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Review: DSP vs. General Purpose MPU
• The “MIPS/MFLOPS” of DSPs is speed of Multiply-

Accumulate (MAC). 
– DSPs are judged if keep the multipliers busy 100%

• The "SPEC" of DSPs is 4 algorithms: 
– Inifinite Impule Response (IIR)  filters

– Finite Impule Response (FIR) filters

– FFT, and convolvers

• In DSPs, algorithms are king!
– Binary compatability not an issue

• Software is not (yet) king in DSPs. 
– People still write in assembly language

– Libraries very important so don’t have to write 4 algorithms

– Some call anything they write in assembly language “library”



DAP Spr.‘98 ©UCB 3

Review: How are 
DSP Instruction Sets Different?

• Zero overhead loops and repeat instructions 

• Multiple memory ports

• High Speed Multiple-Accumulate

• Specialized memory addressing 
– Autoincrement

– Modular arithmetic for circular buffers (delay lines) 

– Bit reversal (FFT) 

• Narrow data widths, special overflow, rounding
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Review: Who Cares About the 
Memory Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.
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“Moore’s Law”

• Processor Only Thus Far in Course:
– CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)
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Processor-Memory 
Performance Gap “Tax”

    Processor % Area %Transistors 

(≈cost) (≈power)

• Alpha 21164 37% 77%

• StrongArm SA110 61% 94%

• Pentium Pro 64% 88%
– 2 dies per package: Proc/I$/D$ + L2$

• Caches have no inherent value, 
only try to close performance gap
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 Generations of Microprocessors 
• Time of a full cache miss in instructions executed:

1st  Alpha (7000): 340 ns/5.0 ns =  68 clks x 2 or 136

2nd Alpha (8400): 266 ns/3.3 ns =  80 clks x 4 or 320

3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 or 648

• 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ ≈5X
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Review: Four Questions for 
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level? 
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
 (Block identification)

– Tag/Block

• Q3: Which block should be replaced on a miss? 
(Block replacement)

– Random, LRU

• Q4: What happens on a write? 
(Write strategy)

– Write Back or Write Through (with Write Buffer)
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Review: Cache Performance

CPU time = (CPU execution clock cycles + 
Memory stall clock cycles) x clock cycle time

Memory stall clock cycles = 

(Reads x Read miss rate x Read miss penalty + 
Writes x Write miss rate x Write miss penalty)

Memory stall clock cycles = 
Memory accesses x Miss rate x Miss penalty
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Review: Cache Performance

CPUtime = Instruction Count x (CPIexecution + 
Mem accesses per instruction x Miss rate x 
Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per 
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per 
instruction x Miss penalty) x Clock cycle time
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Review: Improving Cache 
Performance

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache. 
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Reducing Misses
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the 
cache, so the block must be brought into the cache. Also 
called cold start misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur 
due to blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory & 
capacity misses) will occur because a block can be 
discarded and later retrieved if too many blocks map to its 
set. Also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)
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Cache Size (KB)   
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3Cs Relative Miss Rate
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How Can Reduce Misses?

• 3 Cs: Compulsory, Capacity, Conflict

• In all cases, assume total cache size not changed:

• What happens if:

1) Change Block Size: 
Which of 3Cs is obviously affected?

2) Change Associativity: 
Which of 3Cs is obviously affected?

3) Change Compiler: 
Which of 3Cs is obviously affected?
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Block Size (bytes)   
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2. Reduce Misses via Higher 
Associativity

• 2:1 Cache Rule: 
– Miss Rate DM cache size N ≈ Miss Rate 2-way cache 

size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?

– Hill [1988] suggested hit time for 2-way vs. 1-way 
external cache +10%, 
internal + 2% 
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Example: Avg. Memory Access 
Time vs. Miss Rate

• Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way, 
1.14 for 8-way vs. CCT direct mapped

Cache Size Associativity

       (KB) 1-way 2-way 4-way 8-way

 1 2.33 2.15 2.07 2.01

 2 1.98 1.86 1.76 1.68

 4 1.72 1.67 1.61 1.53

 8 1.46 1.48 1.47 1.43

 16 1.29 1.32 1.32 1.32

 32 1.20 1.24 1.25 1.27

 64 1.14 1.20 1.21 1.23

 128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)
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CS 252 Administrivia
• Upcoming events in CS 252

25-Feb Memory Hierachy: Caches; Meeting signup

25-Feb Project Survey due (Wed)

26-Feb HW #2 due by 6:00 PM (Thu)

6 minute Proj. Meetings 1:00-2:00, 4:30–6:00

27-Feb Memory Hierarchy Example; 
4-Mar Quiz 1 (5:30PM – 8:30PM, 306 Soda) (Wed)

Pizza at LaVal’s 8:30 – 10PM

• Part of CS 252 is expose to architecture research 
projects underway at Berkeley

– Friday March 6, guest lecture on Reconfigurable 
Computing, part of BRASS project at Berkeley
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3. Reducing Misses via a
“Victim Cache”

• How to combine fast hit 
time of direct mapped 
yet still avoid conflict 
misses? 

• Add buffer to place data 
discarded from cache

• Jouppi [1990]: 4-entry 
victim cache removed 
20% to 95% of conflicts 
for a 4 KB direct mapped 
data cache

• Used in Alpha, HP 
machines
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4. Reducing Misses via 
“Pseudo-Associativity”

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 

• Divide cache: on a miss, check other half of cache to see 
if there, if so have a pseudo-hit  (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to  processor (L2)

– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time
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5. Reducing Misses by Hardware 
Prefetching of Instructions & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss

– Extra block placed in “stream buffer”

– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 

4KB cache; 4 streams got 43%

– Palacharla & Kessler [1994] for scientific programs for 
8 streams got 50% to 70% of misses from 
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory 
bandwidth that can be used without penalty
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6. Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)

– Cache Prefetch: load into cache 
(MIPS IV, PowerPC, SPARC v. 9)

– Special prefetching instructions cannot cause faults;
a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?

– Higher superscalar reduces difficulty of issue bandwidth
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7. Reducing Misses by 
Compiler Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses

– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of 

compound elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in 
order stored in memory

– Loop Fusion: Combine 2 independent loops that have same 
looping and some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of 
data repeatedly vs. going down whole columns or rows
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Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality
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Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through 
memory every 100 words; improved spatial 
locality
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Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; 
improve spatial locality
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Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

• Two Inner Loops:
– Read all NxN elements of z[]

– Read N elements of 1 row of y[] repeatedly

– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 3 NxNx4 => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits
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Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

• B called Blocking Factor

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too? 
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Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  

misses vs. 48 despite both fit in cache
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Performance Improvement           

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to 
Reduce Cache Misses (by hand)
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Summary

• 3 Cs: Compulsory, Capacity, Conflict Misses

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size

2. Reduce Misses via Higher Associativity

3. Reducing Misses via Victim Cache

4. Reducing Misses via Pseudo-Associativity

5. Reducing Misses by HW Prefetching Instr, Data

6. Reducing Misses by SW Prefetching Data

7. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one 
parameter when evaluating performance

CPUtime = IC × CPI
Execution

+
Memory  accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time
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Review: Improving Cache 
Performance

1. Reduce the miss rate, 

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache. 
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1. Reducing Miss Penalty: 
Read Priority over Write on Miss

• Write through with write buffers offer RAW conflicts 
with main memory reads on cache misses

• If simply wait for write buffer to empty, might 
increase read miss penalty (old MIPS 1000 by 50% )

• Check write buffer contents before read; 
if no conflicts, let the memory access continue

• Write Back?
– Read miss replacing dirty block

– Normal: Write dirty block to memory, and then do the read

– Instead copy the dirty block to a write buffer, then do the 
read, and then do the write

– CPU stall less since restarts as soon as do read
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2. Reduce Miss Penalty: 
Subblock Placement

• Don’t have to load full block on a miss

• Have valid bits per subblock to indicate valid

• (Originally invented to reduce tag storage)

Valid Bits Subblocks
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3. Reduce Miss Penalty: 
Early Restart and Critical Word First

• Don’t wait for full block to be loaded before restarting 
CPU

– Early restart—As soon as the requested word of the block 
arrives, send it to the CPU and let the CPU continue 
execution

– Critical Word First—Request the missed word first from 
memory and send it to the CPU as soon as it arrives; let the 
CPU continue execution while filling the rest of the words in 
the block. Also called wrapped fetch and requested word  first

• Generally useful only in large blocks, 

• Spatial locality a problem; tend to want next 
sequential word, so not clear if benefit by early restart

block
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4. Reduce Miss Penalty: Non-blocking 
Caches to reduce stalls on misses

• Non-blocking cache or  lockup-free cache allow data 
cache to continue to supply cache hits during a miss

– requires out-of-order executuion CPU 

• “hit under miss”  reduces the effective miss penalty 
by working during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss”  may 
further lower the effective miss penalty by overlapping 
multiple misses

– Significantly increases the complexity of the cache controller 
as there can be multiple outstanding memory accesses

– Requires muliple memory banks (otherwise cannot support)

– Penium Pro allows 4 outstanding memory misses
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Value of Hit Under Miss for SPEC

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19

• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss
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5th Miss Penalty Reduction: 
Second Level Cache

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 + 
Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total 

number of memory accesses to this cache (Miss rateL2)

– Global miss rate—misses in this cache divided by the total 
number of memory accesses generated by the CPU 
(Miss RateL1 x Miss RateL2) 

– Global Miss Rate is what matters
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Comparing Local and Global 
Miss Rates

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to 
single level cache rate 
provided L2 >> L1

• Don’t use local miss rate

• L2 not tied to CPU clock 
cycle!

• Cost & A.M.A.T.

• Generally Fast Hit Times 
and fewer misses

• Since hits are few, target 
miss reduction

Linear

Log

Cache Size

Cache Size
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Reducing Misses: 
Which apply to L2 Cache?

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size

2. Reduce Conflict Misses via Higher Associativity

3. Reducing Conflict Misses via Victim Cache

4. Reducing Conflict Misses via Pseudo-Associativity

5. Reducing Misses by HW Prefetching Instr, Data

6. Reducing Misses by SW Prefetching Data

7. Reducing Capacity/Conf. Misses by Compiler 
Optimizations
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Relative CPU Time   
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L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory
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Reducing Miss Penalty Summary

• Five techniques
– Read priority over write on miss

– Subblock placement

– Early Restart and Critical Word First on miss

– Non-blocking Caches (Hit under Miss, Miss under Miss)

– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple 

levels in between

– First attempts at L2 caches can make things worse, 
since increased worst case is worse

CPUtime = IC × CPI
Execution

+
Memory  accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time
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What is the Impact of What 
You’ve Learned About Caches?

• 1960-1985: Speed 
= ƒ(no. operations)

• 1990

– Pipelined 
Execution & 
Fast Clock Rate

– Out-of-Order 
execution

– Superscalar 
Instruction Issue

• 1998: Speed = 
ƒ(non-cached memory accesses)

• Superscalar, Out-of-Order machines hide L1 data cache miss 
(≈5 clocks) but not L2 cache miss (≈50 clocks)?
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Cache Optimization Summary

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0

Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
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