DRAM Fab partnership for Intelligent RAM (IRAM)

David Patterson and John Wawrzynek

patterson@cs.berkeley.edu
http://iram.cs.berkeley.edu/
EECS, University of California
Berkeley, CA 94720-1776
Outline

- Overview of V-IRAM-1
- Tentative Schedule
- Phases and Deliverables
- V-IRAM-1 SW/HW/Fab Tasks
- Requirements for Test Chips
- Requirements for V-IRAM-1 Prototype
- Where do we go from here?
V-IRAM-1: 0.25 µm, Fast Logic, 500 Mhz
4 GFLOPS(64b)/32 GOPS(8b)/24MB
V-IRAM-1 Floorplan

- 0.25 µm, 256 MbDRAM
- Die size = DRAM die
- 256M Xtors: 80% Memory, 8% Vector, 6% CPU ⇒ regular design
Goals for Vector IRAM Generations

- **V-IRAM-1 (≈1999)**
 - 256 Mbit generation (0.25)
 - Die size = 256 Mb DRAM die
 - 1.5 - 2.0 v logic, 0.5-2.0 watts
 - 300 - 500 MHz
 - 4 64-bit pipes/lanes
 - 4 GFLOPS(64b)/32GOPS(8b)
 - 30 - 50 GB/sec Mem. BW
 - 24 MB capacity + DRAM bus
 - PCI bus/ FC-AL (serial SCSI)

- **V-IRAM-2 (≈2002)**
 - 1 Gbit generation (0.18)
 - Die size = 1 Gb DRAM die
 - 1.0 - 1.5 v logic, 0.5-2.0 w
 - 500 - 1000 MHz
 - 8 64-bit pipes/lanes
 - 16 GFLOPS/128GOPS
 - 100 - 200 GB/sec Mem. BW
 - 96 MB cap. + DRAM bus
 - Many Gbit Ethernet/FC-AL
V-IRAM-1 Tentative Plan

- Phase 1: Feasibility stage (≈H1’98)
 - Test chip, CAD agreement, architecture defined
- Phase 2: Design Stage (≈H2’98)
 - Simulated design
- Phase 3: Layout & Verification (≈H2’99)
 - Tape-out
- Phase 4: Fabrication, Testing, and Demonstration (≈H1’00)
 - Functional integrated circuit
Phase I: Feasibility Stage

- Berkeley Deliverables
 - White Paper, Architecture, Project Schedule

- Partner Deliverables
 - HSPICE, Design Rules, PAD Design, Cell Library?
 - Prototype runs for test chip (2 times?)

- Milestones
 - Test chip working, architecture defined, CAD agreement

(Test chip to exercise tools and partner relationship as well as DRAM/logic circuits)
Phase 2: Design Stage

- Berkeley Deliverables
 - HDL description of logic portion of IRAM, compilers, software libraries

- Partner Deliverables
 - DRAM Design, PAD design, Cell Library
 - Prototype runs for test chip in 256Mbit process?

- Milestones
 - Simulated design
Phase 3: Layout and Verification

- Berkeley Deliverables
 - Test vectors

- Partner Deliverables
 - DRAM layout, PAD layout

- Milestone
 - Tape-out
Phase 4: Fabrication, Testing, and Demonstration

- **Berkeley Deliverables**
 - Prototype PCB, Testing

- **Partner Deliverables**
 - Packaged parts, Test rig

- **Milestone**
 - Functional integrated circuit
V-IRAM-1 Software Tasks

- Libraries
 - Vector/Graphic/Image
 - BLAS
 - I/O Kernel
- OS
- Compilers
 - Scalar C compiler
 - Vector C compiler
- Instruction set level simulator

Who does it?
- Berkeley
- Berkeley
- Berkeley
- Berkeley
- Berkeley
- Partner?
- Berkeley
V-IRAM-1 Hardware Tasks

- Reg. Trans. Level simulator
 - Scalar Processor
 - Vector Unit/Memory System

- Circuits/Layout/Schematics
 - Processor
 - Caches
 - Vector Unit
 » Fl. Point Unit/Datapath Generator?
 - Crossbar
 - DRAM Modules
 - Fast Serial I/O

- Who does it?
 - Partner?
 - Berkeley

- Partner?
 - Berkeley
 » Partner?
V-IRAM-1 Validation/Fab Tasks

- Simulation/Validation
- Fabrication
- Wafer test
 - DRAM
 - Logic
- Packaging
- Testing packaged parts
- Board design (copies for both)
- Demo (copies for both)
- ISSCC paper

- Berkeley
- Partner
- Joint plan
 - Partner
 - Berkeley?
- Partner?
- Berkeley?
- Berkeley
- Joint!
Phase I: Requirements for Test Chips

- CAD Design Flow
- General Design Information
- DRAM Macrocell description
- Testing plan/strategy
 - Work on together? (logic and DRAM)
- Someone to answer questions/visitor at UCB?
- Letter of understanding and wafer foundry agreement or prototype service agreement
Requirements for Test Chips

■ CAD Design Flow
 – What is it at Partner’s company?
 – What CAD tools should we buy?
 – What CAD tools should we borrow?

■ One example set:
 – Layout: Cadence Dracula
 – Schematic Entry: Cadence ICDE (Integrated Circuit Design Environment)
 – Circuit: HSPICE
 – Logic Synthesis/Simulations: Synopsys
 – Cell Library: ??
Requirements for Test Chips

General Design Information:
1. HSPICE device model parameters (typical, fast, slow)
2. Process Parameters: Cadence DRACULA LPE file
3. Design rules file: Cadence DRACULA DRC file
4. Electrical rules file: Cadence DRACULA ERC command file
5. Cadence DRACULA LVS command file
6. I/O pads layout
Requirements for Test Chips

- DRAM Macrocell
 1. Available configuration
 » Layout area, number of inputs/outputs, location of pins
 2. Power requirements
 » Routing requirement, peak and average current
 3. Interface timing
 » Access time, clock timing, signal level
 4. Guidelines of metal routing over array
 5. Refresh rate and cycles
Desired for V-IRAM-1 Prototype

- 0.25 micron, fast transistor, ≥4 metal layers
- “Fast” turnaround/testing
- Flexible interface to DRAM modules
- Scalar processor in that process?
- Group (not at UCB) to help with design?
- Testing plan/strategy
- Someone to answer questions/visitor at UCB?
- Letter of understanding and wafer foundry agreement or prototype service agreement
Specific Questions

■ Scalar processor available for V-IRAM-1?
 – Clock rate, power, area, pipeline, floating point, superscalar, performance on benchmarks

■ Technology for test chips, V-IRAM-1
 Logic: \(L_{\text{effective}}, V_t, V_{cc}, C_{cc} \times V_{dd} / I_{sat} \)
 DRAM: cell size, \(V_t, V_{cc} \)

■ Scaling logic across generations? (drop-in DRAM)
 – Simplified logic design rules span DRAM generations?
 e.g., Test chip 1 (Spring ‘98) in 4th Gen. 64Mb;
 Test chip 2 (Spr ‘99)/V-IRAM-1 (Fall ‘99) in 2G 256Mb
Specific Questions (cont’d)

- What is maturity of proposed technology?
 - Engineering samples, first customer ship, mass production?
 - How long is process available to fab in?
 - Technology roadmap for DRAM, merged logic?
- Test chip die size limits? Larger than DRAM die?
- V-IRAM=1 die size limit? Larger than DRAM die?
- Packaging options?
 - Ball grid array?
Where do we go from here?

- Partner determines if is interested or not
- Partner proposes what resources/technology can provide UCB, plan for prototype
- Pick 2 partners for test chips
- Depending on results/relationship/business plans, pick 1 partner for V-IRAM-1 prototype
- Even if not prototype partner, companies can participate in IRAM project, supporting students, attending two retreats per year, ...
- Other issues?