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ABSTRACT 
We present Weave, a framework for developers to create 
cross-device wearable interaction by scripting. Weave 
provides a set of high-level APIs, based on JavaScript, for 
developers to easily distribute UI output and combine 
sensing events and user input across mobile and wearable 
devices. Weave allows developers to focus on their target 
interaction behaviors and manipulate devices regarding 
their capabilities and affordances, rather than low-level 
specifications. Weave also contributes an integrated 
authoring environment for developers to program and test 
cross-device behaviors, and when ready, deploy these 
behaviors to its runtime environment on users’ ad-hoc 
network of devices. An evaluation of Weave with 12 
participants on a range of tasks revealed that Weave 
significantly reduced the effort of developers for creating 
and iterating on cross-device interaction.  

Author Keywords 
Scripting; cross-device interaction; wearable computing; 
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INTRODUCTION 
Mobile and wearable computing gadgets are flourishing. 
For example, smartphones have become an all-purpose 
computing device for our everyday activities; smartwatches 
provide glanceable information and instant access to a set 
of frequent tasks; and smart eyewears such as Glass [13] 
enable users to navigate private content and receive prompt 
assistance in their peripheral vision. Each of these devices 
offers a distinctive form factor, and input and output 
capabilities that are designed to seamlessly blend into users’ 
existing artifacts and daily activities.  

To allow users to fully leverage a multi-device ecosystem 
in their lives—a vision of ubiquitous computing [31]—it is 
important to combine the unique strengths of each device 
and to enable rich and fluid interaction behaviors across 
devices [6,23]. Prior work has investigated a variety of 
behaviors that can be formed by orchestrating a smartphone 

and a watch [4]. Existing commercial products have begun 
to support basic cross-device behaviors, such as browsing 
an image gallery on the phone with a watch remote [14] or 
navigating media on the TV with a phone [12].   

However, programming cross-device wearable interaction 
remains challenging. To create an interaction behavior that 
spans multiple wearable and mobile devices, developers 
have to design and implement based on the varying input 
and output resources and preferred interaction styles of each 
individual device. Developers also need to distribute user 
interfaces and synthesize user input and sensing events 
across devices. Realizing these tasks manually involves 
many low-level details such as dealing with device-specific 
constraints, communication and synchronization across 
devices, which is technically challenging and effort 
consuming. It distracts developers from concentrating on 
their interaction behaviors and results in a system that is 
often difficult to maintain and adapt to new types of devices 
or device combinations that might be available at runtime.  

To address these issues, prior work has investigated tool 
support for creating cross-device interaction. In particular, 
Panelrama introduced mechanisms for automatically 
distributing a web interface across multiple displays based 
on the specified preferences of each UI segment and the 
screen real estates of target displays [32]. XDStudio 
provided a GUI builder for visually authoring a distributed 
user interface in a simulated or an on-device mode [25]. 
However, there is still a lack of high-level support for 
developers to easily handle interaction events that are 
synthesized from user input and sensed physical events 
across multiple devices, which is crucial for creating rich 
cross-device wearable interaction as shown previously [4]. 
Moreover, few have considered abstractions and 
mechanisms for accessing wearable devices regarding their 
affordances, such as glanceable and shakable natures. These 
properties are unique aspects of programming cross-device 
wearable interaction.  

In this paper, we propose Weave, a framework that allows 
developers to easily create cross-device wearable behaviors 
by scripting. Weave provides a web-based development 
environment (see Figure 1) where developers can author 
interaction scripts and test them based on a set of simulated 
or real wearable devices anywhere and any time. Weave 
also provides a runtime environment that allows Weave 
scripts to run in users’ ad-hoc network of wearable devices 
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and easily adapt to specific device configurations. Weave 
contributes a set of high-level abstractions and APIs that 
capture affordances of wearable devices and provide 
mechanisms for distributing output and combining sensing 
events and user input across multiple devices, using high-
level clauses such as “select” and “combine”. These APIs 
combined with Weave’s integrated authoring and runtime 
support enable a new approach for programming event-
based cross-wearable interactions, which allows developers 
to focus on target interaction behaviors rather than low-
level implementation details.  

RELATED WORK 
Weave builds on prior work of cross-device interactions 
and tools for creating these behaviors. We review and 
discuss our relationship with the art in these areas. 

Wearable & Cross-Device Interactions 
Mobile and wearable devices equipped with lightweight 
sensors have introduced new possibilities for interaction 
modalities. Versatile commercial wrist-worn products and 
phones are able to track people’s physical activities [9] and 
perform daily tasks such as automatic voicemail playback 
[1]. Eyewears enable users to blend digital content with the 
physical world [8], navigate content with eye blinks [20] or 
hand-to-face gestures [28], control remote objects [33], and 
track health status [19]. Wagner et al. studied how body-
centric interaction techniques can be used to manipulate 
digital content in a multi-surface environment [30]. By 
locating the relative positions of hand-held devices to body 
joints, Chen et al. investigated techniques that allow users 
to retrieve virtual content by physical movement around the 
body, such as orienting devices [5].  

To form rich behaviors based on limited but versatile I/O 
capabilities of each wearable device, prior work has 
investigated novel interactions beyond a single device. 
Studies have revealed that users tended to allocate a 
complex task across multiple devices based on the device 
form factors and functionalities [6,27]. Recently, Duet 
demonstrates a variety of intriguing behaviors, such as 
cross-device pinch gestures and finger knuckle and tip 
inference by fusing sensor input across a watch and a phone 
[4]. Existing commercial products have started to support 
cross-device behaviors such as using a watch as a remote to 
control content on a phone [14] or automatic task 
continuation when the user moves from a phone to a 
computer [1]. These scenarios inspired us to design high-
level tool support for developers to design and create cross-
device wearable interaction, which would otherwise be 
difficult to implement. 

Prior work has extensively investigated cross-device 
interaction in a multi-display, multi-user environment 
[7,17,11]. In these situations, handheld devices are often 
used as a remote control to manipulate digital content on 
large displays [2,18]; physical distance (often referred as 
proxemics) and orientation relationships between devices 
are frequently used as cues in these scenarios [22,23]. We 
focus on a body-centric cross-device situation in which 
multiple wearable devices are intended to perform as an 
organic whole for the user, although Weave can be applied 
to addressing more general cross-device scenarios. 

Tools for Creating Cross-Device Wearable Interactions 
While cross-device wearable interaction is promising, it is 
extremely challenging to develop due to the complexity in 

 
Figure 1. The Weave authoring environment. Developers can (a) script cross-device behaviors and specify associated UI layouts in the 
Edit Panel, (b) test these behaviors on emulators or live devices via the Test Panel, (c) debug the scripts by observing detailed output in 
the Log Panel, and (d) manage and share a script via the menu. In this figure, the Test panel contains two real devices, i.e., watch and 

phone, and one emulator device, i.e., glass. Alternatively, the glass emulator can be replaced with an actual Google Glass device. 



 

combining multiple heterogeneous devices to form fluid 
interaction behaviors. To address this issue, prior work has 
developed several toolkits to simplify the distribution of UI 
content across devices. Yang and Wigdor developed 
Panelrama, a framework for distributing a web UI across 
multiple displays. Using linear optimization, Panelrama 
dynamically allocates each portion of the UI to a display 
based on its screen real estate and input modality 
[32]. Other approaches include designing high-level UI 
abstractions, e.g. [24,26], and runtime frameworks for 
distributing UIs to a dynamic environment, e.g., [10]. 

Sinha explored informal prototyping tools for iterative 
design of multidevice user interfaces, which are not aimed 
for generating functional systems [29]. Recently, Nebeling 
et al. developed XDStudio, a visual tool for interactively 
authoring cross-device interfaces [25]. With XDStudio, 
developers can design cross-device interfaces with 
simulated devices or directly on real devices. It also allows 
developers to specify how a UI should be allocated by 
authoring distribution profiles. Similar to XDStudio, Weave 
allows developers to test their scripts with simulated 
devices, real devices or a mix of them. 

While prior systems provide tool support for distributing 
user content across displays, they are insufficient for 
creating complex cross-device wearable interaction in two 
ways. First, there is a lack of high-level support for event 
handling across devices especially for combining user input 
and sensing events from multiple devices. This is crucial for 
wearable interaction because a user action often involves a 
collaboration of multiple wearable devices that forms a 
compound event as shown previously [4]. We designed 
Weave to provide a set of high-level API mechanisms for 
easily synthesizing events across devices. Second, Weave 
allows developers to script based on abstractions of devices 
regarding their affordances and capabilities. These types of 
abstractions, which are not shown in previous work, greatly 
simplify the creation of wearable interaction and allow 
developers to focus on high-level target behaviors. 

SCRIPTING CROSS-WEARABLE INTERACTION  
We discuss how a developer creates cross-device wearable 
behaviors in Weave, which we refer to as a Weave service. 
A Weave service consists of an interaction script, based on 
JavaScript, and a collection of UI layout specifications in 
HTML. A Weave service runs across devices and stitches 
capabilities on these devices. To help us illustrate the use of 
Weave, assume a programmer, Sam, who wants to design 
and implement a “Smart Messenger” service that brings an 
incoming message to the user’s attention and allows the 
user to easily play and respond the message using a 
combination of wearable devices.  

Creating a Weave Service 
To create a Weave service, Sam opens the Weave authoring 
environment by pointing a web browser to the Weave 
server (see Figure 1). This environment allows him to 

create a new service, edit an existing service, and later share 
a service such that users can discover and install it on their 
devices. The Weave authoring interface has three parts: On 
the left is the Edit panel where the developer can edit 
Weave scripts and describe UI layouts in HTML. On the 
right is the Test panel where the developer can specify a set 
of wearable devices, simulated or real, and test the Weave 
service on these devices. The Log panel at the bottom of the 
screen helps developers to debug their scripts.  

Sam starts by describing the name of the service and how 
the service is supposed to be launched, e.g., in response to a 
notification or when the user manually invokes it. Here Sam 
specifies the service to be invoked by an incoming message 
(notification) (see Figure 2a). To show an incoming 
message on a device that is easily glanceable by the user 
and equipped with a speaker, Sam adds several criteria in 
Weave’s select clause (see Figure 2b) and refers to the 
selected device by a variable notifier. Each device that is 
Weave-capable maintains a device profile that captures the 
device’s I/O resources such that Weave can match these 
selection criteria at runtime. Sam also requires the device’s 
input capability to be touch-sensitive, i.e., touchable, and 
detect two motion events, shakable and rotatable. These 
criteria will select a watch if it is available. In the following 
discussion, we use “watch” and notifier interchangeably. 

Sam then specifies the content to show on the selected 
device in the Layout tab, which consists of a title message 
and two buttons (see Figure 3). The sender’s name will be 
updated at runtime when the service is invoked (see Figure 
2c). To show this UI on the notifier device, the developer 
simply uses notifier.show(ui) (see Figure 2d). Depending 
on what device is selected by Weave at runtime, the UI will 
be rendered by Weave differently to be consistent with 
device-specific UI guidelines.  

To handle button touch events, Sam adds a callback 
function (see Figure 2e). Based on which button is tapped 
by the user, the service either plays the message or texts 
back the sender via the device that originates the button-tap 
event—event.getDevice(), i.e., the notifier device. 

To playback the voice message automatically when the user 
intends to listen to the message privately by bringing a 
smartphone to the ear, Sam adds another behavior to the 
service. He selects a device that affords private playback 
and subscribes to the listenStart event (Figure 2f), which 
is a built-in sensing event fired by Weave’s runtime 
environment when it detects a phone “listen” action 
triggered by the user. Similar to existing commercial 
products, we detect this activity based on the phone’s 
proximity sensor and accelerometer. 

While the message is playing on the phone, a text message 
will be shown on the original notifier device to prompt 
the user for available options: the user can shake the watch 
to replay the message on the phone, or rotate the watch to 
call back the sender. The developer adds two chained event 



 

handlers (Line 22 to 26) to respond to the motion events on 
the notifier device: shake and rotate. These options 
allow the user to continue the task with the watch while the 
user keeps the phone to the ear that is less accessible for 
further interaction. This example demonstrates that Weave 
allows developers to easily combine the strengths of 
multiple devices and distribute an interaction flow across 
devices to fulfill a task (see Figure 4). 

Testing & Deploying a Weave Service  
To verify if a service behaves as expected, Sam tests the 
service in Weave by running it on emulators, real devices, 
or a mix of them. Weave’s authoring environment provides 
a collection of predefined emulators, which include typical 
wearable devices such as a watch, and several presets of 
common device combinations. These allow developers to 
test a service with minimal effort. Each emulator device 
allows a set of built-in events, such as swipe and 
listenStart, shown along the emulator in the Test panel 
(see the Glass emulator in Figure 1). Sam can tap on these 
events to trigger actions. He can also create new emulators 
that best characterize their target devices. 

To add a real device to the test, Sam scans the QR code 
shown above the Test panel or in the dialog box via the + 
button (see Figure 1), using the Weave proxy running on a 
device. The screen of a registered device will be displayed 
in this panel, which is marked as Live in red. With actual 
devices, Sam can physically perform actions such as 
shaking the device or tapping the buttons. Any changes on a 

device’s UI will be synced with its representation in the 
Test panel for the developer to monitor the output of 
multiple devices in real time. The Log panel at the bottom 
of the screen offers detailed information for debugging a 
service, including the event history and script outputs. 

THE DESIGN OF THE WEAVE FRAMEWORK 
We aim to provide a set of high-level abstractions for 
developers to easily program complex cross-device 
wearable interactions. A common pattern for modern UI 
development follows an object-oriented event-driven 
paradigm, where developers attach event handlers to a UI 
object (or a widget) that update the object accordingly when 
an event occurs. We are especially inspired by popular 
JavasScript library designs such as jQuery and d3 [3] that 
provide a high-level abstraction for programmers to 
manipulate UI components. One can easily select desired 
HTML elements to change their properties, e.g., 
$(".target_class").css("color",="white") changes the 
color of all the elements of target_class to white, or to 
handle user input events, e.g., the inline function of 
$("button").click(function(){...}) will be invoked 
when any button is clicked by the user. Providing function 
calls based on high-level abstractions allows developers to 
focus on target behaviors rather than low-level operations, 
such as device specifications and network connection. 
Based on the unique challenges raised by programming 
cross-device wearable interaction, we designed Weave’s 
scripting framework (see Table 1).  
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weave.launchMethod!=!weave.launchOption.notification;!
function!service(notif)={ 
!!var=notifier===weave.select(!
===="showable[glanceability='high'],=speakable,"=
====+="touchable,=shakable,=rotatable"); 
!!var=ui===weave.getLayoutById("mainPanel"); 
==ui.updateUI("callerName",=notif.caller.name);=
==notifier.show(ui) 
====.on("tap:button",=function(event)={ 
!!!!!!if=(event.getValue()====="playMsg")={ 
========event.getDevice().play(notif.voiceMsg)=
==========.show(weave.getWidget("mediaPlayer")); 
======}=else!if=(event.getValue()====="text")={ 
!!!!!!!!event.getDevice().startApp("Messenger",========
==========notif.caller.name); 
======} 
====});=
!!weave.select("speakable[privacy='high'],=phoneable") 
====.on("listenStart",=function(event)={ 
======var=phone===event.getDevice().play(notif.voiceMsg);!
======notifier.show("Shake=to=reply=/=rotate=to=call=back")=
========.on("shake",=function(event)={=
==========phone.play(notif.voiceMsg);=
!!!!!!!!}).on("rotate",=function(event)={=
!!!!!!!!!!phone.call(notif.caller.num);=
========});!
====});!
}=

Figure 2. The complete script of the Smart Messenger service. 

 

<div=id="mainPanel"> 
==<p>New=voice=message=from=
====<span=id="callerName"></span>=
==</p> 
==<button=value="playMsg">Play</button>=
==<button=value="text">Text=back</button>=
</div>=
Figure 3. An example of a UI layout. This layout is 

referred by the script at Line 6 in Figure 2. 

 
Figure 4. The interaction flow of the Smart 

Messenger. The shaded circles denote the watch’s 
states and the plain circles for the phone’s. The 

corresponding line of code is labeled.  
 
 



 

Selecting Abstract Devices 
It is challenging for developers to cover various types of 
devices and their combinations that might occur at runtime. 
For example, some users may carry a smartwatch paired 
with a smartphone, while others may use an eyewear with a 
phone. Therefore, in addition to directly retrieving a device 
by its specific type, a framework should enable flexible 
selection of devices based on their high-level input and 
output capabilities so that a cross-device service can adapt 
to specific sets of devices that a user carries at runtime. As 
the earlier example shows, developers may choose to 
stream a message to a glanceable display, which at runtime 
could be a watch or an eyewear available on the network. 
With Weave, a developer selects target devices using the 
select clause with a selector of format 
“CAPABILITY[PROPERTY='VALUE'],...”. Our framework 
returns a WeaveSelection object that includes one or more 
qualified devices to be operated. Developers can use 
multiple criteria at the same time to refine the selection. 
The following example selects devices with a small, 
glanceable display that detects rotation motion, which could 
be a smartwatch at runtime.   
weave.select("showable[glanceability='high',====
===============size='small'],=rotatable")=

To select devices that can make phone calls, afford high 
privacy, and have a touch-sensitive display, developers may 
use the following criteria, with which Weave may find a 
smartphone and an eyewear at runtime.  
weave.select("phoneable[privacy='high'],=touchable")=

In addition, our framework allows developers to easily 
select all the available devices using weave.selectAll(). 
Developers can also select devices of a specific type, e.g., 
getDeviceByType("phone"), or designed to be worn at 
specific body locations, e.g., getDeviceByJoint("wrist"), 
which is predefined in the device profiles. For fine-grained 
controls over device selection, developers can also directly 
fetch specific devices by their IDs, e.g., 
getDeviceById("LGEphone"). Finally, a negating operator 
allows the developers to exclude certain devices, such as 
.not("speakable") to select those without a speaker. 

At runtime, Weave attempts to match these high-level 
criteria against devices that are available on the network. 
Each Weave-capable device runs on our runtime framework 
maintains a profile about its I/O capabilities, such as the 
display size or whether the device has a touchscreen, 
rotation sensor, or accelerometers. Analogous to 
conventional UI frameworks, each Weave device is treated 
as an interactive object in the context of a cross-device UI, 
which can be manipulated and registered to events.  

Applying Actions to Devices 
After specifying a selection, developers can apply actions to 
the device, such as providing output feedback. To show 
visual content on a device, device.show(MESSAGE) displays 
the message string in text, or developers can displays a UI 

layout defined as an HTML5 element in the Layout Panel 
using device.show(weave.getLayoutById(LAYOUT_ID)).  

To realize a UI layout on devices with different form 
factors and interaction styles, Weave takes into account the 
design guidelines of specific devices. It adopts the concepts 
of responsive web design that adapts the UI elements to 
different I/O capabilities in order to provide optimal 
viewing and interactive experience [21]. Our engine 
distributes the UI based on HTML tags (e.g. div, span, p, 
img, and button) and their attributes in a layout 
specification. For a UI layout that contains a text string (e.g. 
“Launch Pad Options”) and three buttons (“Maps”, 
“Email”, and “Calendar”), on a phone with a high-
resolution display, Weave shows all these components on 
the same pane and distributes the buttons vertically. On a 
watch with limited screen real estate, Weave displays the 
components in a grid view with each as an interactive 
card—a design metaphor for commercial smartwatches 
[15]. Similarly, on an eyewear they are represented as a list 
of swipeable cards that users can swipe through and tap to 
select [16]. Developers can update the UI shown on a 
device referred to by an element id using 
device.updateUI(ID,=NEW_CONTENT) for the inner content 
or device.updateUIAttr(ID,=ATTR,=NEW_ATTR_VALUE) for a 
certain attribute. These functions are useful for providing 
incremental feedback. 

To fully leverage the functionality of each device, a Weave 
service can invoke native apps on the device from the 
script, using device.startApp(APP_NAME). A service can 
also make a phone call using device.call(PHONE_NUMBER) 
and play a media file using device.play(MEDIA_FILE). 

Attaching Event Callbacks to Devices 
Based on what UI elements and sensor events are available 
on a selected device, developers can add a callback function 
to the device to handle user input. For example, developers 
can easily program a remote control service that allows the 
user to launch an application on a target device (e.g., a 

Selecting!Target!Devices!
.select(selector): Return a WeaveSelection object that 

includes all the matched device(s) on a local network based on the 
selector string.=

Combining!Multiple!Devices!
.all(): Return a WeaveSelection object that each device in the 

selection will behave the same.=
.combine(): Return a WeaveSelection object that encapsulates the 

devices in the selection as one virtual device.=
Performing!Output!Actions!
.show(panel), .show(string): Render a UI panel or a string on the 

device or the WeaveSelection object.=
.play(filepath): Play a media file of the file path on the device(s).=
.startApp(appname): Launch the specified native app.=
Handling!Input!Events!
.on(eventType,=handler): Attach an event handler for one or more 

events to the device(s).=
Table 1. Weave’s core APIs. 

 



 

smartphone) by selecting the app from a launchList on a 
different device (e.g., a smartwatch) (see Figure 5).  
weave.select("showable[size='small'],=touchable")=
==.show(weave.getLayoutById("launchList"))=
==.on("tap:li",=function(event)={=
====weave.select("showable[size='normal']")=
======.not(event.getDevice())=
======.startApp(event.getValue());=
==});=
Figure 5. The script snippet allows the user to launch an app on 
a “normal”-sized device by selecting it from a list on a “small”-

sized “touchable” device. 

When the user taps on a list item that corresponds to an app 
name, Weave executes the callback function. The event 
argument passed into the function stores detailed event 
information, including the corresponding value retrieved by 
event.getValue(), and the device that triggers this event 
accessed via event.getDevice(). In this example, the 
callback function launches the app designated by 
event.getValue() on a device that has a normal-sized 
screen and is not the device where the event is triggered.  

Weave provides other useful built-in events including 
shake, rotateCW, and rotateCCW inferred from motion 
sensors, listenStart and listenEnd if the user approaches 
the device to his ear, and common touch events such as 
doubleTap, longPress, and swipe. Note that our framework 
is designed to support device selection chaining and event 
propagation so that developers can attach the above 
operations in sequence, such as showing UI, adding several 
event callback functions, and applying other actions. 

Coordinating Cross-Device Behaviors 
Leveraging the strengths of multiple devices can form rich 
interaction behaviors. However, it is challenging to 
coordinate the behaviors of multiple devices. For instance, 
developers might want to display an urgent message to all 
the devices at the same time to maximally acquire the user’s 
attention. For another instance, developers might want to 
use the current orientation of a smartwatch to indicate a 
different mode for a tap event on a smartphone touchscreen, 
e.g., detecting a knuckle or a fingertip tap [4]. Programming 
event callbacks and UI output for a single device is often 
straightforward. But handling these tasks for multiple 

devices can be extremely complex. A framework should 
assist developers in fulfilling these tasks.  

By default, when an event callback is attached to a selection 
(returned by weave.select) that includes multiple devices, 
Weave invokes the callback whenever one of these devices 
fires the event. Likewise, to execute an action on the 
selection, Weave selects a device in the selection that best 
matches the selection criteria, instead of performing the 
action on all the devices in the selection. On top of the 
default mode (which is similar to “any” device in a set), 
Weave provides two operators that can be applied to a 
selection for coordinating cross-device behaviors of these 
devices: all and combine (see Figure 6). 

The all Operator 
Developers can choose to enable multiple devices to behave 
simultaneously in the same way. One example is to 
broadcast the same message such that the message will be 
displayed on every device returned by weave.select. For 
coordinating input behaviors, the all mode requires a 
specific event to occur on all the devices in the selected set 
to invoke a callback function. For example, consider an 
interaction scenario that requires multiple users to 
physically bump their devices at the same time to form a 
user group. Realizing this scenario manually would require 
developers to collect the “shake” events from each device 
and compare their timestamps. To ease the development of 
this type of behaviors, Weave provides a high-level 
mechanism, i.e., the all operator, where developers can 
specify when and how devices should be synchronized. The 
code snippet in Figure 7 defines a callback function that is 
invoked when a shake event co-occurs on any two or more 
devices within a time range (500ms by default). In this 
snippet, each of the devices is required to have a display 
(showable), an accelerometer (shakable) for the shake 
event, and a speaker (speakable) for the audio output. 
weave.select("showable,=shakable,=speakable")=
==.all({minNumOfDevices:=2})=//=at=least=2=devices=
==.show("Bump=to=join")=
==.on("shake",=function(event)={=
====event.getDevices().show("Welcome=to=the=group!")=
======.play("audio/success.mp3");=
==});=

Figure 7. The all operator synchronizes the input and output of 
multiple devices and enables interaction scenarios such as 

bumping devices together to join a group. 

The combine Operator  
Weave introduces the combine operator that combines the 
input and output resources of multiple devices as an organic 
whole in which each device is allowed to perform a 
different part of a compound behavior. Via the combine 
operator, multiple devices within a selection essentially 
form a single virtual device that allows more diverse 
interaction behaviors.  

Consider a cross-device slideshow scenario where a watch 
serves as a control panel for the user to go forward and 

 
Figure 6. Weave coordinates multiple devices in three different 
modes (from left to right): default, all, and combine managing 

both input and output. 

 



 

backward through a list of images shown on a phone that 
can be viewed by others. To realize this scenario, 
developers apply the combine operator (Figure 8) to a 
selection of devices, e.g., a watch and a phone. Weave 
analyzes a UI layout that consists of an image viewer and 
two buttons and automatically distributes the buttons, which 
require minimum screen estate for “Previous” and “Next,” 
to the watch and the image viewer, which requires higher 
resolution to be shown, to the phone. The distribution 
strategy is similar to Panelrama’s [32] that primarily relies 
on preferred dimensions of each UI element. Note that an 
alternative script without using the combine operator is 
listed in Figure 1 (line 4-12) for comparison, which requires 
more variables to manage the device allocations for both 
the viewer and the control panel separately. 
<div=id="controlPanel">=
=<button=value="prev">Previous</button>=
=<button=value="next">Next</button>=
=<img=id="imageView"=src="img/1.jpg"/>=
</div>=
=
var=photoIdx===1,=numOfPhotos===8;=
weave.select("showable[privacy='low'],=touchable")=
==.combine().show(weave.getLayoutById("controlPanel"))=
==.on("tap:button",=function(event)={=
====if=(event.getValue()==="prev"=&&=curPhoto=>=1)={=
======photoIdx=pp;=
====}=else=if=(event.getValue()==="next"==
=======&&=photoIdx=<=numOfPhotos=)={=
======photoIdx=++;=
====}=
====event.getDevices().updateUIAttr("imageView",==
======"src",="img/"=+=photoIdx=+=".jpg");=
==});=

Figure 8. The combine operator distributes UI elements 
considering the screen estates and user interactions. 

In addition to distributing a user interface, the combine 
operator allows developers to fuse different types of input 
events from multiple devices to create a new interaction 
mode. For example, Figure 9 shows a cross-device pinch 
gesture that invokes the callback function when a watch on 
the wrist detects a left swipe and the phone (assuming 
holding in hand) detects a right swipe at the same time. 
weave.selectAll().combine()=
==.on("swipeLeft[joint='wrist'],=
=====swipeRight[type='phone']",=function(event)={=
=======event.getDevices().show("Pinch=detected");=
==});=
Figure 9. The combine operator supports cross-device gestures 

as a new interaction mode. 

Internally, Weave listens to element events of a compound 
(e.g., swipeLeft and swipeRight) on each device in the 
combination and triggers the callback when these events 
occur approximately at the same time. Weave maintains a 
global event pool to buffer and synthesize events from 
multiple devices. In general, combine creates an internal 
representation to manage the I/O of the combined devices. 
Weave encapsulates all these complexities for developers. 

THE RUNTIME ARCHITECTURE 
Weave employs a web-based architecture (see Figure 10) 
for creating and deploying services. Developers can access 

Weave’s authoring environment anywhere by pointing a 
web browser to the Weave server. Users can install a 
Weave service on their devices by accessing the Weave 
server using a Weave proxy.  

A Weave proxy needs to be preinstalled and runs on each 
individual device. A Weave proxy serves two purposes. 
First, it provides tools for 1) generating a device profile that 
describes the capabilities of the device, 2) registering the 
device directly to the Test panel by scanning the QR code 
for developers to test a service on the device (see Figure 1), 
and 3) accessing the Weave server for searching and 
installing a service. A device profile is extracted 
automatically by analyzing the device resource (e.g. 
detecting available sensors), which can be refined by the 
owner using XMLs. Ideally the profile should come with 
the device, as it is specific and fixed to each type of device. 

Second, a Weave proxy hosts a runtime environment for 
managing the ad-hoc network of wearable devices for a 
user and executing a Weave service on these devices (see 
Figure 11). To simplify the architectural design, Weave 
employs a client-server-based runtime architecture within 
each ad-hoc network. At any time, only one device on the 

 
Figure 11. An illustration of Weave’s runtime environment on a 
user’s ad-hoc network. Here the network contains three devices, 

and Device 3 acts as the server for executing a script, and 
synthesizing events and distributing actions across devices. 

 

 
Figure 10. The architecture for creating Weave services. 

 



 

network acts as the server that is responsible for executing 
the script and distributing the UI feedback and synthesizing 
events across devices. The runtime environment has four 
major components. The Communicator maintains 
connections with other devices on the ad-hoc network, and 
sends and receives events or actions between devices. The 
Actuator performs actions for updating the user interface on 
the device including playing audible or vibration feedback. 
The Sensor detects user input and sensor events on the 
device and sends the events to the Script Interpreter, which 
runs either locally on the device or remotely on another 
device on the network. The Script Interpreter executes a 
script and manages event callbacks and interaction states. 

Any device can be added to the ad-hoc network or removed 
from it at runtime, as Weave promptly updates the device 
selection and status. When a server device leaves the 
network, another device on the network will succeed it as 
the server. This design allows flexible device configuration 
and stability in executing a cross-device service.  

IMPLEMENTATION 
The Weave web server is implemented based on Node.js to 
host the authoring UI. Weave’s Script Interpreter executes 
scripts and HTML5-based UI layouts using a JavaScript 
engine. We have implemented and tested Weave proxies on 
three types of devices: the Nexus series of smartphones, 
Android Wear powered smartwatches such as Samsung 
Gear Live, and Google Glass.  

The runtime server uses WebSocket and JSON to 
communicate with the Communicator running on each 
device. Note that since smartwatches such as Samsung Gear 
Live currently lack the web socket capability via Wi-Fi and 
only supports Bluetooth, they are paired with Android 
phones in order to connect to the server through the 
Wearable Data Layer API defined by the Google Play 
service. The Communicator on each device is responsible 
for redirecting traffic to a target device if the target device 
is not directly reachable from the server.  

EVALUATION 
To evaluate the usability of Weave’s API framework design 
as well as the authoring environment as a whole, we 
conducted a user study with 12 participants. We 
hypothesized that Weave would allow developers to easily 
create a range of interaction behaviors across multiple 
mobile and wearable devices. We chose not to include a 
baseline condition (i.e., a control group) as our pilot studies 
showed that programming these interactions using the 
Android framework would take three hours at minimum.  

Participants and Setups 
We recruited 12 participants (2 females), aged between 20 
and 48 years (Mean=28) from an IT company, including 
software engineers and interns. Participants were required 
to have moderate web programming knowledge and were 
selected randomly from volunteers via an internal study 

invitation. Participants had a varying programming 
background, ranged from 3 to 30 years (Mean=9 and 
SD=8). They had used two JavaScript tools on average, 
including jQuery, AngularJS, and Node.js. 9 out of 12 
participants had mobile programming experience with 
Android phones, but only few had programmed wearable 
devices: two built basic Android Wear apps and one in 
Google Glass. Each participant was compensated with a 
$40 gift card for their participation. 

The study was conducted in a quiet lab environment. A 
MacBook Pro running OS X and Google Chrome browser 
was connected to two 24-inch LCD displays of 1920x1200 
pixel resolution. We provided an external mouse and 
keyboard. The set of mobile and wearable devices that are 
used in the experiment include two Android phones (Nexus 
5 and Nexus), one Samsung Gear Live smartwatch that is 
powered by Android Wear, and one Google Glass eyewear.  

Procedures and Tasks 
To learn the framework, participants went through a tutorial 
and performed a practice task to create a single-device 
Launch Pad using Weave. Participants had the opportunities 
to learn different device selection criteria, specifying UI 
layouts in HTML, and adding callback functions to handle 
button taps. Participants also tested their service with 
emulators and real devices. The Weave API documentation 
was provided and available during the experiment. The 
learning phase was about 17 minutes on average. 
Participants were then asked to perform three programming 
tasks to create cross-device interactions using Weave. 

Task 1: Modify the single-device Launch Pad created from 
the practice task to run a control panel on a glanceable 
device with three options (Maps, Email, and Calendar) and 
launch applications on a handheld device. 

Task 2: Design a bump service that multiple users could 
join a group by physically shaking their devices at the same 
time. Provide both visual and audio feedback when 
successfully joined. 

Task 3: Design a slideshow service that provides a panel on 
a small-size wearable for the user to browse a list of photos 
on a larger device—that is more viewable by others—by 
going forward or backward. 

Participants could choose to test their scripts any time 
during the experiment. Finally, they were asked to answer a 
questionnaire, followed by a discussion with the 
experimenters. On average, the total duration of an entire 
user session lasted 80 minutes. We included some sample 
code from these tasks in Figures 5, 7 and 8.  

EXPERIMENTAL RESULTS AND DISCUSSION 
We discuss our observation about participants’ coding 
strategies with Weave, their subjective feedback as well as 
opportunities for future work.  



 

Code Analyses and Scripting Strategies 
All the participants successfully scripted and tested the 
three tasks in the study. The average time of completing 
each task was 5, 11, and 18 minutes (SD=2, 3 and 6). The 
duration of Task 2 and 3 also included the time for 
participants to learn the all and combine operators. In 
general, participants were impressed by Weave’s ease of 
use for development: P4 said, “It was fast, easy to learn, 
and provided a way to unify cross platform devices with the 
same code. Would have taken a lot more time for me to do 
any of the tasks individually.” Compared to programming 
with the Android framework, all the participants suspected 
that it would have taken them at least three hours to 
multiple days for a single task, as they would have to work 
on the environment setup (P1), specific APIs (P8), and 
details such as network or message passing (P5). 

The average number of lines of code within the “service” 
function was 6 ([min, max]=[5, 9], SD=1), 6 ([3, 9], SD=2), 
and 16 ([12, 22], SD=3) for each task, excluding the 
comments and code for system log printouts. The range 
varied for several reasons. Since Weave supports the 
chaining of functions, developers showed different styles of 
coding: some preferred to align operators in several lines, 
some contracted into one, and some created variables to 
manage. For a relatively complicated task such as Task 3, 
some participants chose to create an inner function to 
improve code readability. These behaviors showed that 
participants retained their JavaScript coding styles when 
scripting with Weave. P8 explained: “I could interact with 
them (the devices) via a common interface that was easy to 
pick up with basic HTML, JS, and CSS (due to selector-like 
syntax) knowledge.” P12 summarized, “jQuery-like API is 
straightforward to most JavaScript programmers.”  

We observed that participants had a similar coding strategy: 
they started by selecting a set of devices and confirming the 
selected devices were as expected, then modified UI 
outputs and attached event listeners, and finally designed 
the callback logic. Such a coding strategy suggested that 
Weave supported a top-down and modular development in 
handling output, input, and interaction logic. 

Feedback on Development 
Participants were very positive about developing with 
Weave. They found it easy to learn the framework (4.6 on a 
5-point Likert scale, SD=0.5), script a target behavior (4.6, 
SD=0.5), test a behavior (4.1, SD=0.9) and deploy it to real 
devices (4.8, SD=0.5). Participants commented: “It was a 
fun experience. It was quite simple.” (P11); “Definitely 
easier than any other model I am aware of.” (P10).  

Framework Design 
Participants found the abstraction and selection of Weave 
easy to manage: “The CSS-like selection with Weave was 
pretty intuitive and made device selection very manageable. 
I also liked that it abstracted away the specific interface for 
each of the devices by allowing me to specify things that 

apply to (e.g.) any shakable device.” (P8), and “I like the 
concept of defining sets of devices by their use and semantic 
attributes (glanceable, private...).” (P2). The results also 
showed that Weave’s event-based structure supported 
interaction flow designs. P12 explained “The API allows 
developers to implement cross-device interactions in 
functional programming paradigm is innovative.”  

However, participants desired more controls over 
distributing UI layouts across devices while using the 
combine operator. Previous mechanisms such as “panel” in 
Panelrama [32] can be useful in our framework for adding 
more developer controls to automate UI distribution. Some 
also wanted to see how Weave could embed an existing 
widget or web plugin in interfaces (P6, P8), which can be 
enabled in the future. 

Service Deployment and Testing 
Participants were surprised about the ease of use and the 
speed for deploying a service in real-time: “Testing was 
great and easy. I definitely liked the immediate deploy of 
the code to the devices” (P3); “It was surprisingly easy to 
deploy the apps” (P2). P1 liked the live testing and “write 
once and run multiple”. 

However, the debugging feature was limited with the 
current system. Several participants explicitly mentioned 
the need of highlighting syntax errors (P6, P8), code 
completion (P9), and writing test cases (P4). On average, 
the experimenters offered little help to participants for 
completing these tasks. The only type of help that was 
provided (less than two times on average for a task) was on 
fixing syntax errors, such as missing closing marks and 
incorrect built-in event names.  

Opportunities 
Participants expressed strong interests in scripting cross-
device interactions with Weave (4.6, SD=0.7). Participants 
were also interested in potentially including more devices 
for content retrieval and manipulation, such as a desktop or 
a laptop (P2, P8), and a TV or other large monitors (P7, P9, 
P12). Some expected to integrate other services such as 
online photo collection or games (P9). All in all, the 
developer feedback showed that Weave provides a 
powerful tool as “It significantly shortens the time required 
to prototype new ideas on wearable devices.” (P12). We 
drew most of our examples and tasks from recent cross-
device literature and commercial products, since our 
evaluation primarily focused on lowering the technical 
threshold, i.e., “lowering the floor”. In the future, we intend 
to explore further on how our tool can raise the ceiling for 
creating more sophisticated cross-wearable behaviors. 

We also identified the weakness of our framework and 
opportunities for future work. Weave currently does not 
support specification of relative spatial relations that have 
been used in prior work [22,32,5]. This limitation can be 
addressed by enabling developers or end-users to specify 



 

these spatial relations on devices [25] or enhancing with 
more sensors [5]. In addition, we are experimenting with 
features that allow developers to create custom cross-device 
events using programming by demonstration, and support 
multi-user scenarios by adding user identifiers, e.g., 
enabling device.owner as a built-in variable. 

CONCLUSIONS 
We present Weave, a framework for developers to create 
cross-device wearable interaction by scripting. We 
contributed a set of high-level APIs, abstractions and 
integrated tool support. Our evaluation with 12 participants 
indicated that Weave significantly reduced developer effort 
for creating complex interaction behaviors that involve UI 
distribution and event synthesizing across multiple 
wearable devices. 
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