

Weave: Scripting Cross-Device Wearable Interaction
Pei-Yu (Peggy) Chi *

Computer Science Division, UC Berkeley
peggychi@cs.berkeley.edu

Yang Li
Google Inc.

yangli@acm.org

ABSTRACT
We present Weave, a framework for developers to create
cross-device wearable interaction by scripting. Weave
provides a set of high-level APIs, based on JavaScript, for
developers to easily distribute UI output and combine
sensing events and user input across mobile and wearable
devices. Weave allows developers to focus on their target
interaction behaviors and manipulate devices regarding
their capabilities and affordances, rather than low-level
specifications. Weave also contributes an integrated
authoring environment for developers to program and test
cross-device behaviors, and when ready, deploy these
behaviors to its runtime environment on users’ ad-hoc
network of devices. An evaluation of Weave with 12
participants on a range of tasks revealed that Weave
significantly reduced the effort of developers for creating
and iterating on cross-device interaction.

Author Keywords
Scripting; cross-device interaction; wearable computing;
mobile computing, UI tools; gesture-based interaction.

INTRODUCTION
Mobile and wearable computing gadgets are flourishing.
For example, smartphones have become an all-purpose
computing device for our everyday activities; smartwatches
provide glanceable information and instant access to a set
of frequent tasks; and smart eyewears such as Glass [13]
enable users to navigate private content and receive prompt
assistance in their peripheral vision. Each of these devices
offers a distinctive form factor, and input and output
capabilities that are designed to seamlessly blend into users’
existing artifacts and daily activities.

To allow users to fully leverage a multi-device ecosystem
in their lives—a vision of ubiquitous computing [31]—it is
important to combine the unique strengths of each device
and to enable rich and fluid interaction behaviors across
devices [6,23]. Prior work has investigated a variety of
behaviors that can be formed by orchestrating a smartphone

and a watch [4]. Existing commercial products have begun
to support basic cross-device behaviors, such as browsing
an image gallery on the phone with a watch remote [14] or
navigating media on the TV with a phone [12].

However, programming cross-device wearable interaction
remains challenging. To create an interaction behavior that
spans multiple wearable and mobile devices, developers
have to design and implement based on the varying input
and output resources and preferred interaction styles of each
individual device. Developers also need to distribute user
interfaces and synthesize user input and sensing events
across devices. Realizing these tasks manually involves
many low-level details such as dealing with device-specific
constraints, communication and synchronization across
devices, which is technically challenging and effort
consuming. It distracts developers from concentrating on
their interaction behaviors and results in a system that is
often difficult to maintain and adapt to new types of devices
or device combinations that might be available at runtime.

To address these issues, prior work has investigated tool
support for creating cross-device interaction. In particular,
Panelrama introduced mechanisms for automatically
distributing a web interface across multiple displays based
on the specified preferences of each UI segment and the
screen real estates of target displays [32]. XDStudio
provided a GUI builder for visually authoring a distributed
user interface in a simulated or an on-device mode [25].
However, there is still a lack of high-level support for
developers to easily handle interaction events that are
synthesized from user input and sensed physical events
across multiple devices, which is crucial for creating rich
cross-device wearable interaction as shown previously [4].
Moreover, few have considered abstractions and
mechanisms for accessing wearable devices regarding their
affordances, such as glanceable and shakable natures. These
properties are unique aspects of programming cross-device
wearable interaction.

In this paper, we propose Weave, a framework that allows
developers to easily create cross-device wearable behaviors
by scripting. Weave provides a web-based development
environment (see Figure 1) where developers can author
interaction scripts and test them based on a set of simulated
or real wearable devices anywhere and any time. Weave
also provides a runtime environment that allows Weave
scripts to run in users’ ad-hoc network of wearable devices

* This work was done while the author was an intern at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
CHI 2015, April 18–23, 2015, Seoul, Republic of Korea
ACM 978-1-4503-3145-6/15/04.
http://dx.doi.org/10.1145/2702123.2702451

and easily adapt to specific device configurations. Weave
contributes a set of high-level abstractions and APIs that
capture affordances of wearable devices and provide
mechanisms for distributing output and combining sensing
events and user input across multiple devices, using high-
level clauses such as “select” and “combine”. These APIs
combined with Weave’s integrated authoring and runtime
support enable a new approach for programming event-
based cross-wearable interactions, which allows developers
to focus on target interaction behaviors rather than low-
level implementation details.

RELATED WORK
Weave builds on prior work of cross-device interactions
and tools for creating these behaviors. We review and
discuss our relationship with the art in these areas.

Wearable & Cross-Device Interactions
Mobile and wearable devices equipped with lightweight
sensors have introduced new possibilities for interaction
modalities. Versatile commercial wrist-worn products and
phones are able to track people’s physical activities [9] and
perform daily tasks such as automatic voicemail playback
[1]. Eyewears enable users to blend digital content with the
physical world [8], navigate content with eye blinks [20] or
hand-to-face gestures [28], control remote objects [33], and
track health status [19]. Wagner et al. studied how body-
centric interaction techniques can be used to manipulate
digital content in a multi-surface environment [30]. By
locating the relative positions of hand-held devices to body
joints, Chen et al. investigated techniques that allow users
to retrieve virtual content by physical movement around the
body, such as orienting devices [5].

To form rich behaviors based on limited but versatile I/O
capabilities of each wearable device, prior work has
investigated novel interactions beyond a single device.
Studies have revealed that users tended to allocate a
complex task across multiple devices based on the device
form factors and functionalities [6,27]. Recently, Duet
demonstrates a variety of intriguing behaviors, such as
cross-device pinch gestures and finger knuckle and tip
inference by fusing sensor input across a watch and a phone
[4]. Existing commercial products have started to support
cross-device behaviors such as using a watch as a remote to
control content on a phone [14] or automatic task
continuation when the user moves from a phone to a
computer [1]. These scenarios inspired us to design high-
level tool support for developers to design and create cross-
device wearable interaction, which would otherwise be
difficult to implement.

Prior work has extensively investigated cross-device
interaction in a multi-display, multi-user environment
[7,17,11]. In these situations, handheld devices are often
used as a remote control to manipulate digital content on
large displays [2,18]; physical distance (often referred as
proxemics) and orientation relationships between devices
are frequently used as cues in these scenarios [22,23]. We
focus on a body-centric cross-device situation in which
multiple wearable devices are intended to perform as an
organic whole for the user, although Weave can be applied
to addressing more general cross-device scenarios.

Tools for Creating Cross-Device Wearable Interactions
While cross-device wearable interaction is promising, it is
extremely challenging to develop due to the complexity in

Figure 1. The Weave authoring environment. Developers can (a) script cross-device behaviors and specify associated UI layouts in the
Edit Panel, (b) test these behaviors on emulators or live devices via the Test Panel, (c) debug the scripts by observing detailed output in
the Log Panel, and (d) manage and share a script via the menu. In this figure, the Test panel contains two real devices, i.e., watch and

phone, and one emulator device, i.e., glass. Alternatively, the glass emulator can be replaced with an actual Google Glass device.

combining multiple heterogeneous devices to form fluid
interaction behaviors. To address this issue, prior work has
developed several toolkits to simplify the distribution of UI
content across devices. Yang and Wigdor developed
Panelrama, a framework for distributing a web UI across
multiple displays. Using linear optimization, Panelrama
dynamically allocates each portion of the UI to a display
based on its screen real estate and input modality
[32]. Other approaches include designing high-level UI
abstractions, e.g. [24,26], and runtime frameworks for
distributing UIs to a dynamic environment, e.g., [10].

Sinha explored informal prototyping tools for iterative
design of multidevice user interfaces, which are not aimed
for generating functional systems [29]. Recently, Nebeling
et al. developed XDStudio, a visual tool for interactively
authoring cross-device interfaces [25]. With XDStudio,
developers can design cross-device interfaces with
simulated devices or directly on real devices. It also allows
developers to specify how a UI should be allocated by
authoring distribution profiles. Similar to XDStudio, Weave
allows developers to test their scripts with simulated
devices, real devices or a mix of them.

While prior systems provide tool support for distributing
user content across displays, they are insufficient for
creating complex cross-device wearable interaction in two
ways. First, there is a lack of high-level support for event
handling across devices especially for combining user input
and sensing events from multiple devices. This is crucial for
wearable interaction because a user action often involves a
collaboration of multiple wearable devices that forms a
compound event as shown previously [4]. We designed
Weave to provide a set of high-level API mechanisms for
easily synthesizing events across devices. Second, Weave
allows developers to script based on abstractions of devices
regarding their affordances and capabilities. These types of
abstractions, which are not shown in previous work, greatly
simplify the creation of wearable interaction and allow
developers to focus on high-level target behaviors.

SCRIPTING CROSS-WEARABLE INTERACTION
We discuss how a developer creates cross-device wearable
behaviors in Weave, which we refer to as a Weave service.
A Weave service consists of an interaction script, based on
JavaScript, and a collection of UI layout specifications in
HTML. A Weave service runs across devices and stitches
capabilities on these devices. To help us illustrate the use of
Weave, assume a programmer, Sam, who wants to design
and implement a “Smart Messenger” service that brings an
incoming message to the user’s attention and allows the
user to easily play and respond the message using a
combination of wearable devices.

Creating a Weave Service
To create a Weave service, Sam opens the Weave authoring
environment by pointing a web browser to the Weave
server (see Figure 1). This environment allows him to

create a new service, edit an existing service, and later share
a service such that users can discover and install it on their
devices. The Weave authoring interface has three parts: On
the left is the Edit panel where the developer can edit
Weave scripts and describe UI layouts in HTML. On the
right is the Test panel where the developer can specify a set
of wearable devices, simulated or real, and test the Weave
service on these devices. The Log panel at the bottom of the
screen helps developers to debug their scripts.

Sam starts by describing the name of the service and how
the service is supposed to be launched, e.g., in response to a
notification or when the user manually invokes it. Here Sam
specifies the service to be invoked by an incoming message
(notification) (see Figure 2a). To show an incoming
message on a device that is easily glanceable by the user
and equipped with a speaker, Sam adds several criteria in
Weave’s select clause (see Figure 2b) and refers to the
selected device by a variable notifier. Each device that is
Weave-capable maintains a device profile that captures the
device’s I/O resources such that Weave can match these
selection criteria at runtime. Sam also requires the device’s
input capability to be touch-sensitive, i.e., touchable, and
detect two motion events, shakable and rotatable. These
criteria will select a watch if it is available. In the following
discussion, we use “watch” and notifier interchangeably.

Sam then specifies the content to show on the selected
device in the Layout tab, which consists of a title message
and two buttons (see Figure 3). The sender’s name will be
updated at runtime when the service is invoked (see Figure
2c). To show this UI on the notifier device, the developer
simply uses notifier.show(ui) (see Figure 2d). Depending
on what device is selected by Weave at runtime, the UI will
be rendered by Weave differently to be consistent with
device-specific UI guidelines.

To handle button touch events, Sam adds a callback
function (see Figure 2e). Based on which button is tapped
by the user, the service either plays the message or texts
back the sender via the device that originates the button-tap
event—event.getDevice(), i.e., the notifier device.

To playback the voice message automatically when the user
intends to listen to the message privately by bringing a
smartphone to the ear, Sam adds another behavior to the
service. He selects a device that affords private playback
and subscribes to the listenStart event (Figure 2f), which
is a built-in sensing event fired by Weave’s runtime
environment when it detects a phone “listen” action
triggered by the user. Similar to existing commercial
products, we detect this activity based on the phone’s
proximity sensor and accelerometer.

While the message is playing on the phone, a text message
will be shown on the original notifier device to prompt
the user for available options: the user can shake the watch
to replay the message on the phone, or rotate the watch to
call back the sender. The developer adds two chained event

handlers (Line 22 to 26) to respond to the motion events on
the notifier device: shake and rotate. These options
allow the user to continue the task with the watch while the
user keeps the phone to the ear that is less accessible for
further interaction. This example demonstrates that Weave
allows developers to easily combine the strengths of
multiple devices and distribute an interaction flow across
devices to fulfill a task (see Figure 4).

Testing & Deploying a Weave Service
To verify if a service behaves as expected, Sam tests the
service in Weave by running it on emulators, real devices,
or a mix of them. Weave’s authoring environment provides
a collection of predefined emulators, which include typical
wearable devices such as a watch, and several presets of
common device combinations. These allow developers to
test a service with minimal effort. Each emulator device
allows a set of built-in events, such as swipe and
listenStart, shown along the emulator in the Test panel
(see the Glass emulator in Figure 1). Sam can tap on these
events to trigger actions. He can also create new emulators
that best characterize their target devices.

To add a real device to the test, Sam scans the QR code
shown above the Test panel or in the dialog box via the +
button (see Figure 1), using the Weave proxy running on a
device. The screen of a registered device will be displayed
in this panel, which is marked as Live in red. With actual
devices, Sam can physically perform actions such as
shaking the device or tapping the buttons. Any changes on a

device’s UI will be synced with its representation in the
Test panel for the developer to monitor the output of
multiple devices in real time. The Log panel at the bottom
of the screen offers detailed information for debugging a
service, including the event history and script outputs.

THE DESIGN OF THE WEAVE FRAMEWORK
We aim to provide a set of high-level abstractions for
developers to easily program complex cross-device
wearable interactions. A common pattern for modern UI
development follows an object-oriented event-driven
paradigm, where developers attach event handlers to a UI
object (or a widget) that update the object accordingly when
an event occurs. We are especially inspired by popular
JavasScript library designs such as jQuery and d3 [3] that
provide a high-level abstraction for programmers to
manipulate UI components. One can easily select desired
HTML elements to change their properties, e.g.,
$(".target_class").css("color",="white") changes the
color of all the elements of target_class to white, or to
handle user input events, e.g., the inline function of
$("button").click(function(){...}) will be invoked
when any button is clicked by the user. Providing function
calls based on high-level abstractions allows developers to
focus on target behaviors rather than low-level operations,
such as device specifications and network connection.
Based on the unique challenges raised by programming
cross-device wearable interaction, we designed Weave’s
scripting framework (see Table 1).

a)=
=

b)

=

c)
d)
e)

f)

1
2=
3=
4=
5=
6=
7=
8=
9=
10=
11=
12=
13=
14=
15=
16=
17=
18=
19=
20=
21=
22=
23=
24=
25!
26!
27=
28!

weave.launchMethod!=!weave.launchOption.notification;!
function!service(notif)={
!!var=notifier===weave.select(!
===="showable[glanceability='high'],=speakable,"=
====+="touchable,=shakable,=rotatable");
!!var=ui===weave.getLayoutById("mainPanel");
==ui.updateUI("callerName",=notif.caller.name);=
==notifier.show(ui)
====.on("tap:button",=function(event)={
!!!!!!if=(event.getValue()====="playMsg")={
========event.getDevice().play(notif.voiceMsg)=
==========.show(weave.getWidget("mediaPlayer"));
======}=else!if=(event.getValue()====="text")={
!!!!!!!!event.getDevice().startApp("Messenger",========
==========notif.caller.name);
======}
====});=
!!weave.select("speakable[privacy='high'],=phoneable")
====.on("listenStart",=function(event)={
======var=phone===event.getDevice().play(notif.voiceMsg);!
======notifier.show("Shake=to=reply=/=rotate=to=call=back")=
========.on("shake",=function(event)={=
==========phone.play(notif.voiceMsg);=
!!!!!!!!}).on("rotate",=function(event)={=
!!!!!!!!!!phone.call(notif.caller.num);=
========});!
====});!
}=

Figure 2. The complete script of the Smart Messenger service.

<div=id="mainPanel">
==<p>New=voice=message=from=
====<span=id="callerName">=
==</p>
==<button=value="playMsg">Play</button>=
==<button=value="text">Text=back</button>=
</div>=
Figure 3. An example of a UI layout. This layout is

referred by the script at Line 6 in Figure 2.

Figure 4. The interaction flow of the Smart

Messenger. The shaded circles denote the watch’s
states and the plain circles for the phone’s. The

corresponding line of code is labeled.

Selecting Abstract Devices
It is challenging for developers to cover various types of
devices and their combinations that might occur at runtime.
For example, some users may carry a smartwatch paired
with a smartphone, while others may use an eyewear with a
phone. Therefore, in addition to directly retrieving a device
by its specific type, a framework should enable flexible
selection of devices based on their high-level input and
output capabilities so that a cross-device service can adapt
to specific sets of devices that a user carries at runtime. As
the earlier example shows, developers may choose to
stream a message to a glanceable display, which at runtime
could be a watch or an eyewear available on the network.
With Weave, a developer selects target devices using the
select clause with a selector of format
“CAPABILITY[PROPERTY='VALUE'],...”. Our framework
returns a WeaveSelection object that includes one or more
qualified devices to be operated. Developers can use
multiple criteria at the same time to refine the selection.
The following example selects devices with a small,
glanceable display that detects rotation motion, which could
be a smartwatch at runtime.
weave.select("showable[glanceability='high',====
===============size='small'],=rotatable")=

To select devices that can make phone calls, afford high
privacy, and have a touch-sensitive display, developers may
use the following criteria, with which Weave may find a
smartphone and an eyewear at runtime.
weave.select("phoneable[privacy='high'],=touchable")=

In addition, our framework allows developers to easily
select all the available devices using weave.selectAll().
Developers can also select devices of a specific type, e.g.,
getDeviceByType("phone"), or designed to be worn at
specific body locations, e.g., getDeviceByJoint("wrist"),
which is predefined in the device profiles. For fine-grained
controls over device selection, developers can also directly
fetch specific devices by their IDs, e.g.,
getDeviceById("LGEphone"). Finally, a negating operator
allows the developers to exclude certain devices, such as
.not("speakable") to select those without a speaker.

At runtime, Weave attempts to match these high-level
criteria against devices that are available on the network.
Each Weave-capable device runs on our runtime framework
maintains a profile about its I/O capabilities, such as the
display size or whether the device has a touchscreen,
rotation sensor, or accelerometers. Analogous to
conventional UI frameworks, each Weave device is treated
as an interactive object in the context of a cross-device UI,
which can be manipulated and registered to events.

Applying Actions to Devices
After specifying a selection, developers can apply actions to
the device, such as providing output feedback. To show
visual content on a device, device.show(MESSAGE) displays
the message string in text, or developers can displays a UI

layout defined as an HTML5 element in the Layout Panel
using device.show(weave.getLayoutById(LAYOUT_ID)).

To realize a UI layout on devices with different form
factors and interaction styles, Weave takes into account the
design guidelines of specific devices. It adopts the concepts
of responsive web design that adapts the UI elements to
different I/O capabilities in order to provide optimal
viewing and interactive experience [21]. Our engine
distributes the UI based on HTML tags (e.g. div, span, p,
img, and button) and their attributes in a layout
specification. For a UI layout that contains a text string (e.g.
“Launch Pad Options”) and three buttons (“Maps”,
“Email”, and “Calendar”), on a phone with a high-
resolution display, Weave shows all these components on
the same pane and distributes the buttons vertically. On a
watch with limited screen real estate, Weave displays the
components in a grid view with each as an interactive
card—a design metaphor for commercial smartwatches
[15]. Similarly, on an eyewear they are represented as a list
of swipeable cards that users can swipe through and tap to
select [16]. Developers can update the UI shown on a
device referred to by an element id using
device.updateUI(ID,=NEW_CONTENT) for the inner content
or device.updateUIAttr(ID,=ATTR,=NEW_ATTR_VALUE) for a
certain attribute. These functions are useful for providing
incremental feedback.

To fully leverage the functionality of each device, a Weave
service can invoke native apps on the device from the
script, using device.startApp(APP_NAME). A service can
also make a phone call using device.call(PHONE_NUMBER)
and play a media file using device.play(MEDIA_FILE).

Attaching Event Callbacks to Devices
Based on what UI elements and sensor events are available
on a selected device, developers can add a callback function
to the device to handle user input. For example, developers
can easily program a remote control service that allows the
user to launch an application on a target device (e.g., a

Selecting!Target!Devices!
.select(selector): Return a WeaveSelection object that

includes all the matched device(s) on a local network based on the
selector string.=

Combining!Multiple!Devices!
.all(): Return a WeaveSelection object that each device in the

selection will behave the same.=
.combine(): Return a WeaveSelection object that encapsulates the

devices in the selection as one virtual device.=
Performing!Output!Actions!
.show(panel), .show(string): Render a UI panel or a string on the

device or the WeaveSelection object.=
.play(filepath): Play a media file of the file path on the device(s).=
.startApp(appname): Launch the specified native app.=
Handling!Input!Events!
.on(eventType,=handler): Attach an event handler for one or more

events to the device(s).=
Table 1. Weave’s core APIs.

smartphone) by selecting the app from a launchList on a
different device (e.g., a smartwatch) (see Figure 5).
weave.select("showable[size='small'],=touchable")=
==.show(weave.getLayoutById("launchList"))=
==.on("tap:li",=function(event)={=
====weave.select("showable[size='normal']")=
======.not(event.getDevice())=
======.startApp(event.getValue());=
==});=
Figure 5. The script snippet allows the user to launch an app on
a “normal”-sized device by selecting it from a list on a “small”-

sized “touchable” device.

When the user taps on a list item that corresponds to an app
name, Weave executes the callback function. The event
argument passed into the function stores detailed event
information, including the corresponding value retrieved by
event.getValue(), and the device that triggers this event
accessed via event.getDevice(). In this example, the
callback function launches the app designated by
event.getValue() on a device that has a normal-sized
screen and is not the device where the event is triggered.

Weave provides other useful built-in events including
shake, rotateCW, and rotateCCW inferred from motion
sensors, listenStart and listenEnd if the user approaches
the device to his ear, and common touch events such as
doubleTap, longPress, and swipe. Note that our framework
is designed to support device selection chaining and event
propagation so that developers can attach the above
operations in sequence, such as showing UI, adding several
event callback functions, and applying other actions.

Coordinating Cross-Device Behaviors
Leveraging the strengths of multiple devices can form rich
interaction behaviors. However, it is challenging to
coordinate the behaviors of multiple devices. For instance,
developers might want to display an urgent message to all
the devices at the same time to maximally acquire the user’s
attention. For another instance, developers might want to
use the current orientation of a smartwatch to indicate a
different mode for a tap event on a smartphone touchscreen,
e.g., detecting a knuckle or a fingertip tap [4]. Programming
event callbacks and UI output for a single device is often
straightforward. But handling these tasks for multiple

devices can be extremely complex. A framework should
assist developers in fulfilling these tasks.

By default, when an event callback is attached to a selection
(returned by weave.select) that includes multiple devices,
Weave invokes the callback whenever one of these devices
fires the event. Likewise, to execute an action on the
selection, Weave selects a device in the selection that best
matches the selection criteria, instead of performing the
action on all the devices in the selection. On top of the
default mode (which is similar to “any” device in a set),
Weave provides two operators that can be applied to a
selection for coordinating cross-device behaviors of these
devices: all and combine (see Figure 6).

The all Operator
Developers can choose to enable multiple devices to behave
simultaneously in the same way. One example is to
broadcast the same message such that the message will be
displayed on every device returned by weave.select. For
coordinating input behaviors, the all mode requires a
specific event to occur on all the devices in the selected set
to invoke a callback function. For example, consider an
interaction scenario that requires multiple users to
physically bump their devices at the same time to form a
user group. Realizing this scenario manually would require
developers to collect the “shake” events from each device
and compare their timestamps. To ease the development of
this type of behaviors, Weave provides a high-level
mechanism, i.e., the all operator, where developers can
specify when and how devices should be synchronized. The
code snippet in Figure 7 defines a callback function that is
invoked when a shake event co-occurs on any two or more
devices within a time range (500ms by default). In this
snippet, each of the devices is required to have a display
(showable), an accelerometer (shakable) for the shake
event, and a speaker (speakable) for the audio output.
weave.select("showable,=shakable,=speakable")=
==.all({minNumOfDevices:=2})=//=at=least=2=devices=
==.show("Bump=to=join")=
==.on("shake",=function(event)={=
====event.getDevices().show("Welcome=to=the=group!")=
======.play("audio/success.mp3");=
==});=

Figure 7. The all operator synchronizes the input and output of
multiple devices and enables interaction scenarios such as

bumping devices together to join a group.

The combine Operator
Weave introduces the combine operator that combines the
input and output resources of multiple devices as an organic
whole in which each device is allowed to perform a
different part of a compound behavior. Via the combine
operator, multiple devices within a selection essentially
form a single virtual device that allows more diverse
interaction behaviors.

Consider a cross-device slideshow scenario where a watch
serves as a control panel for the user to go forward and

Figure 6. Weave coordinates multiple devices in three different
modes (from left to right): default, all, and combine managing

both input and output.

backward through a list of images shown on a phone that
can be viewed by others. To realize this scenario,
developers apply the combine operator (Figure 8) to a
selection of devices, e.g., a watch and a phone. Weave
analyzes a UI layout that consists of an image viewer and
two buttons and automatically distributes the buttons, which
require minimum screen estate for “Previous” and “Next,”
to the watch and the image viewer, which requires higher
resolution to be shown, to the phone. The distribution
strategy is similar to Panelrama’s [32] that primarily relies
on preferred dimensions of each UI element. Note that an
alternative script without using the combine operator is
listed in Figure 1 (line 4-12) for comparison, which requires
more variables to manage the device allocations for both
the viewer and the control panel separately.
<div=id="controlPanel">=
=<button=value="prev">Previous</button>=
=<button=value="next">Next</button>=
=<img=id="imageView"=src="img/1.jpg"/>=
</div>=
=
var=photoIdx===1,=numOfPhotos===8;=
weave.select("showable[privacy='low'],=touchable")=
==.combine().show(weave.getLayoutById("controlPanel"))=
==.on("tap:button",=function(event)={=
====if=(event.getValue()==="prev"=&&=curPhoto=>=1)={=
======photoIdx=pp;=
====}=else=if=(event.getValue()==="next"==
=======&&=photoIdx=<=numOfPhotos=)={=
======photoIdx=++;=
====}=
====event.getDevices().updateUIAttr("imageView",==
======"src",="img/"=+=photoIdx=+=".jpg");=
==});=

Figure 8. The combine operator distributes UI elements
considering the screen estates and user interactions.

In addition to distributing a user interface, the combine
operator allows developers to fuse different types of input
events from multiple devices to create a new interaction
mode. For example, Figure 9 shows a cross-device pinch
gesture that invokes the callback function when a watch on
the wrist detects a left swipe and the phone (assuming
holding in hand) detects a right swipe at the same time.
weave.selectAll().combine()=
==.on("swipeLeft[joint='wrist'],=
=====swipeRight[type='phone']",=function(event)={=
=======event.getDevices().show("Pinch=detected");=
==});=
Figure 9. The combine operator supports cross-device gestures

as a new interaction mode.

Internally, Weave listens to element events of a compound
(e.g., swipeLeft and swipeRight) on each device in the
combination and triggers the callback when these events
occur approximately at the same time. Weave maintains a
global event pool to buffer and synthesize events from
multiple devices. In general, combine creates an internal
representation to manage the I/O of the combined devices.
Weave encapsulates all these complexities for developers.

THE RUNTIME ARCHITECTURE
Weave employs a web-based architecture (see Figure 10)
for creating and deploying services. Developers can access

Weave’s authoring environment anywhere by pointing a
web browser to the Weave server. Users can install a
Weave service on their devices by accessing the Weave
server using a Weave proxy.

A Weave proxy needs to be preinstalled and runs on each
individual device. A Weave proxy serves two purposes.
First, it provides tools for 1) generating a device profile that
describes the capabilities of the device, 2) registering the
device directly to the Test panel by scanning the QR code
for developers to test a service on the device (see Figure 1),
and 3) accessing the Weave server for searching and
installing a service. A device profile is extracted
automatically by analyzing the device resource (e.g.
detecting available sensors), which can be refined by the
owner using XMLs. Ideally the profile should come with
the device, as it is specific and fixed to each type of device.

Second, a Weave proxy hosts a runtime environment for
managing the ad-hoc network of wearable devices for a
user and executing a Weave service on these devices (see
Figure 11). To simplify the architectural design, Weave
employs a client-server-based runtime architecture within
each ad-hoc network. At any time, only one device on the

Figure 11. An illustration of Weave’s runtime environment on a
user’s ad-hoc network. Here the network contains three devices,

and Device 3 acts as the server for executing a script, and
synthesizing events and distributing actions across devices.

Figure 10. The architecture for creating Weave services.

network acts as the server that is responsible for executing
the script and distributing the UI feedback and synthesizing
events across devices. The runtime environment has four
major components. The Communicator maintains
connections with other devices on the ad-hoc network, and
sends and receives events or actions between devices. The
Actuator performs actions for updating the user interface on
the device including playing audible or vibration feedback.
The Sensor detects user input and sensor events on the
device and sends the events to the Script Interpreter, which
runs either locally on the device or remotely on another
device on the network. The Script Interpreter executes a
script and manages event callbacks and interaction states.

Any device can be added to the ad-hoc network or removed
from it at runtime, as Weave promptly updates the device
selection and status. When a server device leaves the
network, another device on the network will succeed it as
the server. This design allows flexible device configuration
and stability in executing a cross-device service.

IMPLEMENTATION
The Weave web server is implemented based on Node.js to
host the authoring UI. Weave’s Script Interpreter executes
scripts and HTML5-based UI layouts using a JavaScript
engine. We have implemented and tested Weave proxies on
three types of devices: the Nexus series of smartphones,
Android Wear powered smartwatches such as Samsung
Gear Live, and Google Glass.

The runtime server uses WebSocket and JSON to
communicate with the Communicator running on each
device. Note that since smartwatches such as Samsung Gear
Live currently lack the web socket capability via Wi-Fi and
only supports Bluetooth, they are paired with Android
phones in order to connect to the server through the
Wearable Data Layer API defined by the Google Play
service. The Communicator on each device is responsible
for redirecting traffic to a target device if the target device
is not directly reachable from the server.

EVALUATION
To evaluate the usability of Weave’s API framework design
as well as the authoring environment as a whole, we
conducted a user study with 12 participants. We
hypothesized that Weave would allow developers to easily
create a range of interaction behaviors across multiple
mobile and wearable devices. We chose not to include a
baseline condition (i.e., a control group) as our pilot studies
showed that programming these interactions using the
Android framework would take three hours at minimum.

Participants and Setups
We recruited 12 participants (2 females), aged between 20
and 48 years (Mean=28) from an IT company, including
software engineers and interns. Participants were required
to have moderate web programming knowledge and were
selected randomly from volunteers via an internal study

invitation. Participants had a varying programming
background, ranged from 3 to 30 years (Mean=9 and
SD=8). They had used two JavaScript tools on average,
including jQuery, AngularJS, and Node.js. 9 out of 12
participants had mobile programming experience with
Android phones, but only few had programmed wearable
devices: two built basic Android Wear apps and one in
Google Glass. Each participant was compensated with a
$40 gift card for their participation.

The study was conducted in a quiet lab environment. A
MacBook Pro running OS X and Google Chrome browser
was connected to two 24-inch LCD displays of 1920x1200
pixel resolution. We provided an external mouse and
keyboard. The set of mobile and wearable devices that are
used in the experiment include two Android phones (Nexus
5 and Nexus), one Samsung Gear Live smartwatch that is
powered by Android Wear, and one Google Glass eyewear.

Procedures and Tasks
To learn the framework, participants went through a tutorial
and performed a practice task to create a single-device
Launch Pad using Weave. Participants had the opportunities
to learn different device selection criteria, specifying UI
layouts in HTML, and adding callback functions to handle
button taps. Participants also tested their service with
emulators and real devices. The Weave API documentation
was provided and available during the experiment. The
learning phase was about 17 minutes on average.
Participants were then asked to perform three programming
tasks to create cross-device interactions using Weave.

Task 1: Modify the single-device Launch Pad created from
the practice task to run a control panel on a glanceable
device with three options (Maps, Email, and Calendar) and
launch applications on a handheld device.

Task 2: Design a bump service that multiple users could
join a group by physically shaking their devices at the same
time. Provide both visual and audio feedback when
successfully joined.

Task 3: Design a slideshow service that provides a panel on
a small-size wearable for the user to browse a list of photos
on a larger device—that is more viewable by others—by
going forward or backward.

Participants could choose to test their scripts any time
during the experiment. Finally, they were asked to answer a
questionnaire, followed by a discussion with the
experimenters. On average, the total duration of an entire
user session lasted 80 minutes. We included some sample
code from these tasks in Figures 5, 7 and 8.

EXPERIMENTAL RESULTS AND DISCUSSION
We discuss our observation about participants’ coding
strategies with Weave, their subjective feedback as well as
opportunities for future work.

Code Analyses and Scripting Strategies
All the participants successfully scripted and tested the
three tasks in the study. The average time of completing
each task was 5, 11, and 18 minutes (SD=2, 3 and 6). The
duration of Task 2 and 3 also included the time for
participants to learn the all and combine operators. In
general, participants were impressed by Weave’s ease of
use for development: P4 said, “It was fast, easy to learn,
and provided a way to unify cross platform devices with the
same code. Would have taken a lot more time for me to do
any of the tasks individually.” Compared to programming
with the Android framework, all the participants suspected
that it would have taken them at least three hours to
multiple days for a single task, as they would have to work
on the environment setup (P1), specific APIs (P8), and
details such as network or message passing (P5).

The average number of lines of code within the “service”
function was 6 ([min, max]=[5, 9], SD=1), 6 ([3, 9], SD=2),
and 16 ([12, 22], SD=3) for each task, excluding the
comments and code for system log printouts. The range
varied for several reasons. Since Weave supports the
chaining of functions, developers showed different styles of
coding: some preferred to align operators in several lines,
some contracted into one, and some created variables to
manage. For a relatively complicated task such as Task 3,
some participants chose to create an inner function to
improve code readability. These behaviors showed that
participants retained their JavaScript coding styles when
scripting with Weave. P8 explained: “I could interact with
them (the devices) via a common interface that was easy to
pick up with basic HTML, JS, and CSS (due to selector-like
syntax) knowledge.” P12 summarized, “jQuery-like API is
straightforward to most JavaScript programmers.”

We observed that participants had a similar coding strategy:
they started by selecting a set of devices and confirming the
selected devices were as expected, then modified UI
outputs and attached event listeners, and finally designed
the callback logic. Such a coding strategy suggested that
Weave supported a top-down and modular development in
handling output, input, and interaction logic.

Feedback on Development
Participants were very positive about developing with
Weave. They found it easy to learn the framework (4.6 on a
5-point Likert scale, SD=0.5), script a target behavior (4.6,
SD=0.5), test a behavior (4.1, SD=0.9) and deploy it to real
devices (4.8, SD=0.5). Participants commented: “It was a
fun experience. It was quite simple.” (P11); “Definitely
easier than any other model I am aware of.” (P10).

Framework Design
Participants found the abstraction and selection of Weave
easy to manage: “The CSS-like selection with Weave was
pretty intuitive and made device selection very manageable.
I also liked that it abstracted away the specific interface for
each of the devices by allowing me to specify things that

apply to (e.g.) any shakable device.” (P8), and “I like the
concept of defining sets of devices by their use and semantic
attributes (glanceable, private...).” (P2). The results also
showed that Weave’s event-based structure supported
interaction flow designs. P12 explained “The API allows
developers to implement cross-device interactions in
functional programming paradigm is innovative.”

However, participants desired more controls over
distributing UI layouts across devices while using the
combine operator. Previous mechanisms such as “panel” in
Panelrama [32] can be useful in our framework for adding
more developer controls to automate UI distribution. Some
also wanted to see how Weave could embed an existing
widget or web plugin in interfaces (P6, P8), which can be
enabled in the future.

Service Deployment and Testing
Participants were surprised about the ease of use and the
speed for deploying a service in real-time: “Testing was
great and easy. I definitely liked the immediate deploy of
the code to the devices” (P3); “It was surprisingly easy to
deploy the apps” (P2). P1 liked the live testing and “write
once and run multiple”.

However, the debugging feature was limited with the
current system. Several participants explicitly mentioned
the need of highlighting syntax errors (P6, P8), code
completion (P9), and writing test cases (P4). On average,
the experimenters offered little help to participants for
completing these tasks. The only type of help that was
provided (less than two times on average for a task) was on
fixing syntax errors, such as missing closing marks and
incorrect built-in event names.

Opportunities
Participants expressed strong interests in scripting cross-
device interactions with Weave (4.6, SD=0.7). Participants
were also interested in potentially including more devices
for content retrieval and manipulation, such as a desktop or
a laptop (P2, P8), and a TV or other large monitors (P7, P9,
P12). Some expected to integrate other services such as
online photo collection or games (P9). All in all, the
developer feedback showed that Weave provides a
powerful tool as “It significantly shortens the time required
to prototype new ideas on wearable devices.” (P12). We
drew most of our examples and tasks from recent cross-
device literature and commercial products, since our
evaluation primarily focused on lowering the technical
threshold, i.e., “lowering the floor”. In the future, we intend
to explore further on how our tool can raise the ceiling for
creating more sophisticated cross-wearable behaviors.

We also identified the weakness of our framework and
opportunities for future work. Weave currently does not
support specification of relative spatial relations that have
been used in prior work [22,32,5]. This limitation can be
addressed by enabling developers or end-users to specify

these spatial relations on devices [25] or enhancing with
more sensors [5]. In addition, we are experimenting with
features that allow developers to create custom cross-device
events using programming by demonstration, and support
multi-user scenarios by adding user identifiers, e.g.,
enabling device.owner as a built-in variable.

CONCLUSIONS
We present Weave, a framework for developers to create
cross-device wearable interaction by scripting. We
contributed a set of high-level APIs, abstractions and
integrated tool support. Our evaluation with 12 participants
indicated that Weave significantly reduced developer effort
for creating complex interaction behaviors that involve UI
distribution and event synthesizing across multiple
wearable devices.

REFERENCES
1. Apple Inc. Apple – iOS 8 – Continuity.

https://www.apple.com/ios/whats-new/continuity/ (2014).
2. Boring, S., Baur, D., Butz, A., Gustafson, S., and Baudisch, P.

Touch projector: Mobile Interaction through Video. In Proc.
CHI ’10, ACM Press (2010).

3. Bostock, M., Ogievetsky, V., and Heer, J. D3: Data-Driven
Documents. IEEE Transactions on Visualization and
Computer Graphics 17, (2011).

4. Chen, X., Grossman, T., Wigdor, D.J., and Fitzmaurice, G.
Duet: Exploring Joint Interactions on a Smart Phone and a
Smart Watch. In Proc. CHI ’14, ACM Press (2014).

5. Chen, X., Marquardt, N., Tang, A., Boring, S., and Greenberg,
S. Extending a mobile device’s interaction space through
body-centric interaction. In Proc. MobileHCI ’12, ACM Press
(2012).

6. Dearman, D. and Pierce, J.S. “It’s on my other computer!”:
Computing with Multiple Devices. In Proc. CHI ’08, ACM
Press (2008).

7. Elmqvist, N. Distributed user interfaces: State of the art. In
Distributed User Interfaces. Springer London, 2011, 1–12.

8. Feiner, S. and Shamash, A. Hybrid user interfaces: breeding
virtually bigger interfaces for physically smaller computers. In
Proc. UIST ’91, ACM Press (1991).

9. Fitbit Inc. Fitbix Flex. http://www.fitbit.com/flex (2014).
10. Frosini, L. and Paternò, F. User interface distribution in multi-

device and multi-user environments with dynamically
migrating engines. In Proc. EICS 2014, ACM Press (2014).

11. Gjerlufsen, T., Klokmose, C.N., Eagan, J., Pillias, C., and
Beaudouin-Lafon, M. Shared substance: developing flexible
multi-surface applications. In Proc. CHI ’11, ACM Press
(2011).

12. Google Inc. Chromecast.
http://www.google.com/chrome/devices/chromecast/ (2014).

13. Google Inc. Google Glass.
https://www.google.com/glass/start/ (2014).

14. Google Inc. Android Wear: The developer's perspective.
https://www.google.com/events/io/io14videos/ (2014).

15. Google Inc. UI Patterns for Android Wear.
https://developer.android.com/design/wear/ (2014).

16. Google Inc. Google Glass – Patterns.
https://developers.google.com/glass/design/patterns (2014).

17. Hamilton, P. and Wigdor, D.J. Conductor: enabling and
understanding cross-device interaction. In Proc. CHI ’14,
ACM Press (2014).

18. Hartmann, B., Beaudouin-Lafon, M., and Mackay, W.E.
HydraScope: Creating Multi-Surface Meta-Applications
Through View Synchronization and Input Multiplexing. In
Proc. PerDis ’13, ACM Press (2013).

19. Hernandez, J., Li, Y., Rehg, J.M., and Picard, R.W. BioGlass:
Physiological Parameter Estimation Using a Head-mounted
Wearable Device. In Proc. MobiHealth ‘14 (2014).

20. Ishimaru, S., Kunze, K., Kise, K., Weppner, J., Dengel, A.,
Lukowicz, P., and Bulling, A In the blink of an eye –
Combining Head Motion and Eye Blink Frequency for
Activity Recognition with Google Glass. In Proc. AH ’14,
ACM Press (2014).

21. Marcotte, E. Responsive Web Design. A Book Apart (2011).
22. Marquardt, N., Diaz-Marino, R., Boring, S., and Greenberg, S.

The proximity toolkit: Prototyping Proxemic Interactions in
Ubiquitous Computing Ecologies. In Proc. UIST ’11, ACM
Press (2011).

23. Marquardt, N., Hinckley, K., and Greenberg, S. Cross-device
interaction via micro-mobility and f-formations. In Proc. UIST
’12, ACM Press (2012).

24. Mayer, S., Tschofen, A., Dey, A. K., Mattern, F. User
Interfaces for Smart Things - A Generative Approach with
Semantic Interaction Descriptions. ACM Transactions on
Computer-Human Interaction (2014), 21, 2, article 12.

25. Nebeling, M., Mintsi, T., Husmann, M., and Norrie, M.
Interactive development of cross-device user interfaces. In
Proc. CHI ’14, ACM Press (2014).

26. Paternò, F., Santoro, C., Spano, L.D. MARIA: A Universal
Language for Service-Oriented Applications in Ubiquitous
Environment. ACM Transactions on Computer-Human
Interaction (2009), 16, 4, article 19.

27. Santosa, S. and Wigdor, D. A field study of multi-device
workflows in distributed workspaces. In Proc. UbiComp ’13,
ACM Press (2013).

28. Serrano, M., Ens, B.M., and Irani, P.P. Exploring the use of
hand-to-face input for interacting with head-worn displays. In
Proc. CHI ’14, ACM Press (2014).

29. Sinha, A. K. Informally Prototyping Multimodal, Multidevice
User Interfaces. Ph.D. Dissertation. UC Berkeley (2003).

30. Wagner, J., Nancel, M., Gustafson, S.G., Huot, S., and
Mackay, W.E. Body-centric design space for multi-surface
interaction. In Proc. CHI ’13, ACM Press (2013).

31. Weiser, M. and Brown, J.S. The coming age of calm
technology. Beyond calculation: the next fifty years,
Copernicus (1997).

32. Yang, J. and Wigdor, D. Panelrama: Enabling Easy
Specification of Cross-Device Web Applications. In Proc.
CHI ’14, ACM Press (2014).

33. Zhang, B., Chen, Y., Tuna, C., Dave, A., Li, Y., and Lee, E.,
Hartmann, B. HOBS: Head Orientation-Based Selection in
Physical Spaces. In Proc. SUI ’14 (2014).

