Review

- Floating Point numbers approximate values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers ($\dagger 1T$)
- New MIPS registers($f0$ - $f31$), instruct.:
 - Single Precision (32 bits, $2x10^{-38}...2x10^{38}$):
 add.s, sub.s, mul.s, div.s
 - Double Precision (64 bits, $2x10^{-308}...2x10^{308}$):
 add.d, sub.d, mul.d, div.d
- Type is not associated with data, bits have no meaning unless given in context

Overview

- Special Floating Point Numbers: NaN, Denorms
- IEEE Rounding modes
- Floating Point fallacies, hacks
- Catchup topics:
 - Representation of jump, jump and link
 - Reverse time travel:
 MIPS machine language
 MIPS assembly language
 C code
 - Logical, shift instructions (time permitting)

MIPS Floating Point Architecture (1/2)

- 1990 Solution: Make a completely separate chip that handles only FP.
- Coprocessor 1: FP chip
 - contains 32 32-bit registers: $f0$, $f1$, ...
 - most registers specified in .s and .d instruction refer to this set
 - separate load and store: lwcl and swcl ("load word coprocessor 1", "store ...")
 - Double Precision: by convention, even/odd pair contain one DP FP number: $f0/f1$, $f2/f3$, ...

MIPS Floating Point Architecture (2/2)

- 1990 Computer actually contains multiple separate chips:
 - Processor: handles all the normal stuff
 - Coprocessor 1: handles FP and only FP;
 - more coprocessors?... Yes, later
 - Today, cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
 - $mfc0$, $mtc0$, $mfcl$, $mtcl$, etc.
- Appendix pages A-70 to A-74 contain many, many more FP operations.

Special Numbers

- What have we defined so far? (Single Precision)
 - Exponent Significand Object
 - 0 0 nonzero ???
 - 1-254 anything +/- fl. pt. #
 - 255 0 +/- infinity
 - 255 nonzero ???
- Professor Kahan had clever ideas; "Waste not, want not"
Representation for Not a Number

° What do I get if I calculate sqrt(-4.0) or 0/0?
 - If infinity is not an error, it may be useful not to crash program for these too.
 - Called Not a Number (NaN)
 - Exponent = 255, Significand nonzero
° Why is this useful?
 - Hope NaNs help with debugging
 - They contaminate: op(NaN,X) = NaN
 - OK if calculate but don’t use it
 - Ask math majors

Special Numbers (cont’d)

° What have we defined so far?
 (Single Precision)?
<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>NaN</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- infinity</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Representation for Denorms (1/2)

° Problem: There’s a gap among representable FP numbers around 0
 - Smallest representable pos num:
 - a = 1.0...1*2^-127 = 2^-127
 - Second smallest representable pos num:
 - b = 1.000...01*2^-127 = 2^-127 + 2^-150
 - a - 0 = 2^-127
 - b - a = 2^-150
° Gap! Gap!

Representation for Denorms (2/2)

° Solution:
 - We still haven’t used Exponent = 0, Significand nonzero
 - Denormalized number: no leading 1
 - Smallest representable pos num:
 - a = 2^-150
 - Second smallest representable pos num:
 - b = 2^-149

Rounding

° When we perform math on real numbers, we have to worry about rounding
° The actual math carries two extra bits of precision, and then round to get the proper value
° Rounding also occurs when converting a double to a single precision value, or converting a floating point number to an integer

4 IEEE Rounding Modes

° Round towards +infinity
 - ALWAYS round “up”: 2.001 -> 3
 -2.001 -> -2
° Round towards -infinity
 - ALWAYS round “down”: 1.999 -> 1,
 -1.999 -> -2
° Truncate: 2.001 -> 2, -2.001 -> -2
 - Just drop the last bits (round towards 0)
° Round to (nearest) even
 - Normal rounding, almost
Round to Even
- Round like you learned in grade school
- Except if the value is right on the borderline, in which case we round to the nearest EVEN number
 - 2.5 -> 2
 - 3.5 -> 4
- Insures fairness on calculation
 - This way, half the time we round up on tie, the other half time we round down
- Default C rounding mode; only Java mode

Floating Point Fallacy
- FP Add, subtract associative: FALSE!
 - \(x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, \) and \(z = 1.0 \)
 - \(x + (y + z) = -1.5 \times 10^{38} + (1.5 \times 10^{38} + 1.0) = -1.5 \times 10^{38} + 1.5 \times 10^{38} = 0.0 \)
 - \((x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0 = (0.0) + 1.0 = 1.0 \)
- Therefore, Floating Point add, subtract are not associative!
- Why? FP result approximates real result!
- This example: \(1.5 \times 10^{38} \) is so much larger than 1.0 that \(1.5 \times 10^{38} + 1.0 \) in floating point representation is still \(1.5 \times 10^{38} \)

Casting floats to ints and vice versa

\(\text{int} \) -> \(\text{float} \) -> \(\text{int} \)
- Coerces and converts it to the nearest integer
- affected by rounding modes
 - \(yi = \text{(int)}(3.14159 \times f); \)

\(\text{float} \) -> \(\text{int} \) -> \(\text{float} \)
- Converts integer to nearest floating point
 - \(yf = f + \text{(float)}i; \)
- Will not always work
- Large values of integers don’t have exact floating point representations
- Similarly, we may round to the wrong value

Administrivia
- Need to catchup with Homework
- Reading assignment: Reading 4.8
For branches, we assumed that we won’t want to branch too far, so we can specify change in PC.

For general jumps (\(j \) and \(jal \)), we may jump to anywhere in memory.

Ideally, we could specify a 32-bit memory address to jump to.

Unfortunately, we can’t fit both a 6-bit opcode and a 32-bit address into a single 32-bit word, so we compromise.

Define “fields” of the following number of bits each:

| 6 bits | 26 bits |

As usual, each field has a name:

- opcode
- target address

Key Concepts

- Keep opcode field identical to R-format and I-format for consistency.
- Combine all other fields to make room for target address.

For now, we can specify 26 bits of the 32-bit bit address.

Optimization:

- Note that, just like with branches, jumps will only jump to word aligned addresses (since all instructions are one word long), so last two bits are always 00 (in binary).
- So let’s just take this for granted and not even specify them.
- \(\Rightarrow \) 26 bits supplies a 28-bit byte address

For now, we can specify 28 bits of the 32-bit address.

Where do we get the other 4 bits?

- By definition, take the 4 highest order bits from the PC.
- Technically, this means that we cannot jump to anywhere in memory, but it’s adequate 99.9999...% of the time, since programs rarely that long (> 2^28 or 256 MB)
- If we absolutely need to specify a 32-bit address, we can always put it in a register and use the \(jr \) instruction.

Summary:

\[
\text{New PC} = \text{PC}[31..28] \ || \text{target address (26 bits)} \ || \ 00
\]

Note: II means concatenation 4 bits || 26 bits || 2 bits = 32-bit address

Understand where each part came from!
Decoding Example (1/6)

° Here are six machine language instructions in hex:

00001025
0005402A
11000003
08410202
20A5FFFF
08100001

° Let the first instruction be at address $4,194,304_{10}$ (0x00400000).

° Next step: convert to binary

Decoding Example (2/6)

° Here are the six machine language instructions in binary:

00000000000000000001000000100101
000000000000010100000000101010
0001000100000000000000000000011
0000000001001000100000000100000
00100000010100011111111111111111
00010000000100000000000000000001

° Next step: separation of fields & convert each field to decimal

- For all instructions, first 6 bits is opcode, so can easily determine format/instruction

Decoding Example (3/6)

° Decimal representation, in fields:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>J</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>+3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,048,577</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

° Next step: translate to MIPS instructions

Decoding Example (4/6)

° MIPS Assembly (Part 1):

```
0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001
```

° Next step: translate to more meaningful instructions (fix the branch/jump and add labels)

- Remember: jump address add 00 to end

Decoding Example (5/6)

° MIPS Assembly (Part 2):

```
or $v0,$0,$0
Loop: slt $t0,$0,$a1
beq $t0,$0,Fin
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop
Fin:
```

° Next step: translate to C code (be creative!)

Decoding Example (6/6)

° C code:

```
or $v0,$0,$0
Loop: slt $t0,$0,$a1
beq $t0,$0,Fin
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop
Fin:
```

- Mapping: $v0: product
 $a0: mcand
 $a1: mplier

product = 0;
while (mplier > 0) {
 product += mcand;
 mplier -= 1;
}
Bitwise Operations (1/2)
- Up until now, we've done arithmetic (add, sub, addi) and memory access (lw and sw).
- All of these instructions view contents of register as a single quantity (such as a signed or unsigned integer).
- New Perspective: View contents of register as 32 bits rather than as a single 32-bit number.

Bitwise Operations (2/2)
- Since registers are composed of 32 bits, we may want to access individual bits rather than the whole.
- Introduce two new classes of instructions:
 - Logical Operators
 - Shift Instructions

Logical Operators (1/4)
- How many of you have taken Math 55?
- Two basic logical operators:
 - AND: outputs 1 only if both inputs are 1
 - OR: outputs 1 if at least one input is 1
- In general, can define them to accept >2 inputs, but in the case of MIPS assembly, both of these accept exactly 2 inputs and produce 1 output.
 - Again, rigid syntax, simpler hardware.

Logical Operators (2/4)
- Truth Table: standard table listing all possible combinations of inputs and resultant output for each.
- Truth Table for AND and OR:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>AND</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logical Operators (3/4)
- Logical Instruction Syntax:
 - 1 2,3,4
 - where
 - 1) operation name
 - 2) register that will receive value
 - 3) first operand (register)
 - 4) second operand (register) or immediate (numerical constant)

Logical Operators (4/4)
- Instruction Names:
 - \(\& \text{and}, \| \text{or} \): Both of these expect the third argument to be a register.
 - \(\& \text{andi}, \| \text{ori} \): Both of these expect the third argument to be an immediate.
- MIPS Logical Operators are all bitwise, meaning that bit 0 of the output is produced by the respective bit 0's of the inputs, bit 1 by the bit 1's, etc.
Shift Instructions (1/4)
° Move (shift) all the bits in a word to the left or right by a number of bits, filling the emptied bits with 0s.
 • Example: shift right by 8 bits
 0001 0010 0011 0100 0101 0110 0111 1000
 0000 0000 0001 0010 0011 0100 0101 0110
 • Example: shift left by 8 bits
 0011 0100 0101 0110 0111 1000 0000 0000

Shift Instructions (2/4)
° Shift Instruction Syntax:
 1. operation name
 2. register that will receive value
 3. first operand (register)
 4. second operand (register)

Shift Instructions (3/4)
° MIPS has three shift instructions:
 1. sll (shift left logical): shifts left and fills emptied bits with 0s
 2. srl (shift right logical): shifts right and fills emptied bits with 0s
 3. sra (shift right arithmetic): shifts right and fills emptied bits by sign extending

Shift Instructions (4/4)
° Example: shift right arith by 8 bits
 0001 0010 0011 0100 0101 0110 0111 1000
 1111 1111 1001 0010 0011 0100 0101 0110

Uses for Logical Operators (1/3)
° Note that anding a bit with 0 produces a 0 at the output while anding a bit with 1 produces the original bit.
° This can be used to create a mask.
 • Example:
 1011 0110 1010 0100 0011 1101 1001 1010
 Mask: 0000 0000 0000 0000 0000 1111 1111 1111
 • The result of anding these two is:
 0000 0000 0000 0000 0000 1101 1001 1010

Uses for Logical Operators (2/3)
° The second bitstring in the example is called a mask. It is used to isolate the rightmost 12 bits of the first bitstring by masking out the rest of the string (e.g. setting it to all 0s).
° Thus, the and operator can be used to set certain portions of a bitstring to 0s, while leaving the rest alone.
 • In particular, if the first bitstring in the above example were in $t0, then the following instruction would mask it:
 andi $t0,$t0,0xFFFF
Uses for Logical Operators (3/3)

- Similarly, note that oring a bit with 1 produces a 1 at the output while oring a bit with 0 produces the original bit.
- This can be used to force certain bits of a string to 1s.
 - For example, if $t0$ contains 0x12345678, then after this instruction:
    ```
    or   $t0,$t0, 0xFFFF
    ```
 - ... $t0$ contains 0x1234FFFF (e.g. the high-order 16 bits are untouched, while the low-order 16 bits are forced to 1s).

Uses for Shift Instructions (1/5)

- Suppose we want to isolate byte 0 (rightmost 8 bits) of a word in $t0$. Simply use:
  ```
  andi $t0,$t0,0xFF
  ```
- Suppose we want to isolate byte 1 (bit 15 to bit 8) of a word in $t0$. We can use:
  ```
  andi $t0,$t0,0xFF00
  ```
 but then we still need to shift to the right by 8 bits...

Uses for Shift Instructions (2/5)

- Instead, use:
  ```
  sll  $t0,$t0,16  
srl  $t0,$t0,24
  ```

Uses for Shift Instructions (3/5)

- In decimal:
 - Multiplying by 10 is same as shifting left by 1:
 - 714_{10} x 10_{10} = 7140_{10}
 - 56_{10} x 10_{10} = 560_{10}
 - Multiplying by 100 is same as shifting left by 2:
 - 714_{10} x 100_{10} = 71400_{10}
 - 56_{10} x 100_{10} = 5600_{10}
 - Multiplying by 10^n is same as shifting left by n

Uses for Shift Instructions (4/5)

- In binary:
 - Multiplying by 2 is same as shifting left by 1:
 - 1112 x 10_2 = 110_2
 - 1010_2 x 10_2 = 10100_2
 - Multiplying by 4 is same as shifting left by 2:
 - 1112 x 100_2 = 1100_2
 - 1010_2 x 100_2 = 101000_2
 - Multiplying by 2^n is same as shifting left by n

Uses for Shift Instructions (5/5)

- Since shifting is so much faster than multiplication (you can imagine how complicated multiplication is), a good compiler usually notices when C code multiplies by a power of 2 and compiles it to a shift instruction:
  ```
  a *= 8;  // (in C)
  ```
 would compile to:
  ```
  sll  $s0,$s0,3  // (in MIPS)
  ```
Things to Remember (1/3)

- **IEEE 754 Floating Point Standard**: Kahan pack as much in as could get away with
 - \(\pm\)infinity, Not-a-Number (Nan), Denorms
 - 4 rounding modes
- **Stored Program Concept**: Both data and actual code (instructions) are stored in the same memory.
- **Type is not associated with data**, bits have no meaning unless given in context

Things to Remember (2/3)

- **Machine Language Instruction**: 32 bits representing a single MIPS instruction

<table>
<thead>
<tr>
<th>R</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>opcode</td>
<td>rs</td>
<td>rt</td>
</tr>
<tr>
<td>opcode</td>
<td>rs</td>
<td>rd</td>
</tr>
<tr>
<td>opcode</td>
<td>shamt</td>
<td>funct</td>
</tr>
<tr>
<td>opcode</td>
<td>target address</td>
<td></td>
</tr>
</tbody>
</table>

- Instructions formats are kept as similar as possible.
- Branches and Jumps were optimized for greater branch distance and hence strange, so clear these up in your mind now.

Things to Remember (3/3)

- **New Instructions**:
 - and, andi, or, ori
 - sll, srl, sra