Review 1/2
° MIPS assembly language instructions mapped to numbers in 3 formats

<table>
<thead>
<tr>
<th>R</th>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>shamt</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>op</td>
<td>rs</td>
<td>rt</td>
<td>immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>op</td>
<td>address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

° Op field determines format
° Binary => Decimal => Assembly => Symbolic Assembly => C
 • Reverse Engineering or Disassembly
 • It's hard to do, therefore people like shipping binary machine language more than assembly or C

Review 2/2
° Programming language model of memory allocation and pointers
 • Allocate in stack vs. heap vs. global areas
 • Arguments passed call by value vs. call by reference
 • Pointer in C is HLL version of machine address

Numbers: Review
° Number Base B => B symbols per digit:
 • Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 • Base 2 (Binary): 0, 1

° Number representation: \(d_{31}d_{30} \ldots d_2d_1d_0\)
 • \(d_{31} \times B^{31} + d_{30} \times B^{30} + \ldots + d_2 \times B^2 + d_1 \times B^1 + d_0 \times B^0\)

° One billion (1,000,000,000 \text{ten}) is
\[
\begin{align*}
2^{28} & \quad 2^{24} & \quad 2^{20} & \quad 2^{16} & \quad 2^{12} & \quad 2^8 & \quad 2^4 & \quad 2^0 \\
0011 & \quad 1011 & \quad 1001 & \quad 1010 & \quad 1100 & \quad 1010 & \quad 0000 & \quad 0000 \\
\text{two} & \quad \text{two} \\
= 1 \times 2^{29} & + 1 \times 2^{28} & + 1 \times 2^{27} & + 1 \times 2^{26} & + 1 \times 2^{24} & + 1 \times 2^{23} & + 1 \times 2^{20} & \\
& + 1 \times 2^{19} & + 1 \times 2^{17} & + 1 \times 2^{15} & + 1 \times 2^{14} & + 1 \times 2^{11} & + 1 \times 2^9 & \\
= 536,870,912 & + 268,435,456 & + 134,217,728 & \\
+ 33,554,432 & + 16,777,216 & + 8,388,608 & + 1,048,576 & \\
+ 524,288 & + 131,072 & + 32,768 & + 16,384 & + 2,048 & + 512 & \\
\end{align*}
\]
Overview

° What if Numbers too Big?
° How Represent Negative Numbers?
° What if Result doesn’t fit in register?
° More Compact Notation than Binary?
° Administrivia, “What’s this stuff good for”
° Shift Instructions
° And/Or Instructions
° Conclusion

What if too big?

° Binary bit patterns above are simply representatives of numbers
° Numbers really have an infinite number of digits
 • with almost all being zero except for a few of the rightmost digits
 • Just don’t normally show leading zeros
° If result of add (or any other arithmetic operation), cannot be represented by these rightmost hardware bits, overflow is said to have occurred
° Up to Compiler and OS what to do

How avoid overflow, allow it sometimes?

° Some languages detect overflow (Ada), some don’t (C)
° MIPS solution is 2 kinds of arithmetic instructions to recognize 2 choices:
 • add (add), add immediate (addi), and subtract (sub) cause exceptions on overflow
 • add unsigned (addu), add immediate unsigned (addiu), and subtract unsigned (subu) do not cause exceptions on overflow
° Compiler selects appropriate arithmetic
 • MIPS C compilers produce addu, addiu, subu

What if Overflow Detected?

° An “exception” (or “interrupt”) occurs
 • Address of the instruction that overflowed is saved in a register
 • Computer jumps to predefined address to invoke appropriate routine for that exception
 • Like an unplanned hardware function call
° Operating system decides what to do
 • In some situations program continues after corrective code is executed
° MIPS support: exception program counter (EPC) contains address of that instruction
 • move from system control (mfccoli) to copy EPC
How Represent Negative Numbers?
° Obvious solution: add a separate sign!
 • sign represented in a single bit!
 • representation called sign and magnitude

° Shortcomings of sign and magnitude
 • Where to put the sign bit: right? left?
 • Separate sign bit means it has both a positive and negative zero, lead to problems for inattentive programmers: \(+0 = -0? \)
 • Adder may need extra step size don’t know sign in advance

° Thus sign and magnitude was abandoned

Search for Negative Number Representation
° Obvious solution didn’t work, find another

° What is result for unsigned numbers if tried to subtract large number from a small one?
 • Would try to borrow from string of leading 0s, so result would have a string of leading 1s
 • With no obvious better alternative, pick representation that made the hardware simple: leading 0s \(\Rightarrow \) positive, leading 1s \(\Rightarrow \) negative
 • \(000000...xxx \) is \(\geq 0 \), \(111111...xxx \) is \(< 0 \)

° This representation called two’s complement

Two’s Complement
\[
\begin{array}{cccccccc}
0000\ldots0000 & 0000 & 0000 & 0000 & 0000 & \text{two} = & 0_{\text{ten}} \\
0000\ldots0000 & 0000 & 0000 & 0000 & 0001 & \text{two} = & 1_{\text{ten}} \\
0000\ldots0000 & 0000 & 0000 & 0000 & 0010 & \text{two} = & 2_{\text{ten}} \\
0111\ldots1111 & 1111 & 1111 & 1111 & 1101 & \text{two} = & 2,147,483,645_{\text{ten}} \\
0111\ldots1111 & 1111 & 1111 & 1111 & 1110 & \text{two} = & 2,147,483,646_{\text{ten}} \\
1000\ldots0000 & 0000 & 0000 & 0000 & 0000 & \text{two} = & -2,147,483,648_{\text{ten}} \\
1000\ldots0000 & 0000 & 0000 & 0000 & 0001 & \text{two} = & -2,147,483,647_{\text{ten}} \\
1000\ldots0000 & 0000 & 0000 & 0000 & 0010 & \text{two} = & -2,147,483,646_{\text{ten}} \\
1111\ldots1111 & 1111 & 1111 & 1111 & 1101 & \text{two} = & -3_{\text{ten}} \\
1111\ldots1111 & 1111 & 1111 & 1111 & 1110 & \text{two} = & -2_{\text{ten}} \\
1111\ldots1111 & 1111 & 1111 & 1111 & 1111 & \text{two} = & -1_{\text{ten}} \\
\end{array}
\]

° Recognizing role of sign bit, can represent positive and negative numbers in terms of the bit value times a power of 2:

\[
d_{31} x (-2^{31}) + d_{30} x 2^{30} + \ldots + d_2 x 2^2 + d_1 x 2^1 + d_0 x 2^0
\]

° Example
\[
1111\ldots1111\ldots1111\ldots1111\ldots1111\ldots1100_{\text{two}}
\]
\[
= 1x(-2^{31}) + 1x2^{30} + 1x2^{29} + \ldots + 1x2^2 + 0x2^1 + 0x2^0
\]
\[
= -2^{31} + 2^{30} + 2^{29} + \ldots + 2^2 + 0 + 0
\]
\[
= -2,147,483,648_{\text{ten}} + 2,147,483,644_{\text{ten}}
\]
\[
= -4_{\text{ten}}
\]

° One zero, 1st bit \(\Rightarrow \) \(\geq 0 \) or \(< 0 \), called sign bit
 • but one negative with no positive \(-2,147,483,648_{\text{ten}} \)
Overflow for Two’s Complement Numbers?

- Adding (or subtracting) 2 32-bit numbers can yield a result that needs 33 bits
 - sign bit set with value of result instead of proper sign of result
 - since need just 1 extra bit, only sign bit can be wrong

Adding operands with different signs, (subtracting with same signs) overflow cannot occur

<table>
<thead>
<tr>
<th>Op</th>
<th>A</th>
<th>B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A + B</td>
<td>>=0</td>
<td>>=0</td>
<td><0</td>
</tr>
<tr>
<td>A + B</td>
<td><0</td>
<td><0</td>
<td>>=0</td>
</tr>
<tr>
<td>A - B</td>
<td>>=0</td>
<td><0</td>
<td><0</td>
</tr>
<tr>
<td>A - B</td>
<td><0</td>
<td>>=0</td>
<td>>=0</td>
</tr>
</tbody>
</table>

Signed v. Unsigned Comparisons

- Note: memory addresses naturally start at 0 and continue to the largest address
 - That is, negative addresses make no sense
- C makes distinction in declaration
 - integer (int) can be positive or negative
 - unsigned integers (unsigned int) only positive
- Thus MIPS needs two styles of compare
 - Set on less than (slt) and set on less than immediate (slti) work with signed integers
 - Set on less than unsigned (sltu) and set on less than immediate unsigned (sltiu)

Example: Signed v. Unsigned Comparisons

- $s0$ has
 1111 1111 1111 1111 1111 1111 1111 1100two
- $s1$ has
 0011 1011 1001 1010 1000 1010 0000 0000two
- What are $t0$, $t1$ after
 slt $t0,$s0,$s1 # signed compare
 sltu $t1,$s0,$s1 # unsigned compare
- $t0$: $-4_{ten} < 1,000,000,000_{ten}$?
- $t1$: $4,294,967,292_{ten} < 1,000,000,000_{ten}$?

Administrivia

- Readings: (4.1,4.2,4.3) 3.7, 4.8 (skip HW)
- 3rd homework: Due Tonight 7PM
- 4th homework: Due 2/17 7PM
 - Exercises 3.21, 4.3, 4.7, 4.14, 4.15, 4.31
- 2nd project: MIPS Disassembler
 Due Wed. 2/17 7PM
- Book is a valuable reference!
 - Appendix A (as know more, easier to refer)
 - Back inside cover has useful MIPS summary: instructions, descriptions, definitions, formats, opcodes, examples
Remote Diagnosis: “NeoRest ExII,” a high-tech toilet features microprocessor-controlled seat warmers, automatic lid openers, air deodorizers, water sprays and blow-dryers that do away with the need for toilet tissue. About 25 percent of new homes in Japan have a “washlet,” as these toilets are called. Toto’s engineers are now working on a model that analyzes urine to determine blood-sugar levels in diabetics and then automatically sends a daily report, by modem, to the user’s physician.

Two’s complement shortcut: Negation

- Invert every 0 to 1 and every 1 to 0, then add 1 to the result
 - Sum of number and its inverted representation must be 111...111\(\text{two}\)
 - 111...111\(\text{two}\) = -1\(\text{ten}\)
 - Let \(x'\) mean the inverted representation of \(x\)
 - Then \(x + x' = -1 \Rightarrow x + x' + 1 = 0 \Rightarrow x' + 1 = -x\)

- Example: -4 to +4 to -4
 \[
 x : \quad \begin{array}{cccccccccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \text{two}
 \end{array}
 \]
 \[
 x' : \quad \begin{array}{cccccccccccccccc}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \text{two}
 \end{array}
 \]
 \[
 +1 : \quad \begin{array}{cccccccccccccccc}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text{two}
 \end{array}
 \]
 \[
 (\text{') : }\quad \begin{array}{cccccccccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text{two}
 \end{array}
 \]
 \[
 +1 : \quad \begin{array}{cccccccccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text{two}
 \end{array}
 \]

Two’s complement shortcut: Sign extension

- Convert two’s complement number represented in \(n\) bits to more than \(n\) bits
 - e.g., 16-bit immediate field converted to 32 bits before adding to 32-bit register in addi
 - Simply replicate the most significant bit (sign bit) of smaller quantity to fill new bits
 - 2’s comp. positive number has infinite 0s to left
 - 2’s comp. negative number has infinite 1s to left
 - Bit representation hides most leading bits; sign extension restores some of them
 - 16-bit -4\(\text{ten}\) to 32-bit:
 \[
 \begin{array}{cccccccccccccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \text{two}
 \end{array}
 \]
 - 16-bit -10\(\text{ten}\) to 32-bit:
 \[
 \begin{array}{cccccccccccccccccccc}
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text{two}
 \end{array}
 \]

More Compact Representation v. Binary?

- Shorten numbers by using higher base than binary that converts easily into binary
 - almost all computer data sizes are multiples of 4, so use hexadecimal (base 16) numbers
 - base 16 a power of 2, convert by replacing group of 4 binary digits by 1 hex digit; and vice versa
 - 0 0000 4 0100 8 1000 c 1100
 - 1 0001 5 0101 9 1001 d 1101
 - 2 0010 6 0110 a 1010 e 1110
 - 3 0011 7 0111 b 1011 f 1111
- Example: from before, 1 000 000 000\(\text{ten}\) is
 \[
 \begin{array}{cccccccccccc}
 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \text{two}
 \end{array}
 \]
 \[
 \begin{array}{cccccccccccc}
 3 & b & 9 & a & c & a & 0 & 0 & \text{hex}
 \end{array}
 \]
 C uses notation \(0xb9aca0\)
Logical Operations

- Operations on less than full words
 - Fields of bits or individual bits
- Think of word as 32 bits vs. 2’s comp. integers or unsigned integers
- Need to extract bits from a word, insert bits into a word
- Extracting via Shift instructions
 - C operators: << (shift left), >> (shift right)
- Inserting via And/Or instructions
 - C operators: & (bitwise AND), | (bitwise OR)

Shift Instructions

- Move all the bits in a word to the left or right, filling the emptied bits with 0s
- Before and after shift left 8 of $s0 ($16):
 \[
 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 1101_{two} \\
 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 1101_{two} \ 0000 \ 0000_{two}
 \]
- MIPS instructions
 - shift left logical (sll) and shift right logical (srl)
 \[
 sll \ \$s0,$s0,8 \ # \$s0 = \$s0 \ll 8 \text{ bits}
 \]
- Register Format, using shamt (shift amount):
 \[
 \begin{array}{cccccc}
 \text{op} & \text{rs} & \text{rt} & \text{rd} & \text{shamt} & \text{funct}
 \end{array}
 \]

Extracting a field of bits

- Extract bit field from bit 9 (left bit no.) to bit 2 (size=8 bits) of register $s1$, place in rightmost part of register $s0$
- Shift field as far left as possible (31-bit no.) and then as far right as possible (32-size)
- sll $s0,$s1,22 # 8 bits to left end (31-9)
- srl $s0,$s0,24 # 8 bits to right end (32-8)

And instruction

- AND: bit-by-bit operation leaves a 1 in the result only if both bits of the operands are 1.
 - For example, if registers $t1$ and $t2$
 \[
 \begin{array}{cccccc}
 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 1101_{two} \\
 0000 \ 0000 \ 0000 \ 0000 \ 0011 \ 1100_{two}
 \end{array}
 \]
 - After executing MIPS instruction
 - and $t0,$t1,$t2 # $t0 = t1 \& t2
 - Value of register $t0$
 - $0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 1100_{two}$
 - AND can force 0s where 0 in the bit pattern
 - Called a “mask” since mask “hides” bits
Or instruction

- OR: bit-by-bit operation leaves a 1 in the result if either bit of the operands is 1. For example, if registers $t1$ and $t2$
 - $0000 0000 0000 0000 0000 11010000 0000 0000\text{two}$
 - $0000 0000 0000 0000 0011 11000000 0000 0000\text{two}$

- After executing MIPS instruction
 - or $t0,t1,t2 \# t0 = t1 \& t2$

- Value of register $t0$
 - $0000 0000 0000 0000 0011 11010000 0000 0000\text{two}$

- OR can force 1s where 1 in the bit pattern
 - If 0s in field of 1 operand, can insert new value

Inserting a field of bits (almost OK)

- Insert bit field into bit 9 (left bit no.) to bit 2 (size=8 bits) of register $s1$ from rightmost part of register $s0$ (rest is 0)
 - $\text{or } s0,s1,s1 \# s0 = s1 \& s1$
 - $\text{or } s0,s1,s0 \# \text{OR in field}$

Sign Extension of Immediates

- addi and slti: deal with signed numbers, so immediates sign extended
- Branch and data transfer address fields are sign extended too
- addiu and sltiu also sign extend!
 - addiu really to avoid overflow; sltiu why?
- andi and ori work with unsigned integers, so immediates padded with leading 0s
 - andi won't work as mask in upper 16 bits

 - addiu $t1,\text{zero},0xfc03 \# 32b mask in $t1$
 - sll $t0,0xfc03,2 \# field left 2
 - or $s1,0xfc03,\text{zero} \# \text{OR in field}$

Summary: 12 new instructions (with formats)

- Unsigned (no overflow) arithmetic:
 - addu (R), subu (R), addiu (I)
- Unsigned compare:
 - sltu (R), sltiu (I)
- Logical operations:
 - and (R), or (R), andi (I), ori (I), sll (R), srl (R)
- Handle overflow exception:
 - EPC register and mfc0 (R)
Example: show C, assembly, machine

Convert C code: Bit Fields in C

struct {
 unsigned int ready: 1; /* bit 31 */
 unsigned int enable: 1; /* bit 30 */
} rec; /* $S0 */
rec.enable = 1;
rec.ready = 0;
printf("%d %d", rec.enable, rec.ready);

“And in Conclusion...” 1/1

- Handling case when number is too big for representation (overflow)
- Representing negative numbers (2’s complement)
- Comparing signed and unsigned integers
- Manipulating bits within registers: shift and logical instructions
- Next time: characters, floating point numbers