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Review: Reducing Misses

• 3 Cs: Compulsory, Capacity, Conflict Misses

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size

2. Reduce Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by HW Prefetching Instr, Data

6. Reducing Misses by SW Prefetching Data

7. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one 
parameter when evaluating performance

CPUtime = IC × CPI
Execution

+
Memory  accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time
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Reducing Miss Penalty Summary

• Five techniques
– Read priority over write on miss

– Subblock placement

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in 

between

– First attempts at L2 caches can make things worse, since 
increased worst case is worse

• Out-of-order CPU can hide L1 data cache miss (≈3–5 
clocks), but stall on L2 miss (≈40–100 clocks)?

CPUtime = IC × CPI
Execution

+
Memory  accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time
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Review: Improving Cache 
Performance

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache. 
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1. Fast Hit times 
via Small and Simple Caches

• Why Alpha 21164 has 8KB Instruction and 
8KB data cache + 96KB second level cache?

– Small data cache and clock rate

• Direct Mapped, on chip



DAP Spr.‘98 ©UCB 6

2. Fast hits by Avoiding Address 
Translation

• Send virtual address to cache? Called Virtually Addressed 
Cache or just Virtual Cache vs.  Physical Cache

– Every time process is switched logically must flush the cache; 
otherwise get false hits

» Cost is time to flush + “compulsory” misses from empty cache

– Dealing with aliases (sometimes called synonyms); 
Two different virtual addresses map  to same physical address

– I/O must interact with cache, so need virtual address

• Solution to aliases
– HW guarantees that every cache block has unique physical address

– SW guarantee: lower n bits must have same address; 
as long as covers index field & direct mapped, they must be unique;
called page coloring

• Solution to cache flush
– Add process identifier tag that identifies process as well as address 

within process: can’t get a hit if wrong process
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Virtually Addressed Caches
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2. Fast Cache Hits by Avoiding 
Translation: Process ID impact

• Black is uniprocess

• Light Gray is multiprocess 
when flush cache

• Dark Gray is multiprocess 
when use Process ID tag

• Y axis: Miss Rates up to 20%

• X axis: Cache size from 2 KB 
to 1024 KB
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2. Fast Cache Hits by Avoiding 
Translation Avoiding Translation: Index 

with Physical Portion of Address

• If index is physical part of address, can start 
tag access in parallel with translation so that 
can compare to physical tag

• Limits cache to page size: what if want bigger 
caches and uses same trick?

– Higher associativity moves barrier to right

– Page coloring

Page Address Page Offset

Address Tag Index Block Offset
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• Pipeline Tag Check and Update Cache as separate stages; 
current write tag check & previous write cache update 

• Only STORES in the pipeline; empty during a miss

Store r2, (r1) Check r1
Add --
Sub --
Store r4, (r3) M[r1]<-r2&

check r3

• In shade is “Delayed Write Buffer”; must be checked on 
reads; either complete write or read from buffer

3. Fast Hit Times Via Pipelined Writes
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4. Fast Writes on Misses Via 
Small Subblocks

• If most writes are 1 word, subblock size is 1 word,  & write 
through then always write subblock & tag immediately 

– Tag match and valid bit already set: Writing the block was proper, 
& nothing lost by setting valid bit on again.

– Tag match and valid bit not set: The tag match means that this is 
the proper block; writing the data into the subblock makes it 
appropriate to turn the valid bit on.

– Tag mismatch: This is a miss and will modify the data portion of 
the block. Since write-through cache, no harm was done; memory 
still has an up-to-date copy of the old value. Only the tag to the 
address of the write and the valid bits of the other subblock need 
be changed because the valid bit for this subblock has already 
been set

• Doesn’t work with write back due to last case
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Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2

Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1
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What is the Impact of What 
You’ve Learned About Caches?

• 1960-1985: Speed 
= ƒ(no. operations)

• 1990

– Pipelined 
Execution & 
Fast Clock Rate

– Out-of-Order 
execution

– Superscalar 
Instruction Issue

• 1998: Speed = 
ƒ(non-cached memory accesses)

• What does this mean for

– Compilers?,Operating Systems?, Algorithms? 
Data Structures?
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Main Memory Background
• Performance of Main Memory: 

– Latency: Cache Miss Penalty
» Access Time: time between request and word arrives

» Cycle Time: time between requests

– Bandwidth: I/O & Large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)

– Addresses divided into 2 halves (Memory as a 2D matrix):
» RAS or Row Access Strobe

» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor/bit, area is 10X)

– Address not divided: Full addreess

• Size: DRAM/SRAM ≈ 4-8, 
Cost/Cycle time: SRAM/DRAM ≈ 8-16
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Main Memory Deep Background

• “Out-of-Core”, “In-Core,” “Core Dump”?

• “Core memory”?

• Non-volatile, magnetic

• Lost to 4 Kbit DRAM (today using 64Kbit DRAM)

• Access time 750 ns, cycle time 1500-3000 ns
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CS 252 Administrivia
• Upcoming events in CS 252

• Wed March 4 Quiz 1 (5:30PM – 8:30PM, 306 Soda)

Pizza at LaVal’s 8:30 – 10PM

• Friday March 6, guest lecture on Reconfigurable 
Computing by John Wawrzynek, part of BRASS 
project at Berkeley

– Part of CS 252 is expose to architecture research 
projects underway at Berkeley

• Email URL of initial project home page to TA 
following Monday

– can share some knowledge gained with other projects

– allow faculty, TA to make suggestoins

– final “report” will be a URL

– Limit access to cs.berkeley for now



DAP Spr.‘98 ©UCB 17

DRAM logical organization 
(4 Mbit)

• Square root of bits per RAS/CAS

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)

A0…A10

…

11 D

Q

Word Line
Storage 
Cell
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DRAM physical organization 
(4 Mbit)

Block 
Row Dec.

9 : 512

Row
Block

Row Dec.
9 : 512

Column Address

… Block
Row Dec.
9 : 512

Block
Row Dec.

9 : 512

…

Block 0 Block 3…

I/O
I/O

I/O
I/O

I/O
I/O

I/O
I/O

D

Q

Address

2

8 I/Os

8 I/Os
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4 Key DRAM Timing Parameters

• tRAC: minimum time from RAS line falling to 
the valid data output. 

– Quoted as the speed of a DRAM when buy

– A typical 4Mb DRAM tRAC  = 60 ns

– Speed of DRAM since on purchase sheet?

• tRC: minimum time from the start of one row 
access to the start of the next. 

– tRC  = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

• tCAC: minimum time from CAS line falling to 
valid data output. 

– 15 ns for a 4Mbit DRAM with a tRAC of 60 ns

• tPC: minimum time from the start of one 
column access to the start of the next. 

– 35 ns for a 4Mbit DRAM with a tRAC of 60 ns
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DRAM Performance

• A 60 ns (tRAC) DRAM can 
– perform a row access only every 110 ns (tRC) 

– perform column access (tCAC) in 15 ns, but time 
between column accesses is at least 35 ns (tPC). 

» In practice, external address delays and turning 
around buses make it 40 to 50 ns

• These times do not include the time to drive 
the addresses off the microprocessor nor the 
memory controller overhead!
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DRAM History
• DRAMs: capacity +60%/yr, cost –30%/yr

– 2.5X cells/area, 1.5X die size in ≈3 years

• ‘98 DRAM fab line costs $2B
– DRAM only: density, leakage v. speed

• Rely on increasing no. of computers & memory 
per computer (60% market)

– SIMM or DIMM is replaceable unit 
=> computers use any generation DRAM

• Commodity, second source industry 
=> high volume, low profit, conservative

– Little organization innovation in 20 years

• Order of importance: 1) Cost/bit 2) Capacity
– First RAMBUS: 10X BW, +30% cost => little impact
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DRAM Future: 1 Gbit DRAM 
(ISSCC ‘96; production ‘02?)

 Mitsubishi  Samsung

• Blocks 512 x 2 Mbit  1024 x 1 Mbit

• Clock 200 MHz 250 MHz

• Data Pins 64 16

• Die Size 24 x 24 mm 31 x 21 mm
– Sizes will be much smaller in production

• Metal Layers 3 4

• Technology 0.15 micron  0.16 micron

• Wish could do this for Microprocessors!
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Main Memory Performance

• Simple: 
– CPU, Cache, Bus, 

Memory same width 
(32 or 64 bits)

• Wide: 
– CPU/Mux 1 word; Mux/

Cache, Bus, Memory N 
words (Alpha: 64 bits & 
256 bits; UtraSPARC 512)

• Interleaved: 
– CPU, Cache, Bus 1 word: 

Memory N Modules
(4 Modules); example is 
word interleaved
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Main Memory Performance
• Timing model (word size is 32 bits)

– 1 to send address, 

– 6 access time, 1 to send data

– Cache Block is 4 words
• Simple M.P.        = 4 x (1+6+1) = 32
• Wide M.P.            = 1 + 6 + 1       = 8
• Interleaved M.P. = 1 + 6 + 4x1 = 11



DAP Spr.‘98 ©UCB 25

Independent Memory Banks

• Memory banks for independent accesses 
vs. faster sequential accesses

– Multiprocessor

– I/O

– CPU with Hit under n Misses, Non-blocking Cache

• Superbank: all memory active on one block transfer 
(or Bank)

• Bank: portion within a superbank that is word 
interleaved (or Subbank)

Superbank Bank

…



DAP Spr.‘98 ©UCB 26

Independent Memory Banks

• How many banks?
number banks ≥ number clocks to access word in bank

– For sequential accesses, otherwise will return to original 
bank before it has next word ready

– (like in vector case)

• Increasing DRAM => fewer chips => harder to have 
banks
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DRAMs per PC over Time
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Avoiding Bank Conflicts

• Lots of banks
int x[256][512];

for (j = 0; j < 512; j = j+1)
for (i = 0; i < 256; i = i+1)

x[i][j] = 2 * x[i][j];

• Even with 128 banks, since 512 is multiple of 128, 
conflict on word accesses

• SW: loop interchange or declaring array not power of 2 
(“array padding”)

• HW: Prime number of banks
– bank number =  address mod number of banks

– address within bank = address / number of words in bank

– modulo & divide per memory access with prime no. banks?

– address within bank = address mod number words in bank

– bank number? easy if 2N words per bank
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• Chinese Remainder Theorem
As long as two sets of integers ai and bi follow these rules

 and that ai and aj are co-prime if i ≠ j, then the integer x has only one 
solution (unambiguous mapping):

– bank number = b0, number of banks = a0 (= 3 in example)

– address within bank = b1, number of words in bank = a1
 (= 8 in example)

– N word address 0 to N-1, prime no. banks, words power of 2

bi = x modai,0 ≤ bi < ai, 0 ≤ x < a0 × a1 × a2×…

Fast Bank Number

 Seq. Interleaved           Modulo Interleaved
Bank Number: 0 1 2 0 1 2

Address        
within Bank: 0 0 1 2 0 16 8

1 3 4 5 9 1 17
2 6 7 8 18 10 2
3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23
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Fast Memory Systems: DRAM specific
• Multiple CAS accesses: several names (page mode)

– Extended Data Out (EDO): 30% faster in page mode

• New DRAMs to address gap; 
what will they cost, will they survive?

– RAMBUS: startup company; reinvent DRAM interface
» Each Chip a module vs. slice of memory

» Short bus between CPU and chips

» Does own refresh

» Variable amount of data returned

» 1 byte / 2 ns (500 MB/s per chip)

– Synchronous DRAM: 2 banks on chip, a clock signal to 
DRAM, transfer synchronous to system clock (66 - 150 MHz)

– Intel claims RAMBUS Direct (16 b wide) is future PC memory

• Niche memory or main memory?
– e.g., Video RAM for frame buffers, DRAM + fast serial output
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DRAM Latency >> BW

• More App Bandwidth => 
Cache misses 
=> DRAM RAS/CAS

• Application BW => 
Lower DRAM Latency

• RAMBUS, Synch DRAM 
increase BW but higher 
latency

• EDO DRAM < 5% in PC
D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

Bus

I$ D$

Proc

L2$
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Potential 
DRAM Crossroads?

• After 20 years of 4X every 3 years, running 
into wall? (64Mb - 1 Gb)

• How can keep $1B fab lines full if buy fewer 
DRAMs per computer?

• Cost/bit –30%/yr if stop 4X/3 yr?

• What will happen to $40B/yr DRAM industry?
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Main Memory Summary

• Wider Memory

• Interleaved Memory: for sequential or independent 
accesses

• Avoiding bank conflicts: SW & HW

• DRAM specific optimizations: page mode & 
Specialty DRAM

• DRAM future less rosy?
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 Cache Cross Cutting Issues

• Superscalar CPU & Number Cache Ports must 
match: number memory accesses/cycle?

• Speculative Execution and non-faulting 
option on memory/TLB

• Parallel Execution vs. Cache locality
– Want far separation to find independent operations 

vs. want reuse of data accesses to avoid misses

• I/O and consistency of data between cache 
and memory

– Caches => multiple copies of data

– Consistency by HW or by SW?

– Where connect I/O to computer?
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Alpha 21064
• Separate Instr & Data 

TLB & Caches

• TLBs fully associative

• TLB updates in SW
(“Priv Arch Libr”)

• Caches 8KB direct 
mapped, write thru

• Critical 8 bytes first

• Prefetch instr. stream 
buffer

• 2 MB L2 cache, direct 
mapped, WB (off-chip)

• 256 bit path to main 
memory,  4 x 64-bit 
modules

• Victim Buffer: to give 
read priority over write

• 4 entry write buffer 
between D$ & L2$

Stream
Buffer

Write
Buffer

Victim Buffer

Instr Data
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Miss Rates of SPEC92
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I$ miss = 2%
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• Instruction stall: branch mispredict (green);

• Data cache (blue); Instruction cache (yellow); L2$ (pink) 
Other: compute + reg conflicts, structural conflicts
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Pitfall: Predicting Cache Performance 
from Different Prog. (ISA, compiler, ...)

• 4KB Data cache miss 
rate 8%,12%, or 28%?

• 1KB Instr cache miss 
rate 0%,3%,or 10%?

• Alpha vs. MIPS
 for 8KB Data $:
17% vs. 10%

• Why 2X Alpha v. 
MIPS?
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Instructions Executed (billions)

Cummlati
ve

Average
Memory
Access
Time

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 101112

Pitfall: Simulating Too Small an 
Address Trace

I$    = 4 KB, B=16B
D$  = 4 KB, B=16B
L2   = 512 KB, B=128B
MP = 12, 200
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Main Memory Summary

• Wider Memory

• Interleaved Memory: for sequential or independent 
accesses

• Avoiding bank conflicts: SW & HW

• DRAM specific optimizations: page mode & 
Specialty DRAM

• DRAM future less rosy?
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Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2

Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1
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Practical Memory Hierarchy

• Issue is NOT inventing new mechanisms

• Issue is taste in selecting between many 
alternatives in putting together a memory 
hierarchy that fit well together

– e.g., L1 Data cache write through, L2 Write back

– e.g., L1 small for fast hit time/clock cycle, 

– e.g., L2 big enough to avoid going to DRAM?


