapping a song View in App#5,
show “Starts playing this song?”; before leaving the quiz in
App#4, show “Leaves the quiz?”). Participants were asked
to modify the code to call a declared method we provided
that handles the new behavior and rerun the test script.
Then, in the Doppio condition, we presented and explained
the updated screenflow diagram. We asked participants of
both conditions to write a revision description as if they
were submitting this code change to a coworker. Appendix
VI and VII present the diagrams that participants
experienced after code revision.

Results. Six of the eight participants chose to include a
screenshot or a demo video linked from the revision in their
descriptions. Another participant asked if he could include
the link to the Viewer page although he did not include any
link in the first task with the Baseline. P1 explained, “I
definitely would have added screenshots/links to Doppio—

Task States
(clicks)

Invoked
classes

Total classes
in project

Invoked
callbacks

Total methods
in project

1 (App#5) 6 4 42 4 459
2 (App#4) 9 5 57 7 672

Table 4. Number of interactions in test scripts and their invoked
classes and methods compared to project methods.

Task-
Method

Time (minutes) Correctness Error type Baseline Doppio Baseline Doppio
1-1 8.25 3.75 75% 100% Incomplete
1-2 75% 100% Incorrect method
2-1 7 5.38 75% 100% Incorrect class
2-2 0% 75% Incorrect class

Table 5. Task performance in Study 2a.

it would have been very useful to include.” All participants
thought that it was faster to track changes with Doppio
(Median=4.5). When describing Doppio’s advantages, P3
said “provide more visibility of recent changes, share with
other team peers to know what your CL change, and better
for team demo/presentation.” This indicates that Doppio’s
automatic approach of app state identification is useful and
supports our motivation of providing visual examples as
software documentation for sharing.

DISCUSSION AND OPPORTUNITIES
Overall, we received very positive feedback from
participants on their experience using Doppio. All
participants found it easy to use our tool (Median=5) and
easy to review UI behaviors of an app with Doppio (Median
=5). All rated 5 that the screenflow diagrams were useful,
and the concept of visualizing app behaviors in an
interactive viewer was straightforward. In Study 2, P1
commented, “I felt confident about my understanding of the
event handling much quicker (as in, almost immediately)
with Doppio, whereas without Doppio I had to do a lot of
looking around.” Other participants commented that
Doppio is “a very powerful tool in terms of understanding
the app itself and the code base” (P2), “very handy for
developers beginning with a project” (P4), and “great for
bug reproduction and tracing with video recorded” (P7).
Overall, we were pleased to find that all the participants
preferred to develop apps with Doppio over without its
support (Median=5) and all strongly agreed that they would
want to have this plugin if it is available.

Doppio’s approach is based on the access to the source
code. Therefore, support of cross-app interaction (e.g.,
switching to other app intents for operations) is limited if
such a behavior is not part of the source project. Below we
describe more of Doppio’s limitations and opportunities.

Interactive Debugging. From our observations and user
feedback, we strongly believe that Doppio’s automatic
approach of visualizing input callbacks can be powerful in
developing an interactive system. We demonstrated how
Doppio can effectively assist developers in code
understanding, tracing, and testing with the visual
examples. But we also acknowledge the opportunities to
support interactive debugging that we have not yet shown.
P2 and P6 suggested having the tool better integration with
the IDE, such as automatically inspecting methods, pausing
at the target callbacks, and handling obsolete metadata.

Diverse Mobile Input and Output. Our design focuses on
specific user inputs of single touchscreen events (such as
onClick) and visible on-screen user feedback. Our video-
based heuristics by comparing frame differences are built
upon design principles for such type of interaction. Doppio
does not fully handle continuous dynamic input (e.g.,
sensors, gestures, or speech that involves a diverse
collection of event triggers) or looping animation. To
support applications of more interactive techniques and
feedback, potential solutions include: programming by

demonstration for developers to specify a clear link
between continuous events and code, and pixel-based UI
recognition [16] to identify visual pattern or repetition.

Logic Understanding and Automation. Our current approach
does not interpret the logic inside a method. For a function
that handles several conditions, we rely on a test session
that covers the code. As Study1-P3 pointed out, “if the logic
is fairly complicated with many different paths, it would be
useful to see the exact code path (e.g. line number, along
with the details of the intent).” Since Doppio has the access
to the source code, it is possible to trace these conditions
and visualize them similar to Whyline [38]. Similarly,
changed behaviors would not be reflected if not covered by
the test script or in demonstration, and different traces and
configurations over time are not compared. We seek to
bring automation to the process to leverage the existing
testing frameworks as several participants suggested
(Study1-P2, P5, and P8). P5 in Study 2 commented, “It
would be nice if there were some kind of warning indicator
saying they are not being tested if you didn’t add tests.”

Platform Integrations. For software development, an
important role of documentation is to help other developers
to review and modify the code. From Study 2b, Doppio’s
code and execution tracing could support app iteration on
visual design and UI behaviors. Our Web-based Viewer
makes it promising to share the materials online for
collaboration. For better integration with existing online
platforms, we are developing a Chrome plugin that presents
the video snippets for code-sharing sites like GitHub.
Another promising approach is to export video segments as
GIFs that can be embedded in a markup file or webpage.

Example-Based Code Search and Debug. We are excited
about the future when a community captures and shares
execution results using Doppio. As a crowd-powered IDE
has shown to be useful in programing [17], code search
based on input-driven examples can be introduced when
links between source code and runtime examples are
available. By presenting the execution results and code
snippets, developers can visually compare, reason, and
program interactively. Last but not least, to support app
search, we also look forward to further generating the
method summary in natural language or patterns learned
from the captured information similar to prior work for
code summary [49] and code changes [45, 5, 52].

CONCLUSION
We present Doppio, a tool that automatically tracks and
visualizes UI flows and their changes based on source code
elements and their revisions. We integrate Doppio, as an
IDE plugin, seamlessly into a development workflow to
generate interactive screenflow diagrams organized by the
callback methods and input sequences. We tested Doppio
on a range of open source projects, which present
compelling results on visual documentation. We also
evaluated Doppio with 16 professional developers and
gained positive feedback.

REFERENCES
1. Dimitar Asenov, Otmar Hilliges, and Peter Müller. 2016. The

Effect of Richer Visualizations on Code Comprehension. In
Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI '16). ACM, New York, NY,
USA, 5040-5045. DOI:
https://doi.org/10.1145/2858036.2858372

2. Tanzirul Azim, Oriana Riva, and Suman Nath. 2016. uLink:
Enabling User-Defined Deep Linking to App Content. In
Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys '16).
ACM, New York, NY, USA, 305-318. DOI:
http://dx.doi.org/10.1145/2906388.2906416

3. Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D.
Ernst. 2013. Interactive record/replay for web application
debugging. In Proceedings of the 26th annual ACM
symposium on User interface software and technology (UIST
'13). ACM, New York, NY, USA, 473-484. DOI:
http://dx.doi.org/10.1145/2501988.2502050

4. Brian Burg, Andrew J. Ko, and Michael D. Ernst. 2015.
Explaining Visual Changes in Web Interfaces. In Proceedings
of the 28th Annual ACM Symposium on User Interface
Software & Technology (UIST '15). ACM, New York, NY,
USA, 259-268. DOI:
https://doi.org/10.1145/2807442.2807473

5. Raymond P.L. Buse and Westley R. Weimer. 2010.
Automatically documenting program changes. In Proceedings
of the IEEE/ACM international conference on Automated
software engineering (ASE '10). ACM, New York, NY,
USA, 33-42.
DOI=http://dx.doi.org/10.1145/1858996.1859005

6. Kerry Shih-Ping Chang and Brad A Myers. 2012.
WebCrystal: understanding and reusing examples in web
authoring. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 3205–3214.

7. Hsiang-Ting Chen, Tovi Grossman, Li-Yi Wei, Ryan M.
Schmidt, Björn Hartmann, George Fitzmaurice, and Maneesh
Agrawala. 2014. History assisted view authoring for 3D
models. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '14). ACM, New York,
NY, USA, 2027-2036.
DOI=http://dx.doi.org/10.1145/2556288.2557009

8. Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S.
Lasecki, and Steve Oney. 2017. Codeon: On-Demand
Software Development Assistance. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems (CHI '17). ACM, New York, NY, USA, 6220-6231.
DOI: https://doi.org/10.1145/3025453.3025972

9. Pei-Yu (Peggy) Chi, Sally Ahn, Amanda Ren, Mira
Dontcheva, Wilmot Li, and Björn Hartmann. 2012. MixT:
automatic generation of step-by-step mixed media tutorials.
In Proceedings of the 25th annual ACM symposium on User
interface software and technology (UIST '12). ACM, New
York, NY, USA, 93-102. DOI:
http://dx.doi.org/10.1145/2380116.2380130

10. Pei-Yu (Peggy) Chi, Yang Li, and Björn Hartmann. 2016.
Enhancing Cross-Device Interaction Scripting with
Interactive Illustrations. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI

'16). ACM, New York, NY, USA, 5482-5493. DOI:
https://doi.org/10.1145/2858036.2858382

11. Shigeru Chiba. 2000. Load-Time Structural Reflection in
Java. In ECOOP 2000: Object-Oriented Programming.
Springer.

12. Shigeru Chiba and Muga Nishizawa. 2003. An Easy-to-Use
Toolkit for Efficient Java Bytecode Translators. In GPCE
2003: Generative Programming and Component Engineering.
Springer.

13. Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016.
ERICA: Interaction Mining Mobile Apps. In Proceedings of
the 29th Annual Symposium on User Interface Software and
Technology (UIST '16). ACM, New York, NY, USA, 767-
776. DOI: https://doi.org/10.1145/2984511.2984581.

14. Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols and
Ranjitha Kumar. 2017. Rico: A Mobile App Dataset for
Building Data-Driven Design Applications. In Proceedings of
the 30th Annual Symposium on User Interface Software and
Technology (UIST '17). ACM, New York, NY, USA.

15. Stephan Diehl. 2007. Software Visualization: Visualizing the
Structure, Behaviour, and Evolution of Software. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

16. Morgan Dixon and James Fogarty. 2010. Prefab:
implementing advanced behaviors using pixel-based reverse
engineering of interface structure. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '10). ACM, New York, NY, USA, 1525-1534.
DOI: https://doi.org/10.1145/1753326.1753554

17. Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and
Michael S. Bernstein. 2014. Emergent, crowd-scale
programming practice in the IDE. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '14). ACM, New York, NY, USA, 2491-2500.
DOI=http://dx.doi.org/10.1145/2556288.2556998

18. Shiry Ginosar, Luis Fernando De Pombo, Maneesh
Agrawala, and Bjorn Hartmann. 2013. Authoring multi-stage
code examples with editable code histories. In Proceedings of
the 26th annual ACM symposium on User interface software
and technology (UIST '13). ACM, New York, NY, USA,
485-494. DOI: http://dx.doi.org/10.1145/2501988.2502053

19. Google Inc. Android Studio.
https://developer.android.com/studio/ (accessed: 09/01/2017).

20. Google Inc. Google Samples.
https://github.com/googlesamples/ (accessed: 09/01/2017).

21. Google Inc. Testing UI for a Single App.
https://developer.android.com/training/testing/ui-
testing/espresso-testing.html (accessed: 09/01/2017).

22. Google Inc. Topeka for Android.
https://github.com/googlesamples/android-topeka/tree/java
(accessed: 09/01/2017).

23. Google Inc. Material Design. https://material.io/ (accessed:
09/01/2017).

24. Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. 2009. Generating photo
manipulation tutorials by demonstration. ACM Trans. Graph.

28, 3, Article 66 (July 2009), 9 pages.
DOI=http://dx.doi.org/10.1145/1531326.1531372

25. Tovi Grossman and George Fitzmaurice. 2010. ToolClips: an
investigation of contextual video assistance for functionality
understanding. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '10). ACM, New
York, NY, USA, 1515-1524.
DOI=http://dx.doi.org/10.1145/1753326.1753552

26. Tovi Grossman, Justin Matejka, and George Fitzmaurice.
2010. Chronicle: capture, exploration, and playback of
document workflow histories. In Proceedings of the 23nd
annual ACM symposium on User interface software and
technology (UIST '10). ACM, New York, NY, USA, 143-
152. DOI=http://dx.doi.org/10.1145/1866029.1866054

27. Yiyang Hao, Ge Li, Lili Mou, Lu Zhang, and Zhi Jin. 2013.
MCT: a tool for commenting programs by multimedia
comments. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE '13). IEEE Press,
Piscataway, NJ, USA, 1339-1342.

28. Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais.
2011. How Good is Your Comment? A Study of Comments
in Java Programs. 2011 International Symposium on
Empirical Software Engineering and Measurement, Banff,
AB, Canada, 137-146. DOI=10.1109/ESEM.2011.22

29. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang,
and Scott R. Klemmer. 2008. Design as exploration: creating
interface alternatives through parallel authoring and runtime
tuning. In Proceedings of the 21st annual ACM symposium
on User interface software and technology (UIST '08). ACM,
New York, NY, USA, 91-100. DOI:
https://doi.org/10.1145/1449715.1449732

30. Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy
Cardenas, and Scott R. Klemmer. 2010. d.note: revising user
interfaces through change tracking, annotations, and
alternatives. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '10). ACM, New
York, NY, USA, 493-502. DOI:
https://doi.org/10.1145/1753326.1753400

31. Joshua Hibschman and Haoqi Zhang. 2015. Unravel: Rapid
Web Application Reverse Engineering via Interaction
Recording, Source Tracing, and Library Detection. In
Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology (UIST '15). ACM, New
York, NY, USA, 270-279. DOI:
https://doi.org/10.1145/2807442.2807468.

32. Joshua Hibschman and Haoqi Zhang. 2016. Telescope: Fine-
Tuned Discovery of Interactive Web UI Feature
Implementation. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology
(UIST '16). ACM, New York, NY, USA, 233-245. DOI:
https://doi.org/10.1145/2984511.2984570

33. JetBrains. Program Structure Interface. IntelliJ Platform SDK
DevGuide.
http://www.jetbrains.org/intellij/sdk/docs/basics/architectural
_overview/psi_files.html (accessed: 03/10/2017).

34. Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A
Novice-Oriented Live Programming Environment with
Always-On Run-Time Value Visualizations. In Proceedings

of the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST '17). ACM, New York, NY,
USA, 737-745. DOI:
https://doi.org/10.1145/3126594.3126632

35. Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn
Hartmann, and Jan Borchers. 2011. Stacksplorer: call graph
navigation helps increasing code maintenance efficiency. In
Proc. UIST '11, 217-224.

36. Jun Kato, Sean McDirmid, and Xiang Cao. 2012. DejaVu:
integrated support for developing interactive camera-based
programs. In Proceedings of the 25th annual ACM
symposium on User interface software and technology (UIST
'12). ACM, New York, NY, USA, 189-196. DOI:
https://doi.org/10.1145/2380116.2380142

37. Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. 2013.
Picode: inline photos representing posture data in source
code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '13). ACM, New York,
NY, USA, 3097-3100. DOI:
https://doi.org/10.1145/2470654.2466422

38. Andrew J. Ko and Brad A. Myers. 2004. Designing the
whyline: a debugging interface for asking questions about
program behavior. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '04). ACM,
New York, NY, USA, 151-158.
DOI=http://dx.doi.org/10.1145/985692.985712

39. Douglas Kramer. 1999. API documentation from source code
comments: a case study of Javadoc. In Proceedings of the
17th annual international conference on Computer
documentation (SIGDOC '99). ACM, New York, NY, USA,
147-153. DOI=http://dx.doi.org/10.1145/318372.318577

40. Jan-Peter Krämer, Joel Brandt, and Jan Borchers. 2016.
Using Runtime Traces to Improve Documentation and Unit
Test Authoring for Dynamic Languages. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing
Systems (CHI '16). ACM, New York, NY, USA, 3232-3237.
DOI: https://doi.org/10.1145/2858036.2858311

41. Sandeep K. Kuttal, Anita Sarma, and Gregg Rothermel. 2014.
On the benefits of providing versioning support for end users:
An empirical study. ACM Trans. Comput.-Hum. Interact. 21,
2, Article 9 (February 2014), 43 pages. DOI:
https://doi.org/10.1145/2560016

42. Timothy C. Lethbridge, Janice Singer, and Andrew Forward.
2003. How Software Engineers Use Documentation: The
State of the Practice. IEEE Softw. 20, 6 (November 2003),
35-39. DOI=http://dx.doi.org/10.1109/MS.2003.1241364

43. Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014.
Addressing misconceptions about code with always-on
programming visualizations. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI
'14). ACM, New York, NY, USA, 2481-2490.
DOI=http://dx.doi.org/10.1145/2556288.2557409.

44. Henry Lieberman. 1993. Mondrian: a teachable graphical
editor. In Watch what I do, Allen Cypher, Daniel C. Halbert,
David Kurlander, Henry Lieberman, David Maulsby, Brad A.
Myers, and Alan Turransky (Eds.). MIT Press, Cambridge,
MA, USA 341-358.

45. Mario Linares-Vásquez, Luis Fernando Cortés-Coy, Jairo
Aponte, and Denys Poshyvanyk. 2015. ChangeScribe: a tool
for automatically generating commit messages. In
Proceedings of the 37th International Conference on Software
Engineering - Volume 2 (ICSE '15), Vol. 2. IEEE Press,
Piscataway, NJ, USA, 709-712.

46. Dastyni Loksa, Andrew J. Ko, Will Jernigan, Alannah
Oleson, Christopher J. Mendez, and Margaret M. Burnett.
2016. Programming, Problem Solving, and Self-Awareness:
Effects of Explicit Guidance. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI
'16). ACM, New York, NY, USA, 1449-1461. DOI:
https://doi.org/10.1145/2858036.2858252

47. Josip Maras, Jan Carlson, and Ivica Crnkovi. 2012.
Extracting client-side web application code. In Proceedings
of the 21st international conference on World Wide Web.
ACM, 819–828.

48. Richard E Mayer, William Bove, Alexandra Bryman,
Rebecca Mars, and Lene Tapangco. “When less is more:
Meaningful learning from visual and verbal summaries of
science textbook lessons.” In: Journal of educational
psychology 88.1 (1996), p. 64.

49. Paul W. McBurney and Collin McMillan. 2014. Automatic
documentation generation via source code summarization of
method context. In Proceedings of the 22nd International
Conference on Program Comprehension (ICPC 2014). ACM,
New York, NY, USA, 279-290.
DOI=http://dx.doi.org/10.1145/2597008.2597149

50. Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi.
2017. Micro-Versioning Tool to Support Experimentation in
Exploratory Programming. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI
'17). ACM, New York, NY, USA, 6208-6219. DOI:
https://doi.org/10.1145/3025453.3025597

51. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000. Past,
present, and future of user interface software tools. ACM
Trans. Comput.-Hum. Interact. 7, 1, 3-28.

52. Stas Negara, Mihai Codoban, Danny Dig, and Ralph E.
Johnson. 2014. Mining fine-grained code changes to detect
unknown change patterns. In Proceedings of the 36th
International Conference on Software Engineering (ICSE
2014). ACM, New York, NY, USA, 803-813. DOI:
https://doi.org/10.1145/2568225.2568317

53. Stephen Oney and Brad Myers. 2009. FireCrystal:
Understanding interactive behaviors in dynamic web pages.
In Visual Languages and Human-Centric Computing, 2009.
VL/HCC 2009. IEEE Symposium on. IEEE, 105–108.

54. Stephen Oney and Joel Brandt. 2012. Codelets: linking
interactive documentation and example code in the editor. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '12). ACM, New York, NY, USA,
2697-2706. DOI:
http://dx.doi.org/10.1145/2207676.2208664Y.

55. Oracle. Javadoc Tool.
http://www.oracle.com/technetwork/articles/java/index-jsp-
135444.html (accessed: 3/10/ 2017).

56. Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016.
MobiPlay: a remote execution based record-and-replay tool
for mobile applications. In Proceedings of the 38th
International Conference on Software Engineering (ICSE
'16). ACM, New York, NY, USA, 571-582. DOI:
https://doi.org/10.1145/2884781.2884854.

57. Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and
Eytan Adar. 2016. CodeMend: Assisting Interactive
Programming with Bimodal Embedding. In Proceedings of
the 29th Annual Symposium on User Interface Software and
Technology (UIST '16). ACM, New York, NY, USA, 247-
258. DOI: https://doi.org/10.1145/2984511.2984544.

58. Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori
Pollock, and K. Vijay-Shanker. 2010. Towards automatically
generating summary comments for Java methods. In
Proceedings of the IEEE/ACM international conference on
Automated software engineering (ASE '10). ACM, New
York, NY, USA, 43-52. DOI=10.1145/1858996.1859006
http://doi.acm.org/10.1145/1858996.1859006

59. Moritz Wittenhagen, Christian Cherek, and Jan Borchers.
2016. Chronicler: Interactive Exploration of Source Code
History. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI '16). ACM, New
York, NY, USA, 3522-3532. DOI:
https://doi.org/10.1145/2858036.2858442

60. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009.
Sikuli: using GUI screenshots for search and automation. In
Proceedings of the 22nd annual ACM symposium on User
interface software and technology (UIST '09). ACM, New
York, NY, USA, 183-192.
DOI=http://dx.doi.org/10.1145/1622176.1622213

61. YoungSeok Yoon, Brad A. Myers, and Sebon Koo. 2013.
Visualization of fine-grained code change history. 2013 IEEE
Symposium on Visual Languages and Human Centric
Computing, San Jose, CA, USA, 119-126.
DOI=10.1109/VLHCC.2013.6645254

APPENDICES

Appendix I. 10 open-sourced Android applications we tested (sorted by author names).

App Author App Name Description (from authors) Major UI Components
of screenshots

in README
(images / GIFs)

GitHub link
(https://github.

com/)
#1 florent37 Material

View Pager
A Material Design ViewPager
easy to use library.

A list of four tabs and a navigation drawer. 2 / 8 florent37/Mater
ialViewPager

#2 Gabriele
Mariotti

Card
Library

Android Library to build a UI
Card.

Multiple grid lists and a navigation drawer.
Each grid opens another view of multiple
cards.

4 / 0 gabrielemariotti
/cardslib

#3 Google Navigation
Drawer

… illustrates a common usage of
the DrawerLayout widget in the
Android support library.

A main card that opens another view with a
navigation drawer with a list of eight
options.

0 / 0 googlesamples/
android-
NavigationDra
wer

#4 Google Topeka A fun to play quiz that
showcases material design on
Android.

A grid list that show categories of quizzes.
Each quiz includes 10 questions that are
answered by checkboxes, sliders, text fields,
or buttons.

3 / 0 googlesamples/
android-topeka/
tree/java

#5 Google Universal
Android
Music
Player

… shows how to implement an
audio media app that works
across multiple form factors.

Three lists in order (Main > Genres >
Songs) and a sliding card of the song being
played, which can be expanded to full
screen, with a control bar of three buttons
(play/pause, previous, next).

6 / 0 googlesamples/
android-
UniversalMusic
Player

#6 Google unsplash A window into transitions. A grid list of various sizes. Each grid opens
another full-screen view.

0 / 0 googlesamples/
android-
unsplash

#7 Google XYZ
Tourist
Attractions

… notifies the user when they
are in close proximity to notable
points of interest.

A list of six cards, each opens a detailed
view with a button that launches the Maps
app to show a specific location.

1 / 0 googlesamples/
android-
XYZTouristAtt
ractions

#8 nickbutch
er

plaid

… provides design news &
inspiration as well as being an
example of implementing
material design.

A grid list of dynamic sizes. Each grid opens
another view that includes buttons for
sharing, commenting, or bookmarking.

4 / 1 nickbutcher/plai
d

#9 Square Times
Square

Standalone Android widget for
picking a single date from a
calendar view.

A list of ten tabs, each presents different
calendar design. Two pop up the calendar as
a dialog.

1 / 0 square/android-
times-square

#10 Yalantis uCrop Image Cropping Library for
Android

A form with buttons, checkboxes, and text
fields; Another view for cropping images
via buttons and sliders.

0 / 1 Yalantis/uCrop

Appendix II. Example method execution from the 10 applications we tested.

App#1
NativeMenuActivity :: onTopicSelected

App#2
MainActivity :: getHeaderDesign

App#3
NavigationDrawerActivity :: onClick

App#4
CategorySelectionFragment :: onClick

App#5
PlaybackControlsFragment :: onClick

App#6
MainActivity :: onItemSelected

App#7
ViewHolder :: onClick

App#8
DribbbleShot :: onClick

App#9
SampleTimesSquareActivity :: onClick

App#10
ResultActivity :: onOptionsItemSelected

Appendix III. Screenflow diagram of App#4 with 25 clicks that involve 8 classes and 10 unique callback methods.

Top page

Bottom page

Appendix IV. Methods we asked participants to describe in Study 1.
Task App App Name Class and Method Behaviors (Text is not shown to participants)

warmup #3 Navigation
Drawer

MainActivity :: onItemClick* Selects a sample project (shown as a card).
NavigationDrawerActivity :: onClick* Selects an item from a sliding menu.

1 #5 Universal
Android
Music Player

MusicPlayerActivity :: onMediaItemSelected* Selects an item of genres/artists/songs from a list.
PlaybackControlsFragment :: onClick Expands to the full screen to review and control the song

being played.
FullScreenPlayerActivity :: onClick* Handles to play/pause a song.

2 #4 Topeka fragment/CategorySelectionFragment :: onClick* Selects a category card from a set.
activity/QuizActivity :: onClick Starts the quiz via a button.
widget/quiz/AbsQuizView :: onClick* Submits the answer and proceeds to the next question via a

button.
* Also used in Study 2.

Appendix V. Code snippets of Task 2’s methods in Study 2a.

Method Behavior Code Snippet from the Correct Class/Method Incorrect Class/Method Specified by Participants
1 responds to

the question
type that
user selects

In Class CategorySelectionFragment:

mAdapter.setOnItemClickListener(

 new CategoryAdapter.OnItemClickListener() {

 @Override

 public void onClick(View v, int position) {

 Activity activity = getActivity();

 startQuizActivityWithTransition(

 activity,

 v.findViewById(R.id.category_title),

 mAdapter.getItem(position));

 }

 });

In Class CategorySelectionActivity:

@Override

public boolean onOptionsItemSelected(

 MenuItem item) {

 switch (item.getItemId()) {

 case R.id.sign_out: {

 signOut();

 return true;

 }

 }

 return super.onOptionsItemSelected(item);

}

2 handles and
records the
answer
submission

In Class AbsQuizView:

The submit button that has the id submitAnswer (defined in the
layout answer_submit) is generated dynamically when a new View
is rendered and calls its base class AbsQuizView. The button is hidden
by default and will be shown dynamically when user enters an
answer.

mSubmitAnswer = (CheckableFab) getLayoutInflater()

 .inflate(R.layout.answer_submit, this, false);

mSubmitAnswer.hide();

mSubmitAnswer.setOnClickListener(

new OnClickListener() {

 @Override

 public void onClick(View v) {

 submitAnswer(v);

 if (mInputMethodManager.isAcceptingText()) {

 mInputMethodManager

 .hideSoftInputFromWindow(v.getWindowToken(), 0);

 }

 mSubmitAnswer.setEnabled(false);

 }

});

When clicked, the callback invokes the method that is defined in the
same class:

private void submitAnswer(final View v) {

 final boolean answerCorrect = isAnswerCorrect();

 mQuiz.setSolved(true);

 performScoreAnimation(answerCorrect);

}

In Class QuizActivity:

A click callback is defined to handle View items such
as entering or leaving the quiz, but the submit button
with the id submitAnswer will be set with this callback
in practice:

private final View.OnClickListener

mOnClickListener = new View.OnClickListener() {

 @Override

 public void onClick(final View v) {

 switch (v.getId()) {

 case R.id.fab_quiz:

 startQuizFromClickOn(v);

 break;

 case R.id.submitAnswer:

 submitAnswer();

 break;

 // ...

 }

 }

};

This class also defines a method submitAnswer() that
proceeds to the next question, but it is called via
proceed(), which is invoked by a method in the class
AbsQuizView via ((QuizActivity)
getContext()).proceed();:

public void proceed() {

 submitAnswer();

}

private void submitAnswer() {

 mCountingIdlingResource.decrement();

 if (!mQuizFragment.showNextPage()) {

 mQuizFragment.showSummary();

 setResultSolved();

 return;

 }

 setToolbarElevation(false);

}

Appendix VI. Final screenflow diagram shown in the Viewer for Task 1 after code modification in Study 2b.

Appendix VII. Final screenflow diagram shown in the Viewer for Task 2 after code modification in Study 2b.

