
DAP Spr.‘98 ©UCB 1

Lecture 10:
 Memory Hierarchy—3 Cs and 7 Ways to

Reduce Misses

Professor David A. Patterson

Computer Science 252

Spring 1998

DAP Spr.‘98 ©UCB 2

Review: DSP vs. General Purpose MPU
• The “MIPS/MFLOPS” of DSPs is speed of Multiply-

Accumulate (MAC).
– DSPs are judged if keep the multipliers busy 100%

• The "SPEC" of DSPs is 4 algorithms:
– Inifinite Impule Response (IIR) filters

– Finite Impule Response (FIR) filters

– FFT, and convolvers

• In DSPs, algorithms are king!
– Binary compatability not an issue

• Software is not (yet) king in DSPs.
– People still write in assembly language

– Libraries very important so don’t have to write 4 algorithms

– Some call anything they write in assembly language “library”

DAP Spr.‘98 ©UCB 3

Review: How are
DSP Instruction Sets Different?

• Zero overhead loops and repeat instructions

• Multiple memory ports

• High Speed Multiple-Accumulate

• Specialized memory addressing
– Autoincrement

– Modular arithmetic for circular buffers (delay lines)

– Bit reversal (FFT)

• Narrow data widths, special overflow, rounding

DAP Spr.‘98 ©UCB 4

Review: Who Cares About the
Memory Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“Moore’s Law”

• Processor Only Thus Far in Course:
– CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

DAP Spr.‘98 ©UCB 5

Processor-Memory
Performance Gap “Tax”

 Processor % Area %Transistors

(≈cost) (≈power)

• Alpha 21164 37% 77%

• StrongArm SA110 61% 94%

• Pentium Pro 64% 88%
– 2 dies per package: Proc/I$/D$ + L2$

• Caches have no inherent value,
only try to close performance gap

DAP Spr.‘98 ©UCB 6

 Generations of Microprocessors
• Time of a full cache miss in instructions executed:

1st Alpha (7000): 340 ns/5.0 ns = 68 clks x 2 or 136

2nd Alpha (8400): 266 ns/3.3 ns = 80 clks x 4 or 320

3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 or 648

• 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ ≈5X

DAP Spr.‘98 ©UCB 7

Review: Four Questions for
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level?
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
 (Block identification)

– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU

• Q4: What happens on a write?
(Write strategy)

– Write Back or Write Through (with Write Buffer)

DAP Spr.‘98 ©UCB 8

Review: Cache Performance

CPU time = (CPU execution clock cycles +
Memory stall clock cycles) x clock cycle time

Memory stall clock cycles =

(Reads x Read miss rate x Read miss penalty +
Writes x Write miss rate x Write miss penalty)

Memory stall clock cycles =
Memory accesses x Miss rate x Miss penalty

DAP Spr.‘98 ©UCB 9

Review: Cache Performance

CPUtime = Instruction Count x (CPIexecution +
Mem accesses per instruction x Miss rate x
Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per
instruction x Miss penalty) x Clock cycle time

DAP Spr.‘98 ©UCB 10

Review: Improving Cache
Performance

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

DAP Spr.‘98 ©UCB 11

Reducing Misses
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the
cache, so the block must be brought into the cache. Also
called cold start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur
due to blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory &
capacity misses) will occur because a block can be
discarded and later retrieved if too many blocks map to its
set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

DAP Spr.‘98 ©UCB 12

Cache Size (KB)

M
is

s
R
at

e
p
er

 T
yp

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate
(SPEC92)

Conflict

Compulsory vanishingly
small

DAP Spr.‘98 ©UCB 13

Cache Size (KB)

M
is

s
R
at

e
p
er

 T
yp

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

2:1 Cache Rule

Conflict

 miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

DAP Spr.‘98 ©UCB 14

3Cs Relative Miss Rate

Cache Size (KB)

M
is

s
R
at

e
p
er

 T
yp

e

0%

20%

40%

60%

80%

100%
1 2 4 8

1
6

3
2

6
4

1
2
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

DAP Spr.‘98 ©UCB 15

How Can Reduce Misses?

• 3 Cs: Compulsory, Capacity, Conflict

• In all cases, assume total cache size not changed:

• What happens if:

1) Change Block Size:
Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Compiler:
Which of 3Cs is obviously affected?

DAP Spr.‘98 ©UCB 16

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2
8

2
5
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger
Block Size

DAP Spr.‘98 ©UCB 17

2. Reduce Misses via Higher
Associativity

• 2:1 Cache Rule:
– Miss Rate DM cache size N ≈ Miss Rate 2-way cache

size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?

– Hill [1988] suggested hit time for 2-way vs. 1-way
external cache +10%,
internal + 2%

DAP Spr.‘98 ©UCB 18

Example: Avg. Memory Access
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way,
1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity

 (KB) 1-way 2-way 4-way 8-way

 1 2.33 2.15 2.07 2.01

 2 1.98 1.86 1.76 1.68

 4 1.72 1.67 1.61 1.53

 8 1.46 1.48 1.47 1.43

 16 1.29 1.32 1.32 1.32

 32 1.20 1.24 1.25 1.27

 64 1.14 1.20 1.21 1.23

 128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

DAP Spr.‘98 ©UCB 19

CS 252 Administrivia
• Upcoming events in CS 252

25-Feb Memory Hierachy: Caches; Meeting signup

25-Feb Project Survey due (Wed)

26-Feb HW #2 due by 6:00 PM (Thu)

6 minute Proj. Meetings 1:00-2:00, 4:30–6:00

27-Feb Memory Hierarchy Example;
4-Mar Quiz 1 (5:30PM – 8:30PM, 306 Soda) (Wed)

Pizza at LaVal’s 8:30 – 10PM

• Part of CS 252 is expose to architecture research
projects underway at Berkeley

– Friday March 6, guest lecture on Reconfigurable
Computing, part of BRASS project at Berkeley

DAP Spr.‘98 ©UCB 20

3. Reducing Misses via a
“Victim Cache”

• How to combine fast hit
time of direct mapped
yet still avoid conflict
misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry
victim cache removed
20% to 95% of conflicts
for a 4 KB direct mapped
data cache

• Used in Alpha, HP
machines

DAP Spr.‘98 ©UCB 21

4. Reducing Misses via
“Pseudo-Associativity”

• How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see
if there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)

– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

DAP Spr.‘98 ©UCB 22

5. Reducing Misses by Hardware
Prefetching of Instructions & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss

– Extra block placed in “stream buffer”

– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from

4KB cache; 4 streams got 43%

– Palacharla & Kessler [1994] for scientific programs for
8 streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty

DAP Spr.‘98 ©UCB 23

6. Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)

– Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

– Special prefetching instructions cannot cause faults;
a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?

– Higher superscalar reduces difficulty of issue bandwidth

DAP Spr.‘98 ©UCB 24

7. Reducing Misses by
Compiler Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of

compound elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in
order stored in memory

– Loop Fusion: Combine 2 independent loops that have same
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of
data repeatedly vs. going down whole columns or rows

DAP Spr.‘98 ©UCB 25

Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

DAP Spr.‘98 ©UCB 26

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through
memory every 100 words; improved spatial
locality

DAP Spr.‘98 ©UCB 27

Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;
improve spatial locality

DAP Spr.‘98 ©UCB 28

Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]

– Read N elements of 1 row of y[] repeatedly

– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 3 NxNx4 => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits

DAP Spr.‘98 ©UCB 29

Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

• B called Blocking Factor

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too?

DAP Spr.‘98 ©UCB 30

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the

misses vs. 48 despite both fit in cache

Blocking Factor

M
is

s
R
at

e

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

DAP Spr.‘98 ©UCB 31

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

DAP Spr.‘98 ©UCB 32

Summary

• 3 Cs: Compulsory, Capacity, Conflict Misses

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size

2. Reduce Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by HW Prefetching Instr, Data

6. Reducing Misses by SW Prefetching Data

7. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one
parameter when evaluating performance

CPUtime = IC × CPI
Execution

+
Memory accesses

Instruction
× Miss rate × Miss penalty

 × Clock cycle time

DAP Spr.‘98 ©UCB 33

Review: Improving Cache
Performance

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

DAP Spr.‘98 ©UCB 34

1. Reducing Miss Penalty:
Read Priority over Write on Miss

• Write through with write buffers offer RAW conflicts
with main memory reads on cache misses

• If simply wait for write buffer to empty, might
increase read miss penalty (old MIPS 1000 by 50%)

• Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write Back?
– Read miss replacing dirty block

– Normal: Write dirty block to memory, and then do the read

– Instead copy the dirty block to a write buffer, then do the
read, and then do the write

– CPU stall less since restarts as soon as do read

DAP Spr.‘98 ©UCB 35

2. Reduce Miss Penalty:
Subblock Placement

• Don’t have to load full block on a miss

• Have valid bits per subblock to indicate valid

• (Originally invented to reduce tag storage)

Valid Bits Subblocks

DAP Spr.‘98 ©UCB 36

3. Reduce Miss Penalty:
Early Restart and Critical Word First

• Don’t wait for full block to be loaded before restarting
CPU

– Early restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue
execution

– Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives; let the
CPU continue execution while filling the rest of the words in
the block. Also called wrapped fetch and requested word first

• Generally useful only in large blocks,

• Spatial locality a problem; tend to want next
sequential word, so not clear if benefit by early restart

block

DAP Spr.‘98 ©UCB 37

4. Reduce Miss Penalty: Non-blocking
Caches to reduce stalls on misses

• Non-blocking cache or lockup-free cache allow data
cache to continue to supply cache hits during a miss

– requires out-of-order executuion CPU

• “hit under miss” reduces the effective miss penalty
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may
further lower the effective miss penalty by overlapping
multiple misses

– Significantly increases the complexity of the cache controller
as there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)

– Penium Pro allows 4 outstanding memory misses

DAP Spr.‘98 ©UCB 38

Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

A
vg

. M
em

. A
cc

es
s

Ti
m

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
d
ljs

p
2

ea
r

fp
pp

p

to
m

ca
tv

sw
m

2
5

6

do
du

c

su
2

co
r

w
av

e5

m
d
ljd

p
2

hy
dr

o2
d

al
vi

n
n

na
sa

7

sp
ic

e2
g6 or
a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

DAP Spr.‘98 ©UCB 39

5th Miss Penalty Reduction:
Second Level Cache

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 +
Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total

number of memory accesses to this cache (Miss rateL2)

– Global miss rate—misses in this cache divided by the total
number of memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

– Global Miss Rate is what matters

DAP Spr.‘98 ©UCB 40

Comparing Local and Global
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to
single level cache rate
provided L2 >> L1

• Don’t use local miss rate

• L2 not tied to CPU clock
cycle!

• Cost & A.M.A.T.

• Generally Fast Hit Times
and fewer misses

• Since hits are few, target
miss reduction

Linear

Log

Cache Size

Cache Size

DAP Spr.‘98 ©UCB 41

Reducing Misses:
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size

2. Reduce Conflict Misses via Higher Associativity

3. Reducing Conflict Misses via Victim Cache

4. Reducing Conflict Misses via Pseudo-Associativity

5. Reducing Misses by HW Prefetching Instr, Data

6. Reducing Misses by SW Prefetching Data

7. Reducing Capacity/Conf. Misses by Compiler
Optimizations

DAP Spr.‘98 ©UCB 42

Relative CPU Time

Block Size

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory

DAP Spr.‘98 ©UCB 43

Reducing Miss Penalty Summary

• Five techniques
– Read priority over write on miss

– Subblock placement

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple

levels in between

– First attempts at L2 caches can make things worse,
since increased worst case is worse

CPUtime = IC × CPI
Execution

+
Memory accesses

Instruction
× Miss rate × Miss penalty

 × Clock cycle time

DAP Spr.‘98 ©UCB 44

What is the Impact of What
You’ve Learned About Caches?

• 1960-1985: Speed
= ƒ(no. operations)

• 1990

– Pipelined
Execution &
Fast Clock Rate

– Out-of-Order
execution

– Superscalar
Instruction Issue

• 1998: Speed =
ƒ(non-cached memory accesses)

• Superscalar, Out-of-Order machines hide L1 data cache miss
(≈5 clocks) but not L2 cache miss (≈50 clocks)?

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

DAP Spr.‘98 ©UCB 45

Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2

m
is

s
ra

te
m

is
s

p
en

al
ty

