
DAP Spr.‘98 ©UCB 1

Lecture 8:
 Digital Signal Processors

Professor David A. Patterson

Computer Science 252

Spring 1998

DAP Spr.‘98 ©UCB 2

Vector Summary

• Vector is alternative model for exploiting ILP

• If code is vectorizable, then simpler hardware,
more energy efficient, and better real-time
model than Out-of-order machines

• Design issues include number of lanes,
number of functional units, number of vector
registers, length of vector registers,
exception handling, conditional operations

• Will multimedia popularity revive vector
architectures?

DAP Spr.‘98 ©UCB 3

Review: Processor Classes
• General Purpose - high performance

– Pentiums, Alpha's, SPARC

– Used for general purpose software

– Heavy weight OS - UNIX, NT

– Workstations, PC's

• Embedded processors and processor cores
– ARM, 486SX, Hitachi SH7000, NEC V800

– Single program

– Lightweight, often realtime OS

– DSP support

– Cellular phones, consumer electronics (e. g. CD players)

• Microcontrollers
– Extremely cost sensitive

– Small word size - 8 bit common

– Highest volume processors by far

– Automobiles, toasters, thermostats, ...

In
cr

ea
si

n
g

 C
o

st

In
cr

ea
si

n
g

 V
o

lu
m

e

DAP Spr.‘98 ©UCB 4

DSP Outline
• Intro

• Sampled Data Processing and Filters

• Evolution of DSP

• DSP vs. GP Processor

• Lecture material based “Introduction to Architectures for
Digital Signal Processing” lecture by Bob Brodersen

www.cs.berkeley.edu/~pattrsn/152F97/slides/CS152_dsp.pdf

– Will refer to page from his lecture as “RB: i”

• and Dr. Jeff Bier “Evolution of Digital Signal Processing”
www.cs.berkeley.edu/~pattrsn/152F97/slides/ slides.evolution.pdf

– Will refer to page from his lecture as “JB: i”

DAP Spr.‘98 ©UCB 5

DSP Introduction

• Digital Signal Processing: application of
mathematical operations to digitally represented
signals

• Signals represented digitally as
sequences of samples

• Digital signals obtained from physical signals
via tranducers (e.g., microphones) and analog-
to-digital converters (ADC)

• Digital signals converted back to physical
signals via digital-to-analog converters (DAC)

• Digital Signal Processor (DSP):
electronic system that processes digital signals

DAP Spr.‘98 ©UCB 6

Common DSP algorithms
and applications

• Applications – Instrumentation and
measurement

– Communications

– Audio and video processing

– Graphics, image enhancement, 3- D rendering

– Navigation, radar, GPS

– Control - robotics, machine vision, guidance

• Algorithms
– Frequency domain filtering - FIR and IIR

– Frequency- time transformations - FFT

– Correlation

DAP Spr.‘98 ©UCB 7

What Do DSPs Need to Do Well?

• Most DSP tasks require:
– Repetitive numeric computations

– Attention to numeric fidelity

– High memory bandwidth, mostly via array accesses

– Real-time processing

• DSPs must perform these tasks efficiently
while minimizing:

– Cost

– Power

– Memory use

– Development time

DAP Spr.‘98 ©UCB 8

DSP Application - equalization

• See RB slide 20
www.cs.berkeley.edu/~pattrsn/152F97/slides/CS152_dsp.pdf

• The audio data streams from the source
(computer) through the digital analysis and
synthesis

• Hard realtime requirement - the processing
must be done at the sample rate

DAP Spr.‘98 ©UCB 9

Who Cares?

• DSP is a key enabling technology for many
types of electronic products

• DSP-intensive tasks are the performance
bottleneck in many computer applications
today

• Computational demands of DSP-intensive
tasks are increasing very rapidly

• In many embedded applications, general-
purpose microprocessors are not competitive
with DSP-oriented processors today

• 1997 market for DSP processors: $3 billion

DAP Spr.‘98 ©UCB 10

A Tale of Two Cultures
• General Purpose Microprocessor traces roots

back to Eckert, Mauchly, Von Neumann (ENIAC)

• DSP evolved from Analog Signal Processors,
using analog hardware to transform phyical
signals (classical electrical engineering)

• ASP to DSP because
– DSP insensitive to environment (e.g., same response in

snow or desert if it works at all)

– DSP performance identical even with variations in
components; 2 analog systems behavior varies even if
built with same components with 1% variation

• Different history and different applications led to
different terms, different metrics, some new
inventions

• Increasing markets leading to cultural warfare

DAP Spr.‘98 ©UCB 11

DSP vs. General Purpose MPU

• DSPs tend to be written for 1 program, not
many programs.

– Hence OSes are much simpler, there is no virtual
memory or protection, ...

• DSPs sometimes run hard real-time apps
– You must account for anything that could happen in

a time slot

– All possible interrupts or exceptions must be
accounted for and their collective time be
subtracted from the time interval.

– Therefore, exceptions are BAD!

• DSPs have an infinite continuous data stream

DAP Spr.‘98 ©UCB 12

Today’s DSP “Killer Apps”

• In terms of dollar volume, the biggest markets
for DSP processors today include:

– Digital cellular telephony

– Pagers and other wireless systems

– Modems

– Disk drive servo control

• Most demand good performance

• All demand low cost

• Many demand high energy efficiency

• Trends are towards better support for these
(and similar) major applications.

DAP Spr.‘98 ©UCB 13

Digital Signal Processing in
General Purpose Microprocessors
• Speech and audio compression

• Filtering

• Modulation and demodulation

• Error correction coding and decoding

• Servo control

• Audio processing (e.g., surround sound, noise
reduction, equalization, sample rate conversion)

• Signaling (e.g., DTMF detection)

• Speech recognition

• Signal synthesis (e.g., music, speech synthesis)

DAP Spr.‘98 ©UCB 14

Decoding DSP Lingo

• DSP culture has a graphical format to represent
formulas.

• Like a flowchart for formulas, inner loops,
 not programs.

• Some seem natural:
Σ is add, X is multiply

• Others are obtuse:
z–1 means take variable from earlier iteration.

• These graphs are trivial to decode

DAP Spr.‘98 ©UCB 15

Decoding DSP Lingo
• Uses “flowchart” notation instead of equations

• Multiply is or
X

• Add is or

+ Σ

• Delay/Storage is or or

Delay z–1 D

designed to keep
computer
architects
without the secret
decoder ring out
of the DSP field?

DAP Spr.‘98 ©UCB 16

CS 252 Administrivia
• Selected projects last week

• Upcoming events in CS 252

20-Feb DSP/Multimedia Processors #2 (Fri)

25-Feb Memory Hierachy: Caches; Meeting signup

25-Feb Project Survey due (Wed)

26-Feb HW #2 due by 5:00 PM (Thu)

27-Feb Memory Hierarchy Example;
6 minute Proj. Meetings 3:40–5:40

4-Mar Quiz 1 (5:30PM – 8:30PM, 306 Soda) (Wed)

Pizza at LaVal’s 8:30 – 10PM

DAP Spr.‘98 ©UCB 17

Sampled data processing

• RB Slides 22-30
www.cs.berkeley.edu/~pattrsn/152F97/slides/CS152_dsp.pdf

DAP Spr.‘98 ©UCB 18

FIR Filtering:
A Motivating Problem

• JB Slide 8
 www.cs.berkeley.edu/~pattrsn/152F97/slides/ slides.evolution.pdf

• M most recent samples in the delay line (Xi)

• New sample moves data down delay line

• “Tap” is a multiply-add

• Each tap (M+1 taps total) nominally requires:
– Two data fetches

– Multiply

– Accumulate

– Memory write-back to update delay line

• Goal: 1 FIR Tap / DSP instruction cycle

DAP Spr.‘98 ©UCB 19

DSP Assumptions of the World

• Machines issue/execute/complete in order

• Machines issue 1 instruction per clock

• Each line of assembly code = 1 instruction

• Clocks per Instruction = 1.000

• Floating Point is slow, expensive

DAP Spr.‘98 ©UCB 20

FIR filter on (simple)
General Purpose Processor

loop:
lw x0, 0(r0)
lw y0, 0(r1)
mul a, x0,y0
add y0,a,b
sw y0,(r2)
inc r0
inc r1
inc r2
dec ctr
tst ctr
jnz loop

• Problems: Bus / memory bandwidth
bottleneck, control code overhead

DAP Spr.‘98 ©UCB 21

First Generation DSP (1982):
Texas Instruments TMS32010

• 16-bit fixed-point

• “Harvard architecture”
– separate instruction,

data memories

• Accumulator

• Specialized instruction set
– Load and Accumulate

• 390 ns Multiple-Accumulate
 (MAC) time; 228 ns today

Processor

Instruction
Memory

Data
Memory

T-Register

Accumulator

ALU

Multiplier

Datapath:

P-Register

Mem

DAP Spr.‘98 ©UCB 22

TMS32010 FIR Filter Code

• Here X4, H4, ... are direct (absolute) memory addresses:

LT X4 ; Load T with x(n-4)

MPY H4 ; P = H4*X4

LTD X3 ; Load T with x(n-3); x(n-4) = x(n-3);
; Acc = Acc + P

MPY H3 ; P = H3*X3

LTD X2

MPY H2

...

• Two instructions per tap, but requires unrolling

DAP Spr.‘98 ©UCB 23

Features Common to Most DSP
Processors

• Data path configured for DSP

• Specialized instruction set

• Multiple memory banks and buses

• Specialized addressing modes

• Specialized execution control

• Specialized peripherals for DSP

DAP Spr.‘98 ©UCB 24

DSP Data Path: Arithmetic
• DSPs dealing with numbers representing real world

=> Want “reals”/ fractions

• DSPs dealing with numbers for addresses
=> Want integers

• Support “fixed point” as well as integers

S.
radix
point

-1 ≤ x < 1

S .
radix
point

–2N–1 ≤ x < 2N–1

DAP Spr.‘98 ©UCB 25

DSP Data Path: Precision
• Word size affects precision of fixed point numbers

• DSPs have 16-bit, 20-bit, or 24-bit data words

• Floating Point DSPs cost 2X - 4X vs. fixed point,
slower than fixed point

• DSP programmers will scale values inside code
– SW Libraries

– Seperate explicit exponent

• “Blocked Floating Point” single exponent for a
group of fractions

• Floating point support simplify development

DAP Spr.‘98 ©UCB 26

DSP Data Path: Overflow?
• DSP are descended from analog :

what should happen to output when “peg” an input?
(e.g., turn up volume control knob on stereo)

– Modulo Arithmetic???

• Set to most positive (2N–1–1) or
 most negative value(–2N–1) : “saturation”

• Many algorithms were developed in this model

DAP Spr.‘98 ©UCB 27

DSP Data Path: Multiplier
• Specialized hardware performs all key

arithmetic operations in 1 cycle

• ≥ 50% of instructions can involve multiplier
=> single cycle latency multiplier

• Need to perform multiply-accumulate (MAC)

• n-bit multiplier => 2n-bit product

DAP Spr.‘98 ©UCB 28

DSP Data Path: Accumulator
• Don’t want overflow or have to scale accumulator

• Option 1: accumalator wider than product:
“guard bits”

– Motorola DSP:
24b x 24b => 48b product, 56b Accumulator

• Option 2: shift right and round product before adder

Accumulator

ALU

Multiplier

Accumulator

ALU

Multiplier

Shift

G

DAP Spr.‘98 ©UCB 29

DSP Data Path: Rounding
• Even with guard bits, will need to round when

store accumulator into memory

• 3 DSP standard options

• Truncation: chop results
=> biases results up

• Round to nearest:
< 1/2 round down, ≥ 1/2 round up (more positive)
=> smaller bais

• Convergent:
< 1/2 round down, > 1/2 round up (more positive),
= 1/2 round to make lsb a zero (+1 if 1, +0 if 0)
=> no bais
IEEE 754 calls this round to nearest even

DAP Spr.‘98 ©UCB 30

DSP Memory
• FIR Tap implies multiple memory accesses

• DSPs want multiple data ports

• Some DSPs have ad hoc techniques to reduce
memory bandwdith demand

– Instruction repeat buffer: do 1 instruction 256 times

– Often disables interrupts, thereby increasing interrupt
responce time

• Some recent DSPs have instruction caches
– Even then may allow programmer to “lock in”

instructions into cache

– Option to turn cache into fast program memory

• No DSPs have data caches

• May have multiple data memories

DAP Spr.‘98 ©UCB 31

DSP Addressing
• Have standard addressing modes: immediate,

displacement, register indirect

• Want to keep MAC datapth busy

• Assumption: any extra instructions imply clock
cycles of overhead in inner loop
=> complex addressing is good
=> don’t use datapath to calculate fancy address

• Autoincrement/Autodecrement register indirect
– lw r1,0(r2)+ => r1 <- M[r2]; r2<-r2+1

– Option to do it before addressing, positive or negative

DAP Spr.‘98 ©UCB 32

DSP Addressing: Buffers
• DSPs dealing with continuous I/O

• Often interact with an I/O buffer (delay lines)

• To save memory, buffer often organized as
circular buffer

• What can do to avoid overhead of address
checking instructions for circular buffer?

• Option 1: Keep start register and end register per
address register for use with autoincrement
addressing, reset to start when reach end of
buffer

• Option 2: Keep a buffer length register, assuming
buffers starts on aligned address, reset to start
when reach end

• Every DSP has “modulo” or “circular” addressing

DAP Spr.‘98 ©UCB 33

DSP Addressing: FFT
• FFTs start or end with data in wierd bufferfly order

0 (000) => 0 (000)

1 (001) => 4 (100)

2 (010) => 2 (010)

3 (011) => 6 (110)

4 (100) => 1 (001)

5 (101) => 5 (101)

6 (110) => 3 (011)

7 (111) => 7 (111)

• What can do to avoid overhead of address checking
instructions for FFT?

• Have an optional “bit reverse” address addressing
mode for use with autoincrement addressing

• Many DSPs have “bit reverse” addressing for radix-2
FFT

DAP Spr.‘98 ©UCB 34

DSP Instructions

• May specify multiple operations in a single
instruction

• Must support Multiply-Accumulate (MAC)

• Need parallel move support

• Usually have special loop support to reduce branch
overhead

– Loop an instruction or sequence

– 0 value in reigster usually means loop maximum number of
times

– Must be sure if calculate loop count that 0 does not mean 0

• May have saturating shift left arithmetic

• May have conditional execution to reduce branches

DAP Spr.‘98 ©UCB 35

DSP vs. General Purpose MPU
• DSPs are like embedded MPUs, very concerned

about energy and cost.
– So concerned about cost is that they might even us a

4.0 micron (not 0.40) to try to shrink the the wafer costs
by using fab line with no overhead costs.

• DSPs that fail are often claimed to be good for
something other than the highest volume
application, but that's just designers fooling
themselves.

• Very recently convention wisdom has changed
so that you try to do everything you can digitally
at low voltage so as to save energy.

– 3 years ago people thought doing everything in analog
reduced power, but advances inlower power digital
design flipped that bit.

DAP Spr.‘98 ©UCB 36

DSP vs. General Purpose MPU

• The “MIPS/MFLOPS” of DSPs is speed of
Multiply-Accumulate (MAC).

– DSP are judged by whether they can keep the
multipliers busy 100% of the time.

• The "SPEC" of DSPs is 4 algorithms:
– Inifinite Impule Response (IIR) filters

– Finite Impule Response (FIR) filters

– FFT, and

– convolvers

• In DSPs, algorithms are king!
– Binary compatability not an issue

• Software is not (yet) king in DSPs.
– People still write in assembly language for a product to

minimize the die area for ROM in the DSP chip.

DAP Spr.‘98 ©UCB 37

Generations of DSPs

• JB Slides 19, 21, 25, 29, 31, 32, 33
 www.cs.berkeley.edu/~pattrsn/152F97/slides/ slides.evolution.pdf

• (If time permits; otherwise do next time)

DAP Spr.‘98 ©UCB 38

Summary: How are DSPs different?

• Essentially infinite streams of data which
need to be processed in real time

• Relatively small programs and data storage
requirements

• Intensive arithmetic processing with low
amount of control and branching (in the
critical loops)

• High amount of I/ O with analog interface

• Loosely coupled multiprocessor operation

DAP Spr.‘98 ©UCB 39

Summary: How are DSPs different?

• Single cycle multiply accumulate (multiple
busses and array multipliers)

• Complex instructions for standard DSP
functions (IIR and FIR filters, convolvers)

• Specialized memory addressing
– Modular arithmetic for circular buffers (delay lines)

– Bit reversal (FFT)

• Zero overhead loops and repeat instructions

• I/ O support – Serial and parallel ports

DAP Spr.‘98 ©UCB 40

Summary:
Unique Features in DSP architectures
• Continuous I/O stream, real time requirements

• Multiple memory accesses

• Autoinc/autodec addressing

• Datapath
– Multiply width

– Wide accumulator

– Guard bits/shiting rounding

– Saturation

• Weird things
– Circular addressing

– Reverse addressing

• Special instructions
– shift left and saturate (arithmetic left-shift)

DAP Spr.‘98 ©UCB 41

Conclusions

• DSP processor performance has increased by
a factor of about 150x over the past 15 years
(~40%/year)

• Processor architectures for DSP will be
increasingly specialized for applications,
especially communiction applications

• General-purpose processors will become
viable for many DSP applications

• Users of processors for DSP will have an
expanding array of choices

• Selecting processors requires a careful,
application-specific analysis

DAP Spr.‘98 ©UCB 42

For More Information
• http://www.bdti.com

Collection of BDTI’s papers on DSP processors,
tools, and benchmarking.

• http://www.eg3.com/dsp
Links to other good DSP sites.

• Microprocessor Report
For info on newer DSP processors.

• DSP Processor Fundamentals,
Textbook on DSP Processors, BDTI

• IEEE Spectrum, July, 1996
Article on DSP Benchmarks

• Embedded Systems Prog., October, 1996
Article on Choosing a DSP Processor

